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Abstract

In this paper, we have used the partial Euler product to examine the validity of the Rie-
mann Hypothesis. The Dirichlet series with the Mobius function M(s) =

∑∞
n=1 µ(n)/ns has

been modified and represented in terms of the partial Euler product by progressively elimi-
nating the numbers that first have a prime factor 2, then 3, then 5, ..up to the prime number
pr to obtain the series M(s, pr). It is shown that the series M(s) and the new series M(s, pr)
have the same region of convergence for every pr. Unlike the partial sum of M(s) that has ir-
regular behavior, the partial sum of the new series exhibits regular behavior as pr approaches
infinity. This has allowed the use of integration methods to compute the partial sum of the
new series to determine its region of convergence and to provide an answer for the validity
of the Riemann Hypothesis.
Keywords: Riemann zeta function, Mobius function, Riemann hypothesis, conditional con-
vergence, Euler product.
Classification: Number Theory, 11M26

1 Introduction

The Riemann zeta function ζ(s) satisfies the following functional equation over the complex
plain [1]

ζ(1− s) = 2(2π)2 cos(0.5sπ)Γ(s)ζ(s), (1)

where, s = σ + it is a complex variable and s 6= 1.

For σ > 1 (or <(s) > 1 ), ζ(s) can be expressed by the following series

ζ(s) =
∞∑
n=1

1

ns
, (2)

or by the following product over the primes pi’s

1

ζ(s)
=
∞∏
i=1

(
1− 1

psi

)
. (3)

where, p1 = 2,
∏∞
i=1(1 − 1/pi

s) is the Euler product and
∏r
i=1(1 − 1/pi

s) is the partial Euler
product. The above series and product representations of ζ(s) are absolutely convergent for
σ > 1.
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The region of the convergence for the sum in Equation (2) can be extended to <(s) > 0 by
using the alternating series η(s) where

η(s) =
∞∑
n=1

(−1)n−1

ns
, (4)

and
ζ(s) =

1

1− 21−s η(s). (5)

One may notice that the term 1− 21−s is zero at s = 1. This zero cancels the simple pole that
ζ(s) has at s = 1 enabling the extension (or analog continuation) of the zeta function series
representation over the critical strip where 0 < <(s) < 1.

It is well known that all of the non-trivial zeros of ζ(s) are located in the critical strip. Rie-
mann stated that all non-trivial zeros were very probably located on the critical line<(s) = 0.5
[2]. There are many equivalent statements for the Riemann Hypothesis (RH) and one of them
involves the Dirichlet series with the Mobius function.

The Mobius function µ(n) is defined as follows
µ(n) = 1, if n = 1.
µ(n) = (−1)k, if n =

∏k
i=1 pi, pi’s are distinct primes.

µ(n) = 0, if p2|n for some prime number p.

The Dirichlet series M(s) with the Mobius function is defined as

M(s) =
∞∑
n=1

µ(s)

ns
. (6)

This series is absolutely convergent to 1/ζ(s) for <(s) > 1 and conditionally convergent to
1/ζ(s) for <(s) = 1. The Riemann hypothesis is equivalent to the statement that M(s) is
conditionally convergent to 1/ζ(s) for <(s) > 0.5. It should be pointed out that our defi-
nition of M(s) is different from Mertens function M(x) defined in the literature as M(x) =∑

1≤n≤x µ(n). If we denote M(s; 1, N) as partial sum of the above series M(s), then

M(s; 1, N) =
N∑
n=1

µ(s)

ns
. (7)

and the Mertens function is given by M(0; 1, N). On RH, we then have [7]

M(0; 1, N) = O(N1/2+ε),

where ε is an arbitrary small number. By partial summation, on RH, we also have

M(1; 1, N) = O(N−1/2+ε).

The irregular behavior of the Mobius function µ(n) has so far hindered the attempts to esti-
mate the asymptotic behavior of any of the above two sums as N approaches infinity.
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The Riemann hypothesis is also equivalent to another statement that involves the prime
number function π(x) (defined by the the number of primes less than x). The prime counting
function can be computed using Riemann Explicit Formula

π(x) = Li(x)−
∑
ρ

Li(xρ) +
∞∑
n=2

µ(n)

n
Li(x1/n)− log(2) +

∫ ∞
x

dt

t(t2 − 1) log t

where Li(x) is the Logarithmic Integral of x and the sum
∑
ρ Li(xρ) is performed over the

nontrivial zeros ρi = αi + iγi . This sum is conditionally convergent and it should be per-
formed over the nontrivial zeros with |γi|≤ T as T approaches infinity. The distribution of
the prime number can be also analyzed by defining the function ψ(x) as

ψ(x) =
∑

pim≤x
log pi

and using Von Mangoldt formula given by

ψ(x) = x−
∑
ρ

xρ

ρ
− ζ ′(0)

ζ(0)
− 1

2
log(1− x−2)

It is well known that as x approaches infinity, the prime counting function is asymptotic to
the function Li(x). Therefore, if we consider that π(x) is comprised of two components, the
regulator component given by Li(x) and the irregular component J(x) given by

J(x) = π(x)− Li(x) (8)

then on RH, we have

J(x) <
1

8π

√
x log x for x > 2657

It is also given by [7, lemmas 5 and 6]

J(x) =
ψ(x)− x

log x
+O

( √
x

log x

)
or

J(x) = − 1

log x

∑
ρ

xρ

ρ
+O

( √
x

log x

)
(9)

Our method to examine the validity of the Riemann Hypothesis is based on represent-
ing the Dirichlet series M(s) (defined by Equation (6)) in terms of the integral

∫
dJ(x)/x. In

order to do that, we need to smooth the irregular behavior of the function M(s) by introduc-
ing a method to represent the series M(s) in terms of the partial Euler product. This task is
achieved in section 2 by first eliminating the numbers that have the prime factor 2 to generate
the series M(s, 3) (i.e, the series M(s, 3) is void of any number with a prime factor less than
3). For the series M(s, 3), we then eliminate the numbers with the prime factor 3 to generate
the series M(s, 5), and so on, up to the prime number pr. In other words, we have applied
the sieving technique to modify the series M(s) to include only the numbers with prime fac-
tors greater than or equal to pr. In the literature [10], numbers with prime factors less than y
are called y-smooth while numbers with prime factors greater than y are called y-rough. In
essence, our approach is to compute the Dirichlet series over pr−1-rough numbers. In section
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3, we have shown that the series M(s) and the new series M(s, pr) have the same region of
convergence (Theorem 1).

We will then present two methods to represent the series M(s, pr) in terms of the integral∫∞
pr
dJ(x)/x. The first method is based on complex analysis (section 4). With this method,

we have provided a functional equation for ζ(s) using its partial Euler product. The second
method is described in section 5 and it is based on integration methods to represent the series
M(s, pr) in terms of the integral

∫∞
pr
dJ(x)/x.

Gonek, Hughes and Keating [3] have done an extensive research into establishing a re-
lationship between ζ(s) and its partial Euler product for <(s) < 1. Gonek stated ”Analytic
number theorists believe that an eventual proof of the Riemann Hypothesis must use both
the Euler product and functional equation of the zeta-function. For there are functions with
similar functional equations but no Euler product, and functions with an Euler product but
no functional equation.” In section 4, we will present a functional equation for ζ(s) using its
partial Euler product. The method is based on writing the Euler product formula as follows

1/ζ(s) =
∞∏
i=1

(
1− 1

psi

)
=

r−1∏
i=1

(
1− 1

psi

) ∞∏
r

(
1− 1

psi

)
.

The above equation is valid for σ > 1. To be able to represent ζ(s) in term of its partial Euler
product for σ ≤ 1, we need to replace the term

∏∞
r (1− 1/psi ) with an equivalent one that

allows the analytic continuation for the representation of ζ(s) for σ ≤ 1. Thus, the new term
(that we need to introduce to replace

∏∞
r (1− 1/psi )) must have a zero that cancels the pole

that ζ(s) has at s = 1. In the section 4, we will use the complex analysis to compute this new
term and then represent ζ(s) in terms of its partial Euler product. This functional representa-
tion is given by Theorem 2. We have then used this theorem to represent the series M(s, pr)
in terms of the integral

∫∞
pr
dJ(x)/x (Theorem 3).

As mentioned before, the efforts to use the series M(σ) to examine the validity of the Rie-
mann Hypothesis have so far failed due to the irregular behavior of the partial sum of the
series M(σ) (due to the irregular behavior of the Mobius function µ(n)). In sections 5 and
6, we have shown that the partial sum of the new series M(σ, pr) exhibits regular behavior
as pr approaches infinity. This has allowed the use of integration methods to compute the
partial sum of the new series. We have then shown that partial sum of the series M(1, pr) can
be decomposed into two terms (Theorem 4). The first term, that we have called the regular
component, is generated by the regular component of the prime counting function Li(x). The
second term is the irregular component.

In section 7, we have used theorem 3 and the Fourier analysis to derive a second rep-
resentation for the partial sum of the irregular component of the series M(1, pr). The two
representations of the irregular component of the partial sum of the series M(1, pr) are then
compared to examine the validity of the Riemann Hypothesis. This comparison analysis in-
dicates that non-trivial zeros can be found arbitrary close to the line <(s) = 1.

2 Applying the Sieving Method to the Dirichlet Series M(s).

The Dirichlet series M(s) with the Mobius function is defined as
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M(s) =
∞∑
n=1

µ(s)

ns
,

where µ(n) is the Mobius function. Thus,

M(s) = 1− 1

2s
− 1

3s
+

0

4s
− 1

5s
+

1

6s
....

Next, we introduce the series M(s, 3) by eliminating all the numbers that have a prime
factor 2 (or keeping only the number with prime factors greater than or equal to 3). Thus,
M(s, 3) can be written as

M(s, 3) = 1− 1

3s
− 1

5s
− 1

7s
+

0

9s
− 1

11s
− 1

13s
+

1

15s
.....

Our analysis to test the conditional convergence of these series (M(s) and M(s, 3) for
σ ≤ 1) is based on comparing correspondent terms of these two series. Therefore, rearrange-
ment and permutation of the terms may have a significant impact on analyzing the region of
convergence of both series. Thus, it essential to have the same index for both series M(s) and
M(s, 3) refer to the same term. Hence, we will represent M(s, 3) as follows

M(s, 3) = 1 +
0

2s
− 1

3s
+

0

4s
− 1

5s
+

0

6s
− 1

7s
− 0

8s
....,

or

M(s, 3) =
∞∑
n=1

µ(n, 3)

ns
, (10)

where
µ(n, 3) = µ(n), if n is an odd number,
µ(n, 3) = 0, if n is an even number.

The above seriesM(s, 3) can be further modified by eliminating all the numbers that have
a prime factor 3 (or keeping only the number with prime factors greater than or equal to 5) to
get the series M(s, 5) where

M(s, 5) = 1− 1

5s
− 1

7s
− 1

11s
− 1

13s
− 1

17s
− 1

19s
− 1

23s
+

0

25s
....,

or more conveniently

M(s, 5) = 1 +
0

2s
− 0

3s
+

0

4s
− 1

5s
+

0

6s
− 1

7s
− 0

8s
....,

and so on.

Let I(pr) represent, in ascending order, the integers with distinct prime factors that belong
to the set {pi : pi ≥ pr}. Let {1, I(pr)} be the set of 1 and I(pr) (for example, {1, I(3)} is the
set of square-free odd numbers), then we define the series M(s, pr) as

M(s, pr) =
∞∑
n=1

µ(n, pr)

ns
, (11)
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where
µ(n, pr) = µ(n), if n ∈ {1, I(pr)} ,
otherwise, µ(n, pr) = 0.

It can be easily shown that, for every prime number pr, the series M(s, pr) converges
absolutely for <(s) > 1 . Furthermore, it can be shown that, for <(s) > 1, M(s, pr) satisfies
the following equation

M(s) = M(s, pr)
r−1∏
i=1

(
1− 1

psi

)
. (12)

Since

M(s) =
1

ζ(s)
=
∞∏
i=1

(
1− 1

psi

)
,

therefore we conclude that, for <(s) > 1, M(s, pr) approaches 1 as pr approaches infinity. It
should be pointed here that with this definition of M(s, pr), M(2, s) is equal to M(s).

3 The region of convergence for the series M(s) and M(s, pr).

In this section, we will deal with the question of the relationship between the conditional
convergence of the two series M(s, pr) and M(s) over the strip 0.5 < <(s) ≤ 1. Theorem 1
establishes this relationship.

Theorem 1. For s = σ + it, where 0.5 < σ ≤ 1 and for every prime number pr, the series M(s)
converges conditionally if and only if the series M(s, pr) converges conditionally. Furthermore, M(s)
and M(s, pr) are related as follows

M(s) = M(s, pr)
r∏
i=1

(
1− 1

psi

)
. (13)

The proof of this theorem can be achieved either by applying the Cauchy convergence
criteria or more conveniently by applying the complex analysis where we take advantage of
the fact that both functions ζ(s) and ζ(s)

∏r−1
i=1 (1− 1/psi ) have the same zeros (and a simple

pole at s = 1) to the right of the line <(s) = 1/2.

In the following, we will use the complex analysis to prove Theorem 1 by using a method
similar to the one outlined by Littlewood Theorem that shows that the Riemann Hypothesis is
valid if and only if the sum

∑∞
n=1 µ(n)/ns is convergent to 1/ζ(s) for every swith σ > 0.5. The

prove of this theorem can be found in [7, Theorem 14.12] and it depends mainly on Lemma
3.12 of the same reference [7]. This Lemma states: Let f(s) =

∑∞
n=1 an/n

s, where σ > 1,
an = O(ψ(n)) being non-decreasing and

∑∞
n=1 |an|/nσ = O(1/(σ − 1)α) as σ → 1. Then, if

c > 0, σ + c > 1, x is not an integer and N is the integer nearest to x, we have

∑
n<x

an
ns

=
1

2πi

∫ c+iT

c−iT
f(s+w)

xw

w
dw+O

(
xc

T (σ + c− 1)α

)
+O

(
ψ(2x)x1−σ log x

T

)
+O

(
ψ(N)x1−σ

T |x−N |

)
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To prove the first part of Theorem 1 (i.e. for s = σ+ it and 0.5 < σ ≤ 1, the series M(s, pr)
converges conditionally if M(s) converges conditionally), we note that for σ > 1,

M(s) =
∞∑
n=1

µ(n)

ns
=

1

ζ(s)
,

and

M(s, pr) =
∞∑
n=1

µ(n, pr)

ns
=

1

ζ(s)
∏r−1
i=1

(
1− 1

psi

) .
If we assume that M(s) is convergent for σ > h > 0.5, then ζ(s) has no zeros in the

complex plane to the right of the line <(s) = h [7, Theorem 14.12]. Consequently, the function
ζ(s)

∏r−1
i=1 (1− 1/psi ) has no zeros in the complex plane to the right of the line <(s) = h. Thus,

we may apply Lemma 3.12 [7] with an = µ(n, pr), f(s) = 1/
(
ζ(s)

∏r−1
i=1 (1− 1/psi )

)
, c = 2 and

x half an odd integer to obtain (refer to [7, Theorem 14.12])

∑
n<x

µ(n, pr)

ns
=

1

2πi

∫ 2+iT

2−iT

1

ζ(s+ w)
∏r−1
i=1

(
1− 1

ps+wi

) xw
w
dw +O

(
x2

T

)

However, by the calculus of residues we have

1

2πi

∫ 2+iT

2−iT

1

ζ(s+ w)
∏r−1
i=1

(
1− 1

ps+wi

) xw
w
dw =

1

ζ(s)
∏r−1
i=1

(
1− 1

psi

)+

1

2πi

(∫ h−σ+γ−iT

2−iT
+

∫ h−σ+γ+iT

h−σ+γ−iT
+

∫ 2+iT

h−σ+γ+iT

)
1

ζ(s+ w)
∏r−1
i=1

(
1− 1

ps+wi

) xw
w
dw

where, 0 < γ < σ − h. Since, along the line of integration and for an arbitrary small ε, we
have 1/ζ(σ+ iT ) = O(T ε) [7], therefore the first and third integrals on right side of the above
equation are given by O(T−1+εx2) while the second integral is given by O(xh−σ+γT ε). Hence

∑
n<x

µ(n, pr)

ns
=

1

ζ(s)
∏r−1
i=1

(
1− 1

psi

) +O(T−1+εx2) +O(T εxh−σ+γ)

Taking T = x3, the O−terms tend to zero as x approaches infinity. Consequently, the partial
sum M(s, pr; 1, x) is convergent as x approaches infinity and it is given by

M(s, pr) =
∞∑
n=1

µ(n, pr)

ns
=

1

ζ(s)
∏r−1
i=1

(
1− 1

psi

) .
or

M(s) = M(s, pr)
r−1∏
i=1

(
1− 1

pis

)
.

The second part of the theorem can be also proved by first defining M(s, pr;N1, N2) as the
partial sum
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M(s, pr;N1, N2) =
N2∑

n=N1

µ(n, pr)

ns
, (14)

where N2 ≥ N1 ≥ pr. Then, we have

M(s, pr−1; 1, Npr) = M(s, pr; 1, Npr)−
1

psr−1

M(s, pr; 1, N). (15)

Since the series M(s, pr) is conditionally convergent, then the partial sums M(s, pr; 1, Npr)
and M(s, pr; 1, N) are both convergent to M(s, pr) as N approaches infinity. Hence, as N
approaches infinity, we obtain

M(s, pr−1) = lim
N→∞

M(s, pr−1; 1, Npr) = M(s, pr)

(
1− 1

psr−1

)
.

By repeating this process r − 1 times, we then obtain

M(s) = M(s, pr)
r−1∏
i=1

(
1− 1

psi

)
.

4 Functional representation of ζ(s) using its partial Euler product.

In this section, we will use the prime counting function to derive a functional representation
for ζ(s) using its partial Euler product. We will start this task by first writing ζ(s) for σ > 1
as follows

1/ζ(s) =
∞∏
i=1

(
1− 1

psi

)
=

r−1∏
i=1

(
1− 1

psi

) ∞∏
r

(
1− 1

psi

)
. (16)

For σ > 0.5, we have

log
r2∏
i=r1

(
1− 1

psi

)
=

r2∑
i=r1

log

(
1− 1

pis

)
+ 2πiN,

where N is zero, positive or negative integer to account for the ambiguity in the phase of the
logarithm of complex numbers. Since 1/|psi |< 1, hence,

log
r2∏
i=r1

(
1− 1

psi

)
=

r2∑
i=r1

(
− 1

pis
− 1

2pi2s
− 1

3pi3s
− ...

)
+ 2πiN.

Let δ(pr1, pr2, s) and δ(pr1, s) be defined as the sums

δ(pr1, pr2, s) =
r2∑
i=r1

(
− 1

2pi2s
− 1

3pi3s
− 1

4pi4s
...

)
. (17)

and

δ(pr1, s) =
∞∑
i=r1

(
− 1

2pi2s
− 1

3pi3s
− 1

4pi4s
...

)
. (18)
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Thus,

log
r2∏
i=r1

(
1− 1

psi

)
= −

r2∑
i=r1

1

pis
+ δ(pr1, pr2, s) + 2πiN. (19)

Since |δ(pr1, pr2, s)|<
∑∞
n=pr1

(
1

2n2σ + 1
3n3s + 1

4n4s ...
)

, thus |δ(pr1, pr2, s)|= O(p1−2σ
r1 /(2σ − 1)).

Furthermore, if 2σ − 1 is a fixed positive number, then |δpr1,pr2 |= O(p1−2σ
r1 ).

Using the Prime Number Theorem (PNT) with a suitable constant a > 0, the number of
primes less than x is given by [4, page 43]

π(x) = Li(x) + J(x), (20)

where Li(x) is the Logarithmic Integral of x and

J(x) = O

(
xe−a

√
log x

)
, (21)

or
J(x) = O

(
x/(log x)k

)
, (22)

where k is a number greater than zero.

Using Stieltjes integral [5], we may write the sum
∑r2
i=r1

1
piσ

for σ > 1 as follows

r2∑
i=r1

1

piσ
=

∫ pr2

x=pr1

dπ(x)

xσ
. (23)

Using Equation (22) for the representation of π(x), we may then write the integral in Equation
(23) as [5, Theorem 2, page 57]

r2∑
i=r1

1

pσi
=

∫ pr2

pr1

1

xσ
1

log x
dx+O

(
1

(log pr1)k

)
, (24)

where k is a number greater than zero. Therefore,

r2∑
i=r1

1

pσi
=

∫ ∞
pr1

1

xσ
1

log x
dx−

∫ ∞
pr2

1

xσ
1

log x
dx+O

(
1

(log pr1)k

)
. (25)

Recalling that the Exponential Integral E1(r) is given by

E1(r) =

∫ ∞
r

e−u

u
du,

and using the substitutions u = (σ− 1) log x, du = (σ− 1)dx/x and xσ/x = eu, then for σ > 1,
we may write Equation (25) as

r2∑
i=r1

1

pσi
= E1 ((σ − 1) log pr1)− E1 ((σ − 1) log pr2) +O

(
1

(log pr1)k

)
. (26)

Combining Equations (19) and ((26)) and noting that, for σ > 1, E1 ((σ − 1) log pr2) ap-
proaches zero as pr2 approaches infinity, we may write Equation (16) for s = σ and σ > 1
as

− log ζ(σ) =
r−1∑
i=1

log

(
1− 1

piσ

)
−
∞∑
i=r

1

piσ
+ δ(pr+1, σ),
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or

log ζ(σ) +
r−1∑
i=1

log

(
1− 1

piσ

)
− E1 ((σ − 1) log pr) = ε,

where ε = O(1/(log pr1)k) is an arbitrarily small number attained by setting pr sufficiently
large. Therefore, by taking the exponential of both sides of the above equation, we then have

ζ(σ)
r−1∏
i=1

(
1− 1

pσi

)
exp (−E1((σ − 1) log pr)) = 1 + ε+O(ε2). (27)

As pr approaches infinity, ε approaches zero. Hence, the right side of the above equation ap-
proaches 1 as pr approaches infinity.

Similarly, for <(s) > 1, we can use the following expression for E1(s)

E1(s) =

∫ ∞
1

e−xs

x
dx,

to show that

log ζ(s) +
r−1∑
i=1

log

(
1− 1

pis

)
− E1 ((s− 1) log pr) = ε+ 2πiN.

Taking the exponent of both sides and allowing r to approach infinity, we then have

lim
r→∞

{
ζ(s)

r−1∏
i=1

(
1− 1

psi

)
exp (−E1((s− 1) log pr))

}
= 1. (28)

Let the function G(s, pr) be defined as

G(s, pr) = ζ(s)
r−1∏
i=1

(
1− 1

psi

)
exp (−E1((s− 1) log pr)) (29)

where, G(s, pr) is a regular function for <(s) > 1. Referring to Equation (28), the function
G(s, pr) approaches 1 as pr approaches infinity. It should be noted that, for every pr, the func-
tion exp (−E1((s− 1) log pr+1)) is an entire function, the function ζ(s) is analytic everywhere
except at s = 1 and the function

∏r−1
i=1 (1− 1/psi ) is analytic for <(s) > 0. Thus, for any σ > 1,

the function G(s, pr) can be considered as a sequence of analytic functions. Furthermore, as
pr (or r) approaches infinity, this sequence is uniformly convergent over the half plane with
σ > 1 + ε (where, ε is an arbitrary small number). Therefore, by the virtue of the Weiestrass
theorem, the limit is also analytic function [6] (Weiestrass theorem states that if the function
sequence fn is analytic over the region Ω and fn is uniformly convergent to a function f , then
f is also analytic on Ω and fn

′
converges uniformly to f

′
on Ω). If we define this limit as G(s),

where
G(s) = lim

r→∞
G(s, pr) (30)

then,G(s) is analytic over the half plane <(s) > 1 and it is equal to 1 by the virtue of Equation
(28).
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Next, we will extend the above results to the line s = 1 + it. We will then show that if RH
is valid, then for the strip s = σ + it where 0.5 < σ < 1, the above results will also be valid
with the limit of G(s, pr) is 1 as pr approaches infinity.

We will start this task by showing that although both ζ(s) and E1((s− 1) log pr+1) have a
singularity at s = 1, the product G(s, pr) has a removable singularity at s = 1 for every pr.
This can be shown by first expanding ζ(s) as a Laurent series about its singularity at s = 1

ζ(s) =
1

s− 1
+ γ − γ1(s− 1) + γ2

(s− 1)2

2!
− γ3

(s− 1)3

3!
+ ..., (31)

where γ is the Euler-Mascheroni constant and γi’s are the Stieltjes constants. For s = 1 + ε,
where ε = ε1 + iε2, ε1 and ε2 are arbitrary small numbers, the above equation can be written
as

ζ(s) =
1

ε
+ γ − γ1ε+ γ2

ε2

2!
− γ3

ε3

3!
+ ... (32)

Furthermore, for σ > 1, using the definition of the Exponential Integral, we may write
E1(s) as

E1(s) = −γ − log s+ s− s2

2 2!
+

s3

3 3!
− s4

4 4!
+ .... (33)

Thus, for s = 1 + ε, we have

exp (−E1((s− 1) log pr)) = eγε log pr exp

(
−ε log pr +

(ε log pr)
2

2 2!
− (ε log pr)

3

3 3!
+ ....

)
. (34)

By taking the product ζ(s) exp (−E1((s− 1) log pr)) and allowing |ε| to approach zero, we
then have

lim
s→1
{ζ(s) exp (−E1((s− 1) log pr))} = eγ log pr. (35)

However, it is well known that the partial Euler product at s = 1 can be written as [8]

r−1∏
i=1

(
1− 1

pi

)
=

e−γ

log pr−1
+O

(
1

(log pr−1)2

)
. (36)

Multiplying Equations (35) and (36), we then conclude that at s = 1, G(s, pr) approaches 1 as
pr approaches infinity. Furthermore, for s = 1 + it and t 6= 0, the value of exp(−E1(it log pr))
approaches 1 as pr approaches infinity and since

lim
r→∞

{
ζ(s)

r−1∏
i=1

(
1− 1

pis

)}
= 1,

therefore, for s = 1 + it, we have the following

lim
r→∞

G(s, pr) = lim
r→∞

{
ζ(s)

r−1∏
i=1

(
1− 1

psi

)
exp (−E1((s− 1) log pr))

}
= 1.

So far, we have shown that the functionG(s, pr) is uniformly convergent to 1 when<(s) >
1. We have also shown that G(s, pr) is convergent to 1 for <(s) = 1. In the following, we
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will show that, assuming the validity of the Riemann Hypothesis, the function G(s, pr) is
uniformly convergent to 1 for every value of swith<(s) > 0.5+ε, where ε is an arbitrary small
number. Toward this end, on RH, we will first show that the function G(s, pr) is convergent
for any value of s on the real axis with σ > 0.5. This can be achieved by first writing the
expressions forG(σ, pr1) andG(σ, pr2) (where r2 is an arbitrary large number greater than r1)

G(σ, pr1) = ζ(σ) exp (−E1((σ − 1) log pr1))
r1−1∏
i=1

(
1− 1

pσi

)
, (37)

G(σ, pr2) = ζ(σ) exp (−E1((σ − 1) log pr2))
r2−1∏
i=1

(
1− 1

pσi

)
. (38)

Since the function G(s, pr) is analytic that is not equal to 0 for σ > 0.5, hence we can divide
Equation (38) by Equation (37) and then take the logarithm to obtain

log

(
G(σ, pr2)

G(σ, pr1)

)
= E1 ((σ − 1) log pr1)− E1 ((σ − 1) log pr2) + log

(
r2−1∏
i=r1

(
1− 1

piσ

))
. (39)

To compute the logarithm of the partial Euler product in Equation (39), we recall Equation
(19) with N = 0 for s = σ + i0 and σ > 0.5

log
r2−1∏
r1

(
1− 1

pσi

)
= −

r2−1∑
i=r1

1

piσ
+ δ(pr1, pr2−1, σ),

where δ(pr1, pr2−1, σ) = O(p1−2σ
r1 /(2σ − 1)). Furthermore, we have

π(x) = Li(x) + J(x), (40)

where Li(x) is the Logarithmic Integral of x and on RH, we have

J(x) = O
(√
x log x

)
. (41)

Using the above equation for the representation of the prime counting function, we may then
obtain (Appendix 1)

r2−1∑
i=r1

1

piσ
= E1((σ − 1) log pr1)− E1((σ − 1) log pr2−1) + ε(pr1, pr2−1, σ),

where
ε(pr1, pr2, s) =

∫ pr2

pr1
dJ(x)/xs,

ε(pr1, s) =

∫ ∞
pr1

dJ(x)/xs,

and |ε(pr1, pr2, s)|= O
(
pr1

0.5−σ log pr1/(σ − 0.5)2
)

(on RH and for σ > 0.5) . Hence, Equation
(39) can be written as

log

(
G(σ, pr2)

G(σ, pr1)

)
= −ε(pr1, pr2−1, σ)+δ(pr1, pr2−1, s)+E1((σ−1) log pr2−1)−E1((σ−1) log pr2).
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Taking the exponential of both sides, we then have

G(σ, pr2)

G(σ, pr1)
= e−ε(pr1,pr2−1,σ)+δ(pr1,pr2−1,s)+E1((σ−1) log pr2−1)−E1((σ−1) log pr2).

Since E1((σ − 1) log pr2−1) − E1((σ − 1) log pr2) approaches zero as pr2 approaches infinity.
This follows from Cramer’s theorem on the gap between primes. This theorem states that on
RH, the gap between the prime number pr−1 and pr is less than k

√
p
r

log pr for some constant
k. Hence

lim
pr2→∞

G(σ, pr2)

G(σ, pr1)
= e−ε(pr1,σ)+δ(pr1,σ).

For the above equation, it should be pointed that we have kept pr1 fixed while we allowed
pr2 to approach infinity. Hence, G(σ, pr) for any arbitrary large pr is bounded. Furthermore,
for σ > 0.5 + ε, the term −ε(pr1, σ) + δ(pr1, σ) can be made arbitrary small by choosing pr1
arbitrary large, thus the limit of G(σ, pr) as pr approaches infinity exists and it is given by

G(σ) = lim
r→∞

G(σ, pr) (42)

This proves that, on RH, G(σ, pr) is convergent as pr approaches infinity and thus G(σ) exists
for σ > 0.5.

Similarly, we can follow the same steps to show that G(s, pr) is convergent as pr ap-
proaches infinity and thus G(s) exists for <(s) > 0.5. Following the same steps to obtain
Equation (39), we can also show that

log

(
G(s, pr2)

G(s, pr1)

)
= E1 ((s− 1) log pr1)−E1 ((s− 1) log pr2)−

r2−1∑
i=r1

1

pis
+ δ(pr1, pr2−1, s) + 2πiN,

(43)
where N is zero, positive or negative integer. In Appendix 2, we have shown that, on RH

and for <(s) > 0.5, we also have

r2∑
i=r1

1

pis
= E1((s− 1) log pr1)− E1((s− 1) log pr2) + ε(pr1, pr2, s), (44)

where ε(pr1, pr2, s) =
∫ pr2
pr1

dJ(x)/xs , |ε(pr1, pr2, s)|= O
(

|s|
(σ−0.5)2

pr1
0.5−σ log pr1

)
(on RH and

for σ > 0.5) and ε(pr1, s) =
∫∞
pr1

dJ(x)/xs. Hence

lim
pr2→∞

G(s, pr2)

G(s, pr1)
= e−ε(pr1,s)+δ(pr1,s).

Therefore, the limit of G(s, pr) as pr approaches infinity exists and it is given by

G(s) = lim
r→∞

G(s, pr) (45)

It should be noted that, while the function sequence G(s, pr) is not uniformly convergent
when the region of convergence is extended all the way to the line σ = 0.5, it is however
uniformly convergent for any rectangle extending from −iT to iT (for any arbitrary large T )
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and with σ > 0.5 + ε (for any arbitrary small ε). This follows from the fact that, on RH, εpr
(or, the O term) is bounded for any σ > 0.5 + ε. Since G(s, pr) is analytic for <(s) > 0 and
it is uniformly convergent for <(s) > 0.5 + ε, thus G(s) is analytic for the half right complex
plain with <(s) > 0.5 + ε (Weiestrass theorem [6]). Since we have shown that G(s) = 1 for
<(s) ≥ 1, thus on RH, G(s) = 1 for <(s) > 0.5 + ε. Hence, we have the following theorem

Theorem 2. For s = σ + it and σ > 0.5, the following holds if RH is valid

lim
r→∞

{
ζ(s)

r−1∏
i=1

(
1− 1

psi

)
exp (−E1((s− 1) log pr))

}
= 1. (46)

lim
r→∞

{M(s, pr) exp (E1((s− 1) log pr))} = 1. (47)

It should be also pointed out that Theorem 2 can be generalized to the case where there
are no non-trivial zeros for values of s with <(s) > h (where h > 0.5). For this case,
Equation (46) is valid for every s with <(s) > h and |ε(pr1, s)| in Appendix 2 is given by
O
(
|s|

(σ−h)2
pr1

h−σ log pr1
)

.

Equation (46) of Theorem 2 can be written as follows

log ζ(s) + log
r2−1∏
i=1

(
1− 1

psi

)
− E1 ((s− 1) log pr2) + 2πiN1 = 0,

where N1 is zero, positive or negative number and the equality of both sides is attained as
r2 (or pr2) approaches infinity (or more appropriately, for sufficiently large pr2, the right side
can be made arbitrary close to zero). It should be noted that while both functions log ζ(s) and
E1((s− 1) log pr2) have a branch cut along the real axis where 0.5 < σ < 1, the difference (i.e.
log ζ(s) − E1((s − 1) log pr2)) does not have a branch cut. For r < r2, the above equation can
be then written as

log ζ(s) = E1 ((s− 1) log pr2)−
r−1∑
i=1

log

(
1− 1

psi

)
−
r2−1∑
i=r

log

(
1− 1

psi

)
+ 2πiN2.

where N2 is zero, positive or negative number. For the region of convergence of the series
M(s, pr), we have (refer to Appendix 2)

−
r2−1∑
i=r

log

(
1− 1

psi

)
=

r2−1∑
i=r

1

pis
− δ(pr1, pr2−1, s)

or

−
r2−1∑
i=r

log

(
1− 1

psi

)
= E1 ((s− 1) log pr1)−E1 ((s− 1) log pr2−1)+ε(pr1, pr2−1, s)−δ(pr1, pr2−1, s)

Therefore, as pr2 approaches infinity, we have

log ζ(s) = −
r−1∑
i=1

log

(
1− 1

psi

)
+ E1 ((s− 1) log pr) + ε(pr1, s)− δ(pr1, s) + 2πiN2. (48)

where for sufficiently large pr, |δ(pr1, s)| is negligible compared to |ε(pr1, s)| (in fact, |δ(pr1, s)|
is of the same order of magnitude as |ε(pr1, s)|2). Taking the exponential of both side, we then
obtain the following theorem
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Theorem 3. For the region of convergence of the series M(s, pr) =
∑∞

1 µ(n, pr)/n
s, we have

M(s, pr) = e−E1((s−1) log pr)−ε(pr,s)+δ(pr,s), (49)

where ε(pr, s) =
∫∞
pr
dJ(x)/xs, J(x) = π(x)−Li(x) and δ(pr, s) =

∑∞
i=r

(
− 1

2pi2s
− 1

3pi3s
− 1

4pi4s
...
)

.
Furthermore, on RH and for sufficiently large pr, we have for σ > 0.5

M(σ, pr) = e−E1((σ−1) log pr)
(
1− ε(pr, σ) +O(ε(pr, σ)2)

)
. (50)

While we have used in this section the complex analysis to compute M(s, pr), in the next
section, we will employ integration methods to compute the partial sum M(s, pr; 1, par). The
results obtained in this section and the following section will be then combined (using the
Fourier analysis methods) in sections (6) and (7) to examine the validity of the Riemann Hy-
pothesis.

5 The series M(σ, pr) at σ = 1.

In this section, we will provide an estimate for the partial sumM(1, pr; 1, pr
a) as a approaches

infinity. This estimate will be computed using integration methods and noting that M(1, pr)
equals zero for every pr. Therefore, for every pr, M(1, pr; 1, pr

a) approaches zero as a ap-
proaches infinity.

Before we present the details of our method, it is important to mention that the partial
sum M(1, pr; 1, pr

a) can be also generated using y-smooth numbers. The y-smooth numbers
are the numbers that have only prime factors less than or equal to y. These numbers have
been extensively analyzed in the literature [10][12]. In [10], a clever method was presented to
generate the partial sum M(1, pr; 1, pr

a). With this method and using the inclusion-exclusion
principle [10, page 248], one can then provide an estimate for the partial sum M(1, pr; 1, pr

a).
In this section, we will provide a more general approach to compute M(1, pr; 1, pr

a). The
main advantage of our approach is the ability to extend it to compute the partial sum for
values of s other than 1. We will present our method in the following two steps.

• In the first step of our approach, we will show that, for every a and as pr approaches
infinity, the partial sum M(1, pr; 1, pr

a) approaches a function that is dependent on only
a (independent of pr).

Toward this end, we define the function f(a, pr) as

f(a, pr) = M(1, pr; 1, pr
a) =

pra∑
n=1

µ(n, pr)

n
.

We will then show that, for every a and as pr approaches infinity, the function f(a, pr) ap-
proaches a deterministic function ρ(a). In other words; if we plot M(1, pr; 1, N) (where
N = pr

a ) as a function of a = logN/log pr, then for each value of a and as pr approaches
infinity, f(a, pr) approaches a unique value ρ(a). This is equivalent to the statement

ρ(a) = lim
pr→∞

f(a, pr) = lim
pr→∞

M(1, pr; 1, pr
a).
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This result can be achieved by first noting that the partial sumM(1, pr; 1, pr
a) for 1 < a < 2

is given by

M(1, pr; 1, pr
a) = 1−

∑
pr≤pi<pra

1

pi
.

If we define M1(1, pr; 1, pr
a) as

M1(1, pr; 1, pr
a) =

∑
pr≤pi<pra

1

pi
,

then, using Stieltjes integral, we obtain

M(1, pr; 1, pr
a) = 1−M1(1, pr; 1, pr

a) = 1−
∫ pra

x=pr

dπ(x)

x
= 1−

∫ a

y=1

dπ(pr
y)

pry
.

Since

dπ(pr
y) = dLi(pr

y) + dJ(pyr),

therefore
dπ(pr

y) =
1

log(pry)
dpr

y + dJ(pr
y) =

pyr
y
dy + dJ(pr

y),

where on RH, J(pyr) = O(
√
pry log(pr

y)). Hence, for 1 < a < 2, we have

M(1, pr; 1, pr
a) = 1−

∫ a

1

dy

y
−
∫ a

1

dJ(pr
y)

pry
= 1− log(a) + g1(pr, a), (51)

where

g1(pr, a) = −
∫ a

1

dJ(pr
y)

pry
. (52)

As pr approaches infinity, g1(pr, a) approaches zero. Consequently,

lim
pr→∞

M(1, pr; 1, pr
a) = 1− log a.

The terms of the partial sum M(1, pr; 1, pr
a) for a in the range 1 < a < 3 are either a

reciprocal of a prime or a reciprocal of the product of two primes. Therefore, for 1 < a < 3,
we have

M(1, pr; 1, pr
a) = 1−

∑
pr≤pi<pra

1

pi
+

∑
pr≤pi1<pi2<pi1pi2<pra

1

pi1pi2
,

where pi1 and pi2 are two distinct primes that are greater than or equal to pr. LetM2(1, pr; 1, pr
a)

be defined as

M2(1, pr; 1, pr
a) =

∑
pr≤pi1<pi2<pi1pi2<pra

1

pi1pi2
=

1

2

∑
pr≤pi<pra−1

1

pi
M1(1, pr; 1, par/pi) + r2.

Note that, for the second sum (i.e.
∑
pr≤pi<pra−1

1
pi
M1(1, pr; 1, par/pi)), the factor of half was
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added since each term of the form 1/(pi1pi2) is repeated twice. Furthermore, this sum includes
non square-free terms (notice that, there is no repetition in any of the non square-free terms).
The term r2 was added to offset the contribution by these non square-free terms. We will
show later that the contribution by these terms (or r2) approaches zero as pr approaches
infinity. Using Stieltjes integral, we then have

M2(1, pr; 1, pr
a) =

1

2

∫ a−1

1

dπ(pr
y)

pry
(log(a− y) + g1(pr, a− y)) + r2.

Hence

M(1, pr; 1, pr
a) = 1− log(a) + g1(pr, a) +

1

2

∫ a−1

1

log(a− y)

y
dy + g2(pr, a),

where

g2(pr, a) =
1

2

∫ a−1

1

g1(pr, a− y)

y
dy +

1

2

∫ a−1

1
log(a− y)

dJ(pr
y)

pyr
+

1

2

∫ a−1

1
g1(pr, a− y)

dJ(pr
y)

pyr
+ r2.

It can be easily shown that, for any fixed value of a, the three integrals on the right side of
the above equation approach zero as pr approaches infinity. We will also show later that r2

approaches zero as pr approaches infinity. Thus, for 1 ≤ a < 3, we have

lim
pr→∞

M(1, pr; 1, pr
a) = 1− log a+

∫ a−1

1

log(a− y)

y
dy

Therefore, as pr approaches infinity, M(1, pr; 1, pr
a) approaches a function that is dependent

on only a.

Repeating the previous process bac times (where bxc is the integer value of x) and by
using the induction method, we can show that, as pr approaches infinity, the partial sum
M(1, pr; 1, pr

a) approaches a function that is dependent on only a. Specifically, we first write
the partial sum M(1, pr; 1, pr

a) as follows

M(1, pr; 1, pr
a) = 1−M1(1, pr; 1, pr

a) +M2(1, pr; 1, pr
a)− ...+ (−1)jMj(1, pr; 1, pr

a) + ...+

(−1)bac−1Mbac−1(1, pr; 1, pr
a) + (−1)bacMbac(1, pr; 1, pr

a),

where

Mj(1, pr; 1, pr
a) =

∑
pr≤pi1<pi2<..<pij<pi1pi2..pij<pra

1

pi1pi2...pij
.

and pi1, pi2, ..., pij are j distinct prime numbers greater than or equal to pr. If we assume that
Mj−1(1, pr; 1, pr

a) is given by

Mj−1(1, pr; 1, pr
a) = hj−1(a) + gj−1(pr, a)

where hj−1(a) is a function of a and gj−1(pr, a) approaches zero as pr approaches infinity,
then
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Mj(1, pr; 1, pr
a) =

1

j

∑
pr≤pi<pra−1

1

pi
Mj−1(1, pr; pr, p

a
r/pi) + rj ,

where the factor of 1/j was added since each term of the form 1/(pi1pi2...pij) is repeated j
times. It should be also noted that the sum of the above equation includes non square-free
terms. The term rj was added to offset the contribution by these non square-free terms. We
will show later that the contribution by these terms (or rj) approaches zero as pr approaches
infinity. Using Stieltjes integral, we then have

Mj(1, pr; 1, pr
a) =

1

j

∫ a−1

1

dπ(pr
y)

pry
(hj−1(a− y) + gj−1(pr, a− y)) + rj .

Hence

Mj(1, pr; 1, pr
a) =

1

j

∫ a−1

1

hj−1(a− y)

y
dy + gj(pr, a),

where the first term is a definite integral with only one variable y integrated over the range
1 ≤ y ≤ a − 1. Thus, the definite integral is a function of only a. We define this function as
hj(a). The second term is given by

gj(pr, a) =
1

j

∫ a−1

1

gj−1(pr, a− y)

y
dy +

1

j

∫ a−1

1
hj−1(a− y)

dJ(pr
y)

pyr
+

1

j

∫ a−1

1
gj−1(pr, a− y)

dJ(pr
y)

pyr
+ rj .

It can be easily shown that, for a fixed value of a, the three integrals on the right side of
the above equation approach zero as pr approaches infinity. We will also show later that rj
approaches zero as pr approaches infinity. Hence, as pr approaches infinity, we have

lim
pr→∞

Mj(1, pr; 1, pr
a) =

1

j

∫ a−1

1

hj−1(a− y)

y
dy = hj(a)

where h1(a) = log(a). Hence, for every a and as pr approaches infinity, we have

lim
pr→∞

M(1, pr; 1, pr
a) = 1− h1(a) + h2(a)− h3(a) + ...+ (−1)bachbac(a) = ρ(a). (53)

It should be pointed out that the above equation implies that the partial sums M(1, pr; 1, pr
a)

and M(1, pyr ; 1, pr
ay) (where, pyr is a prime number) have the same limit as pr approaches

infinity. Hence,
lim
pr→∞

M(1, pr; 1, pr
a) = lim

pr→∞
M(1, pyr ; 1, pr

ay) = ρ(a). (54)

Equation (54) will be used in the next step to estimate the asymptotic behavior of the function
ρ(a) as a approaches infinity.

As mentioned earlier, the partial sum M(1, pr; 1, pr
a) constructed by this process included

non square-free terms (i.e ri’s). In the following, we will show that, for every a and as pr
approaches infinity, the total contribution by these non square-free terms approaches zero as
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well. Toward this end, let S0 be the sum of the terms with the factor 1/p2
r . Therefore, S0 can

be expressed as K0/p
2
r . Let S1 be the sum of the remaining terms with the factor 1/(pr+1)2.

Therefore, S1 can be expressed as K1/(pr+1)2. Let S2 be the sum of the remaining terms with
the factor 1/(pr+2)2 where S2 can be expressed as K2/(pr+2)2, and so on. Let S be sum of all
the terms associated with non square-free terms. Thus, S is given by

S =
1

pr2
K0 +

1

pr+1
2
K1 + ...+

1

pr+L2
KL,

where pr+L is the largest prime that satisfies the condition pr+L2 ≤ pra. However,

|K0|, |K1|, ..., |KL|< 1 +
1

2
+

1

3
+ ...+

1

pra
.

Thus,

|K0|, |K1|, ..., |KL|= O(a log pr).

Therefore,

S =

(
1

pr2
+

1

pr+1
2

+ ...+
1

pr+L2

)
O(a log pr).

Hence, the contribution by the non square-free terms S is given by,

S = O(a log pr/pr).

Consequently, for every a and as pr approaches infinity, S (or the contribution by the non
square-free terms) approaches zero.

• In the second step, we write the partial sum M(1, pr; 1, pr
a) as the sum of two compo-

nents. The first one is the deterministic or regular component and it is given by ρ(a). The
second one is the irregular componentR(1, pr; 1, pr

a) given byM(1, pr; 1, pr
a)−ρ(a). We

will then show that the function ρ(a) is the Dickman function that has been extensively
used to analyze the properties of y-smooth numbers.

Toward this end, we write the partial sum M(1, pr; 1, pr
a) as the following sum

M(1, pr; 1, pr
a) = 1−

∑
pr≤pi<pra/2

1

pi
M(1, pi; 1, pr

a/pi)−
∑

pra/2≤pi<pra

1

pi
. (55)

The second sum was added since the first sum is void of the terms 1/pi’s for pia/2 ≤ pi ≤ par . It
can be easily shown that every term on the right side of Equation (55) is a term on the left side
of the equation and vice versa. Furthermore, there is no repetition of any term on the right
side of Equation (55). Using Stieltjes integral, we can write the above equation as follows

M(1, pr; 1, pr
a) = 1−

∫ a/2

1

dπ(pr
y)

pyr
M(1, pr

y; 1, par/p
y
r)−

∫ a

a/2

dπ(pr
y)

pyr
, (56)

where dπ(pr
y) = dLi(pr

y) + dJ(pr
y). It should pointed out that while Equations (55) and (56)

provide the value of the partial sum M(s, pr; 1, par) at s = 1, they can be easily modified to
compute the partial sum for any value of s to the right of the line <(s) = 1 (and on RH, to the
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right of the line <(s) = 0.5). This task will be achieved in the next section and it will be a key
step to examine the validity of the Riemann Hypothesis

For any fixed a, as pr approaches infinity, M(1, pr
y; 1, pa−yr ) approaches ρ(a/y − 1) (refer

to Equation (54)). Therefore, as pr approaches infinity, we have

ρ(a) = 1−
∫ a/2

1

ρ
(
a
y − 1

)
y

dy −
∫ a

a/2

dy

y
. (57)

In the following, we will show that ρ(a) is the Dickman function that has been extensively
used in the analysis of the y-smooth numbers. This task will be achieved by using Equation
(57) to compute the difference ρ(a + ∆a) − ρ(a) (where, ∆a is an arbitrary small number) to
obtain

ρ(a+ ∆a)−ρ(a) = −
∫ (a+∆a)/2

1

ρ
(
a+∆a
y − 1

)
y

dy+

∫ a/2

1

ρ
(
a
y − 1

)
y

dy−
∫ (a+∆a)

(a+∆a)/2

dy

y
+

∫ a

a/2

dy

y
.

Since the third integral of the above equation is equal to the fourth integral, therefore

ρ(a+ ∆a)− ρ(a) = −
∫ (a+∆a)/2

1

ρ
(
a+∆a
y − 1

)
y

dy +

∫ a/2

1

ρ
(
a
y − 1

)
y

dy.

If we define z = y/(1 + ∆a/a), then we have

ρ(a+ ∆a)− ρ(a) = −
∫ ((a+∆a)/2)/(1+∆a/a)

1/(1+∆a/a)

ρ
(
a
z − 1

)
z

dz +

∫ a/2

1

ρ
(
a
y − 1

)
y

dy.

Thus,

ρ(a+ ∆a)− ρ(a) = −
∫ 1

1/(1+∆a/a)

ρ
(
a
z − 1

)
z

dz.

Dividing both sides of the above equation by ∆a and letting ∆a approach zero, we then
obtain

dρ(a)

da
= −ρ(a− 1)

a
, (58)

where ρ(a) = 1− log(a) for 1 ≤ a ≤ 2. Equation (58) is a first order delay differential equation
that has been extensively analyzed in the literature [10][12]. The function ρ(a) is known as
the Dickman function. As a approaches infinity, ρ(a) can be given by the following estimate
[10]

ρ(a) =

(
e+ o(1)

a log a

)a
. (59)

For sufficiently large values of a, we have ρ(a) < a−a.

To compute the irregular component of M(1, pr; 1, par), we notice that R(1, pr; 1, pr
a) is

given by

R(1, pr; 1, pr
a) = M(1, pr; 1, par)− ρ(a).
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Thus, R(1, pr; 1, pr
a) can be computed by subtracting Equation (57) from Equation (56) to

obtain the following theorem

Theorem 4. The partial sum M(1, pr; 1, par) =
∑bparc
n=1 u(n, pr)/n can be expressed as

M(1, pr; 1, par) = ρ(a) +R(1, pr; 1, pr
a) (60)

where ρ(a) is Dickman function and the regular component of M(1, pr; 1, par) is given by

ρ(a) = lim
pr→∞

M(1, pr; 1, par) (61)

while R(1, pr; 1, pr
a) or the irregular component of M(1, pr; 1, par) is given by

R(1, pr; 1, pr
a) = −

∫ a/2

1
ρ (a/y − 1)

dJ(pr
y)

pyr
−
∫ a

a/2

dJ(pr
y)

pyr
−
∫ a/2

1
R(1, pr

y; 1, pa−yr )
dπ(pyr)

pyr
.

(62)

The term J(x) on the right side of Equation (62) is given by Ω(x0.5−ε) (where ε is an
arbitrary small number). This follows directly from the Riemann explicit formula where
J(x) = π(x) − Li(x) is given by the sum of terms of the form Li(xρ) (where ρ’s are the
non-trivial zeros) and many of these terms grow at least as fast as

√
x/log x [1]. Thus, we

have unconditionally J(x) = Ω(x0.5−ε) (In fact, in 1914, Littlewood have shown that J(x) =
Ω±(x1/2 log log log x/log x))

In the following, we will show that, for sufficiently large a, R(1, pr; 1, x) is given by
Ω(x−0.5) and on RH, it is given by O(x−0.5+ε). Toward this end, we first recall that on RH,
M(0; 1, x) (or the Mertens function) is given by [7, Theorems 14.25-C and 14.26-B]

M(0; 1, x) =
x∑

n=1

µ(n) = O(x0.5+ε),

and
M(0; 1, x) = Ω(x0.5),

where ε is an arbitrary small number. Using the method of partial summation, we then have

M(1; 1, x) =
x∑

n=1

µ(n)

n
= O(x−0.5+ε),

and
M(1; 1, x) = Ω(x−0.5).

Similarly, for sufficiently large x, we can show that

M(0, pr; 1, x) =
x∑

n=1

µ(n, pr) = O(x0.5+ε),

and
M(0, pr; 1, x) = Ω(x0.5).
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Using the method of partial summation, we then have

M(1, pr; 1, x) =
x∑

n=1

µ(n, pr)

n
= O(x−0.5+ε),

and
M(1, pr; 1, x) = Ω(x−0.5).

Since M(1, pr; 1, par) is given by

M(1, pr; 1, pr
a) = ρ(a) +R(1, pr; 1, pr

a)

and since ρ(a) decays to zero faster than e−ca for any arbitrary large c, therefore on RH, we
have the following theorem

Theorem 5. On RH and as a approaches infinity, we have

R(1, pr; 1, pr
a) = O(pr

−a/2+aε),

and
R(1, pr; 1, pr

a) = Ω(pr
−a/2).

where ε is an arbitrary small number.

For the remaining of this section, we will establish the connection between the results of
theorem (3) and theorem (4). In theorem (4), we have shown that the regular component of
M(1, pr; 1, par) is given by ρ(a). Since ρ(a) = 1 for 0 ≤ a ≤ 1, therefore the regular component
of M(1, pr; 1, par) can be written as

ρ(a) = 1 +

∫ a

1
dρ(x) = 1 +

∫ a

1
ρ′(x)dx.

Note that, since ρ′(x) = 0 for 0 < a < 1, the integral
∫ a

1 ρ
′(x)dx in the above equation can be

replaced by the integral
∫ a

0 ρ
′(x)dx.

Similarly, for values of s 6= 1, we can consider that M(s, pr; 1, par) is comprised of two
components. The first component is the regular component defined as F (α, a) (where α =
(s− 1) log pr) and is given by

F (α, a) = 1 +

∫ a

1

pr
x

prsx
dρ(x) = 1 +

∫ a

1
pr

(1−s)xρ′(x)dx,

or,

F (α, a) = 1 +

∫ a

1
e−αxρ′(x)dx, (63)

while the irregular component is given by R(s, pr; 1, par) = M(s, pr; 1, par) − F (α, a). Notice
that for s = 1, we have α = 0 and F (0, a) = ρ(a). We now define F (α) as

F (α) = lim
a→∞

F (α, a) = 1 +

∫ ∞
1

e−αxρ′(x)dx. (64)
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Thus, for <(s) ≥ 1, α is a complex variable in the complex plane to the right of the line
<(s) = 1. Hence, the integral

∫∞
1 e−αxρ′(x)dx is the Laplace transform of the function ρ

′
(x)

and is given by F (α) − 1 (where F (α) is the regular component of the series M(s, pr), i.e.
M(s, pr; 1,∞)). Since the Laplace transform of ρ(x) is given by e−E1(s)/s [11, page 569][12],
therefore the Laplace transform of ρ

′
(x) is then given by sL(ρ(x))− ρ(0). Hence

F (α) = e−E1(α).

Remarkably, these results agree with what we have obtained in Theorem 2. In Theorem 2,
we have shown that

lim
r→∞

{M(s, pr) exp (E1((s− 1) log pr+1))} = 1,

or referring to theorem (3), we have

M(s, pr) = e−E1(α)−ε(pr,s)+δ(pr,s), (65)

where ε(pr, s) =
∫∞
pr
dJ(x)/xs and J(x) = π(x) − Li(x). Consequently, for <(s) ≥ 1 and

sufficiently large pr, we then obtain

M(s, pr) ≈ F (α) (1− εp(pr, s)) . (66)

where F (α) is the regular component of the series M(s, pr) and F (α)(e−ε(pr,s)+δ(pr,s) − 1)
(≈ −F (α)ε(pr, s) ) is the irregular component of the series M(s, pr). It should be empha-
sized here that the regular component F (α) is the value of M(s, pr) due to the Li(x) com-
ponent of the prime counting function π(x). It is also important to note that the irregular
component is not the same as the difference between the partial sum M(s, pr; 1, pr

a) and the
series M(s, pr).Therefore, except for s = 1 (where the irregular component −F (0)ε(pr, 1)(1 +
O(ε(pr, 1)) is zero for every pr), F (α)(e−ε(pr,s)+δ(pr,s)−1) may have values different from zero
although it approaches zero as pr approaches infinity

Notice that on RH, the previous analysis should also hold for <(s) > 0.5. This analysis
and its application to examine the validity of the Riemann Hypothesis will be presented in
the following two sections.

6 The regular component of M(s, pr; 1, p
a
r) for <(s) < 1.

In the previous section, Equation (55) was used to compute M(1, pr; 1, pr
a). In this section,

we will modify this equation to compute M(s, pr; 1, pr
a) for s 6= 1 as follows

M(s, pr; 1, pr
a) = 1−

∑
pr≤pi<pra/2

1

psi
M(s, pi; 1, pr

a/pi)−
∑

pra/2≤pi<pra

1

psi
. (67)

Using Stieltjes integral, we can write the above equation as

M(s, pr; 1, pr
a) = 1−

∫ a/2

1

dπ(pr
y)

psyr
M(s, pr

y; 1, par/p
y
r)−

∫ a

a/2

dπ(pr
y)

psyr
. (68)

On the real axis (i.e. s = σ), we then have

M(σ, pr; 1, pr
a) = 1−

∫ a/2

1

dπ(pr
y)

pσyr
M(σ, pr

y; 1, pa−yr )−
∫ a

a/2

dπ(pr
y)

pσyr
. (69)
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Using Theorem 2, on RH and for σ > 0.5, the partial sum M(σ, pr; 1, pr
a) is convergent as

a approaches infinity and its value is given by

lim
a→∞

M(σ, pr; 1, pr
a) = M(σ, pr) = e−E1(−β)−ε(pr,s)+δ(pr,s), (70)

where β = −α = (1− σ) log pr (note that β > 0 for σ < 1). Therefore, as a approaches infinity,
the left side of Equation (69) can be split into the regular component e−E1(−β) and the irregular
component e−E1(−β)(e−ε(pr,s)+δ(pr,s) − 1). Similarly, referring to the previous section, we can
split the right side of Equation (69) can into regular and irregular components. Toward this
end, we write the first integral in Equation (69) as follows∫ a/2

1
M(σ, pr

y; 1, pa−yr )
dπ(pr

y)

pσyr
=

∫ a/2

1
F ((σ − 1) log pyr , a/y − 1)

dπ(pr
y)

pσyr
+

∫ a/2

1
R(σ, pr

y; 1, pa−yr )
dπ(pr

y)

pσyr
. (71)

The first integral on the right side of Equation (71) can be then written as∫ a/2

1
F ((σ − 1) log pyr , a/y − 1)

dπ(pr
y)

pσyr
=

∫ a/2

1
F ((σ − 1) log pyr , a/y − 1)

dLi(pr
y)

pσyr
+

∫ a/2

1
F ((σ − 1) log pyr , a/y − 1)

dJ(pr
y)

pσyr
.

where J(x) = π(x)− Li(x) and

F ((σ − 1) log pr , a) = 1 +

∫ a

1
ρ′(x)ex(1−σ) log prdx = 1 +

∫ a

1
ρ′(x)eβxdx,

and

F ((σ − 1) log pyr , a/y − 1) = 1 +

∫ a/y−1

1
ρ′(x)ex(1−σ) log pyrdx = 1 +

∫ a/y−1

1
ρ′(x)eβyxdx.

Hence, the first integral on the right side of Equation (71) can be then written as∫ a/2

1
F ((σ− 1) log pyr , a/y− 1)

dπ(pr
y)

pσyr
=

∫ a/2

1

dLi(pr
y)

pσyr
+

∫ a/2

1

dLi(pr
y)

pσyr

∫ a/y−1

1
ρ′(x)eβyxdx+

∫ a/2

1
F ((σ − 1) log pyr , a/y − 1)

dJ(pr
y)

pσyr
. (72)

Therefore, Equation (69) can be written as

M(σ, pr; 1, pr
a) = 1−

∫ a/2

1

dLi(pr
y)

pσyr

∫ a/y−1

1
ρ′(x)eβyxdx−

∫ a

1

dLi(pr
y)

pσyr
−

∫ a/2

1
F ((σ − 1) log pyr , a/y − 1)

dJ(pr
y)

pσyr
−
∫ a

a/2

dJ(pr
y)

pσyr
−
∫ a/2

1
R(σ, pr

y; 1, pa−yr )
dπ(pyr)

pσyr
.
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Consequently, the regular component of M(σ, pr; 1, par) is given by

F (α, a) = 1−
∫ a/2

1

dLi(pr
y)

pσyr

∫ a/y−1

1
ρ′(x)eβyxdx−

∫ a

1

dLi(pr
y)

pσyr
, (73)

and

e−E1(−β) = lim
a→∞

(
1−

∫ a/2

1

dLi(pr
y)

pσyr

∫ a/y−1

1
ρ′(x)eβyxdx−

∫ a

1

dLi(pr
y)

pσyr

)
, (74)

while the irregular component of M(σ, pr; 1, par) is given by

R(σ, pr; 1, pr
a) = −

∫ a/2

1
F ((σ − 1) log pyr , a/y − 1)

dJ(pr
y)

pσyr
−
∫ a

a/2

dJ(pr
y)

pσyr
−

∫ a/2

1
R(σ, pr

y; 1, pa−yr )
dπ(pyr)

pσyr
, (75)

and
e−E1(−β)(e−ε(pr,s)+δ(pr,s) − 1) = lim

a→∞
R(σ, pr; 1, pr

a). (76)

For the Riemann hypothesis to be valid, Equations (74), (75) and (76) have to be satisfied
for σ > 0.5 as a approaches infinity. For the remaining of this section, we will analyze the
convergence of the right side of Equation (74) as a approaches infinity. In the next section, we
will analyze the convergence of Equations (75) and (76) and examine their implication on the
validity of the Riemann hypothesis.

Since the regular component is void of the function J(x), one may expect that Equation
(74) is not only valid for σ > 0.5 but it is also valid for σ > 0. This requires the convergence
of the right side of Equation (74) as a approaches infinity for values of σ > 0. A necessary
condition for the convergence of the right side of Equation (74) is that its derivative with
respect to a should approach zero as a approaches infinity. In other words;

lim
a→∞

(
d

da

∫ a

1

dLi(pr
y)

pσyr
+

d

da

∫ a/2

1

dLi(pr
y)

pσyr

∫ a/y−1

0
ρ′(x)eβyxdx

)
= 0.

To show that the above equation is valid for σ > 0, we first write the derivative of the first
integral as follows

d

da

∫ a

1

dLi(pr
y)

pσyr
=

d

da

∫ a

1

1

prσy
pr
ydy

y
=

d

da

∫ a

1

eβy

y
dy =

eβa

a
.

The derivative of the second integral can be computed as follows

d

da

∫ a/2

1

dLi(pr
y)

pσyr

∫ a/y−1

1
ρ′(x)eβyxdx =

lim
∆a→0

1

∆a

(∫ (a+∆a)/2

1

eβy

y

(∫ (a+∆a)/y−1

1
ρ′(x)eβyxdx

)
dy −

∫ a/2

1

eβy

y

(∫ a/y−1

1
ρ′(x)eβyxdx

)
dy

)
.

Simplifying the above equation and noting that ρ′(x) = 0 for 0 < x < 1, we then have

25



d

da

∫ a/2

1

eβy

y

(∫ a/y−1

1
ρ′(x)eβyxdx

)
dy = lim

∆a→0

1

∆a

(∫ a/2

1

eβy

y

(∫ (a+∆a)/y−1

a/y−1
ρ′(x)eβyxdx

)
dy

)
,

or

d

da

∫ a/2

1

eβy

y

(∫ a/y−1

1
ρ′(x)eβyxdx

)
dy = lim

∆a→0

1

∆a

(∫ a/2

1

eβy

y
ρ′(a/y − 1)eβy(a/y−1) ∆a

y
dy

)
.

Therefore,

d

da

∫ a/2

1

eβy

y

(∫ a/y−1

1
ρ′(x)eβyxdx

)
dy = eaβ

∫ a/2

1

ρ′(a/y − 1)

y2
dy.

The integral on the right side of the above equation can be simplified by substituting u for
a/y − 1 to obtain∫ a/2

1

ρ′(a/y − 1)

y2
dy =

∫ 1

a−1

ρ′(u)(u+ 1)2

a2

−adu
(u+ 1)2

=
1

a

∫ a−1

1
ρ′(u)du =

ρ(a− 1)− 1

a
.

Therefore,

d

da

(∫ a/2

1

dLi(pr
y)

pσyr
F ((σ − 1) log pyr , a/y − 1) +

∫ a

a/2

dLi(pr
y)

pσyr

)
=
eβa

a
ρ(a− 1).

It is clear that, as a approaches infinity, the above derivative with respect to a approaches zero
for any value of β. Furthermore, the integral

∫∞
a (eβxρ(x − 1)/x)dx is finite for a > 1. Since

ρ(a) decays to zero faster than e−a log a, therefore the integral
∫∞
a (eβxρ(x−1)/x)dx approaches

zero as a approaches infinity. Thus, as expected, the regular component of M(σ, pr; 1, par) is
convergent as a approaches infinity for any value of β > 0 (or for any value of σ > 0). In the
next section, we will analyze the convergence of Equations (75) and (76) and then examine
their implication on the validity of the Riemann hypothesis.

7 The irregular component of M(s, pr; 1, p
a
r) and the Riemann Hy-

pothesis.

The irregular component of M(1, pr; 1, par) for values of a > 1 is given by Equation (62) of
Theorem 4

R(1, pr; 1, pr
a) = −

∫ a/2

y=1
ρ (a/y − 1)

dJ(pyr)

pyr
−
∫ a

y=a/2

dJ(pyr)

pyr
−

∫ a/2

y=1
R(1, pr

y; 1, pa−yr )
dπ(pyr)

pyr
.

Using the Fourier analysis methods,M(s, pr; 1, par) was then computed in the previous section
for any value of s in the region of convergence of the series M(s, pr)
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R(s, pr; 1, pr
a) = −

∫ a/2

y=1
F ((s− 1) log pyr , a/y − 1)

dJ(pr
y)

pσyr
−
∫ a

y=a/2

dJ(pr
y)

psyr
−

∫ a/2

y=1
R(s, pr

y; 1, pa−yr )
dπ(pyr)

psyr
,

Alternatively, theorem 3 provides a simpler expression for the irregular component of
M(s, pr; 1,∞). With the aid of this theorem, we have shown that (refer to Equation (76))

R(s, pr; 1,∞) = e−E1(−β)(e−ε(pr,s)+δ(pr,s) − 1), (77)

or
R(s, pr; 1,∞) = −e−E1(−β)ε(pr, s) (1 + r(pr, s)) ,

where ε(pr, s) =
∫∞
y=1 e

βydJ(pyr)/p
y
r and |r(pr, s)|= O(|ε(pr, s)|). The term (1 + r(pr, s)) can be

made arbitrary close to one by choosing pr sufficiently large. Thus

R(s, pr; 1,∞) = −(1 + r(pr, s))e
−E1(−β)

∫ ∞
y=1

eβy
dJ(pyr)

pyr
,

where β = 1− s. Using Stieltjes integral, we also have

R(s, pr; 1, pr
a) =

∫ a

y=1
eβydR(1, pr; 1, pr

y).

Hence ∫ ∞
y=1

eβydR(1, pr; 1, pr
y) = −(1 + r(pr, s))e

−E1(−β)
∫ ∞
y=1

eβy
dJ(pyr)

pyr
. (78)

Equation (78) establishes the relationship between the Laplace transforms of the functions
dR(1, pr; 1, pr

a)/dy and p−ydJ(par)/dy. With this relationship, we will establish an alternative
relationship between R(1, pr; 1, pr

a) and J(par). First, we note that for sufficiently small β,
Equation (78) can be written as follows∫ ∞

y=1
eβydR(1, pr; 1, pr

y) = −(1 + r(pr, s))e
γ(−β +O(β2))

∫ ∞
y=1

eβy
dJ(pyr)

pyr
.

By differentiating the above equation with respect to β and allowing β to approach zero, we
then have ∫ ∞

y=1
y dR(1, pr; 1, pr

y) = (1 +O(ε(pr, 1))) eγ
∫ ∞
y=1

dJ(pyr)

pyr
. (79)

The integral
∫∞
y=1 y dR(1, pr; 1, pr

y) is the first moment of the function dR(1, pr; 1, pr
y)/dy. The

computation of the second and third moments of the function dR(1, pr; 1, pr
y)/dy is outlined

in Appendix 3. These moments are given by the following theorem.
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Theorem 6. For sufficiently large N and for every pr > N , the first, second and third moments of
the function dR(1, pr; 1, par)/dy where R(1, pr; 1, par) is the irregular component of the partial sum
M(1, pr; 1, par) are given by∫ ∞

y=1
y dR(1, pr; 1, pr

y) = eγ (1 +O(ε(pr, 1)))

∫ ∞
y=1

dJ(pyr)

pyr
, (80)

∫ ∞
y=1

y2 dR(1, pr; 1, pr
y) = 2eγ (1 +O(ε(pr, 1)))

∫ ∞
y=1

dJ(pyr)

pyr
+

2eγ (1 +O(ε(pr, 1)))

∫ ∞
y=1

y
dJ(pyr)

pyr
, (81)

∫ ∞
y=1

y3 dR(1, pr; 1, pr
y) =

9

2
eγ (1 +O(ε(pr, 1)))

∫ ∞
y=1

dJ(pyr)

pyr
+

6eγ (1 +O(ε(pr, 1)))

∫ ∞
y=1

y
dJ(pyr)

pyr
+

3eγ (1 +O(ε(pr, 1)))

∫ ∞
y=1

y2dJ(pyr)

pyr
. (82)

The term eγ =
∫∞

0 ρ(y)dy signifies the importance of the Dickman function in establishing
the relationship between R(1, pr; 1, pr

a) and J(par)/p
a
r .

In the following, we will establish an alternative relationship between R(1, pr; 1, pr
a) and

J(par) by substituting −α for β = 1− s in Equation (78) to obtain for sufficiently large pr∫ ∞
y=1

e−αydR(1, pr; 1, pr
y) = − (1 +O(εp(pr, s))) e

−E1(α)
∫ ∞
y=1

e−αy
dJ(pyr)

pyr
. (83)

To solve the above equation, we first ignore the term (1 +O(εp(pr, s))) and define f1(y) and
f2(y) as

f1(y) =
dR(1, pr; 1, pr

y)

dy
,

and

f2(y) =
dJ(pyr)/p

y
r

dy
.

Thus, Equation (83) can be written as

Lf1(y) = −e−E1(α)Lf2(y).

Since L−1e−E1(α) = ρ′(y) + δ(y), therefore

f1(y) = −
(
(ρ′ + δ) ∗ f2

)
(y)

Since f1(y), f2(y) and ρ′(y) are zero for y < 1, hence

f1(y) = −
∫ y−1

1
ρ′(y − x)f2(x)dx− f2(y)
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Consequently, ∫ a

y=1
f1(y)dy = −

∫ a

y=2
dy

∫ y−1

x=1
ρ′(y − x)f2(x)dx−

∫ a

y=1
f2(y)dy

Thus, ∫ a

y=1
dR(1, pr; 1, pr

y) = −
∫ a

y=2
dy

∫ y−1

x=1
ρ′(y − x)

dJ(pxr )

pxr
−
∫ a

x=1

dJ(pxr )

pxr
. (84)

The right side of the above equation can be written as the following sums,∫ a

y=2
dy

∫ y−1

x=1
ρ′(y − x)

dJ(pxr )

pxr
+

∫ a

x=1

dJ(pxr )

pxr
=

lim
N→∞

lim
M→∞

 M∑
j=b2M/ac

∆y

j−bM/ac∑
i=bN/ac

ρ
′
(yj − xi)

J(p
xi+1
r )− J(pxir )

pxir
+

M∑
i=bN/ac

J(p
xi+1
r )− J(pxir )

pxir


where ∆y = 1/M , yj = ja/M , ∆x = 1/N and xi = ia/N . From the above sum, we notice
that, for every xi, the term

(
J(p

xi+1
r )− J(pxir )

)
/pxir is multiplied by ρ

′
(yj − xi)’s for values of

yj ’s in the range xi ≤ yj ≤ a. Since ρ(z) = 1 +
∫ z

0 ρ
′(x)dx, thus ρ(a− x) = 1 +

∫ a
x ρ
′(y − x)dy.

Hence,

R(1, pr; 1, pr
a) = −

∫ a

x=1
ρ(a− x)

dJ(pxr )

pxr
.

To account for the term O(εp(pr, s)) in Equation (83), we note that εp(pr, s) = Lf2(y). There-
fore, the contribution by the term O(εp(pr, s)) is then given by O(((ρ′ + δ) ∗ f2 ∗ f2)(y)). Con-
sequently, we have the following theorem

Theorem 7. For sufficiently large N and for every pr > N , the relationship between the irregular
component R(1, pr; 1, par) of the partial sum M(1, pr; 1, par) and J(x) is given by

R(1, pr; 1, pr
a) = −

∫ a

x=1
ρ(a− x)

dJ(pxr )

pxr
+O(ε2(pr, 1)). (85)

where R(1, pr; 1, par) = M(1, pr; 1, par)− ρ(a) and J(x) = π(x)− Li(x).

In the following, we will examine the validity of the Riemann Hypothesis by analyzing
Equations (85) and (62) for sufficiently large values of pr so that the integral

∫∞
y=1 dJ(pyr)/p

y
r is

determined by the values of y in the vicinity of one. More specifically, referring to Appendix
1, on RH, we have ∫ ∞

y=1

dJ(pyr)

pyr
= O

(
pr
−1/2 log pr

)
.

Furthermore, on RH and due to the presence of non-trivial zeros on the line <(s) = 1/2, we
also have ∫ ∞

y=1

dJ(pyr)

pyr
= Ω

(
pr
−1/2

)
.
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Note that if the above equation does not hold, then |
∫∞
y=1 dJ(pyr)/pr

(σ+it)y|= O(pr
1/2−σ).

Hence, in the right vicinity and at the zeros on the line<(s) = 0.5, the term ε(pr, s) in Equation
(50) is bounded. This will lead to a contradiction by giving bounded values for M(s, pr) in
the right vicinity and at these zeros. Therefore, for sufficiently large N and for some constant
k, there are an infinite number of pr’s (that are greater than N ) such that∣∣∣∣∫ ∞

y=1

dJ(pyr)

pyr

∣∣∣∣ > kpr
−1/2 > 0.

Furthermore, for any positive number h, we also have∫ ∞
y=1+h

dJ(pyr)

pyr
= O

(
(1 + h)pr

−hpr
−1/2 log pr

)
= O

(
pr
−hpr

−1/2 log pr
)
.

Thus ∫ ∞
y=1

dJ(pyr)

pyr
=

∫ 1+h

y=1

dJ(pyr)

pyr
+O

(
pr
−hpr

−1/2 log pr
)
.

Therefore, on RH and for sufficiently small h, we can always find infinitely many pr’s so that
the integral

∫∞
y=1 dJ(pyr)/p

y
r is determined by values of y in the vicinity of one. In other words;

we have ∫ ∞
y=1

dJ(pyr)

pyr
=

∫ 1+h

y=1

dJ(pyr)

pyr
+

∫ ∞
y=1+h

dJ(pyr)

pyr
.

where, ∣∣∣∣∫ ∞
y=1

dJ(pyr)

pyr

∣∣∣∣ > kpr
−1/2 > 0,

and ∣∣∣∣∫ ∞
y=1+h

dJ(pyr)

pyr

∣∣∣∣ < k1pr
−hpr

−1/2 log pr,

for some constant k1. Therefore, for any h and for sufficiently large pr, we have∫ ∞
y=1

dJ(pyr)

pyr
= (1 + δ1)

∫ 1+h

y=1

dJ(pyr)

pyr
, (86)

where δ1 is given by O(pr
−h) and it can be made arbitrary close to zero by choosing pr suf-

ficiently large. After analyzing the integral
∫∞
y=1 dJ(pyr)/p

y
r , we now turn our attention to the

analysis of the term R(1, pr; 1, pr
a).

Unconditionally, Equation (62) of Theorem 4 provides the exact representation of the term
R(1, pr; 1, pr

a)

R(1, pr; 1, pr
a) = −

∫ a/2

1
ρ (a/y − 1)

dJ(pr
y)

pyr
−
∫ a

a/2

dJ(pr
y)

pyr
−
∫ a/2

1
R(1, pr

y; 1, pa−yr )
dπ(pyr)

pyr
.

The term R(1, pr; 1, pr
a) can be also computed using Equation (85) of Theorem 7

R(1, pr; 1, pr
a) = −

∫ a

x=1
ρ(a− x)

dJ(pxr )

pxr
+O(ε2(pr, 1)),
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where, on RH, O(ε2(pr, 1)) is given by O(pr
−1 log pr).

Therefore, on RH, the difference between the two representations of the termR(1, pr; 1, pr
a)

(i.e. Equations (62) and (85) ) ) should be of the order of O(pr
−1 log pr). In the following, we

will compute this difference for values of a in three intervals. The first interval is 1 ≤ a ≤ 2
where we will show that this difference is zero. The second interval is 2 ≤ a ≤ 3 where we will
show that, on RH, this difference is given by O(pr

−1 log pr). The third interval is 3 ≤ a ≤ 4.
Our method to examine the validity of the Riemann Hypothesis is based on analyzing this
difference in the third interval.

For the interval 1 ≤ a ≤ 2, it can be easily shown that Equations (62) and (85) ) provide
the same value for R(1, pr; 1, pr

a) (this follows from the fact that for 0 ≤ u ≤ 1, ρ(u) = 1 and∫ a/2
1 R(1, pr

y; 1, pa−yr )dπ(pyr)/p
y
r = 0).

For the interval 2 ≤ a ≤ 3, the difference between the two representations of the term
R(1, pr; 1, pr

a) can be computed by first noting that∫ a/2

1
ρ (a/y − 1)

dJ(pr
y)

pyr
−
∫ a

1
ρ(a− y)

dJ(pyr)

pyr
=

∫ a/2

1

(
ρ

(
1

y
(a− y)

)
− ρ(a− y)

)
dJ(pr

y)

pyr
−
∫ a

a/2
ρ(a− y)

dJ(pyr)

pyr
.

For 1 ≤ u ≤ 2, ρ(u) = 1− log(u). Thus∫ a/2

1
ρ (a/y − 1)

dJ(pr
y)

pyr
−
∫ a

1
ρ(a− y)

dJ(pyr)

pyr
=

∫ a/2

1
log y

dJ(pyr)

pyr
−
∫ a−1

a/2
(1− log(a− y))

dJ(pyr)

pyr
−
∫ a

a−1

dJ(pyr)

pyr
,

or ∫ a/2

1
ρ (a/y − 1)

dJ(pr
y)

pyr
−
∫ a

1
ρ(a− y)

dJ(pyr)

pyr
=

∫ a/2

1
log y

dJ(pyr)

pyr
+

∫ a−1

a/2
log(a− y)

dJ(pyr)

pyr
−
∫ a

a/2

dJ(pyr)

pyr
.

The third integral on the right side of Equation (62) is given by∫ a/2

1
R(1, pr

y; 1, pa−yr )
dπ(pyr)

pyr
=

∫ a/2

1
R(1, pr

y; 1, pa−yr )
dy

y
+

∫ a/2

1
R(1, pr

y; 1, pa−yr )
dJ(pyr)

pyr
.

Using the method of integration by parts, we then have on RH∫ a/2

1
R(1, pr

y; 1, pa−yr )
dπ(pyr)

pyr
= −

∫ a/2

1
log y dR(1, pr

y; 1, pa−yr ) +O(pr
−1 log pr).

where, on RH, the integral
∫ a/2

1 R(1, pr
y; 1, pa−yr )dJ(py)/py is given by O(pr

−1 log pr). To com-
pute dR(1, pyr ; 1, pr

a−y), we note that the change in R(1, pyr ; 1, pr
a−y) due to the change in y by

∆y is given by
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∆R(1, pyr ; 1, pr
a−y) = R(1, pr

y+∆y; 1, pr
a−y−∆y)−R(1, pyr ; 1, pr

a−y)

However, referring to Equation (52), for 1 ≤ h < 2, we have

R(1, pr; 1, pr
1+h) =

∫ 1+h

y=1
dR(1, pr; 1, pr

y) = −
∫ 1+h

y=1

dJ(pyr)

pyr
. (87)

Thus, for 1 ≤ y ≤ 2, we have

dR(1, pr; 1, pr
y) = −dJ(pyr)

pyr
. (88)

Consequently, for 1 ≤ a−y
y ≤ 2, we obtain

∆R(1, pyr ; 1, pr
a−y) = −

∫ a−y−∆y

z=y+∆y

dJ(pzr)

pzr
+

∫ a−y

z=y

dJ(pzr)

pzr
,

or

∆R(1, pyr ; 1, pr
a−y) =

∫ y+∆y

z=y

dJ(pzr)

pzr
+

∫ a−y

z=a−y−∆y

dJ(pzr)

pzr
.

Hence for 2 ≤ a ≤ 3,

dR(1, pyr ; 1, pr
a−y) =

dJ(pyr)

pyr
+
dJ(pr

a−y)

pra−y
.

Therefore, on RH and for 2 ≤ a ≤ 3, we conclude that

∫ a/2

1
R(1, pr

y; 1, pa−yr )
dπ(pyr)

pyr
= −

∫ a/2

1
log y

(
dJ(pyr)

pyr
+
dJ(pr

a−y)

pra−y

)
+O(pr

−1 log pr), (89)

or∫ a/2

1
R(1, pr

y; 1, pa−yr )
dπ(pyr)

pyr
= −

∫ a/2

1
log y

dJ(pyr)

pyr
+

∫ a/2

a−1
log(a− z)dJ(pr

z)

prz
+O(pr

−1 log pr).

Thus, on RH, the difference between the two representations of the term R(1, pr; 1, pr
a) is

given by

R(1, pr; 1, par) +

∫ a

1
ρ(a− y)

dJ(pyr)

pyr
= O(pr

−1 log pr)+

−
∫ a/2

a−1
log(a− y)

dJ(pyr)

pyr
−
∫ a−1

a/2
log(a− y)

dJ(pyr)

pyr
−
∫ a

a/2

dJ(pyr)

pyr
+

∫ a

a/2

dJ(pyr)

pyr
.

Hence, on RH and for 2 ≤ a ≤ 3, we have

R(1, pr; 1, par) +

∫ a

1
ρ(a− y)

dJ(pyr)

pyr
= O(pr

−1 log pr). (90)

32



For the interval 3 ≤ a ≤ 4, the representation of the functions ρ(a− y) and ρ((a− y)/y) is
dependent on the value of y. For values of y in the range 1 ≤ y ≤ a/3, we have

ρ(a− y) = 1− log(a− y) +

∫ a−y

2
log(v − 1)

dv

v
,

and

ρ

(
1

y
(a− y)

)
= 1− log(a− y) + log y +

∫ (a−y)/y

2
log(v − 1)

dv

v
,

Thus,∫ a/3

1
ρ (a/y − 1)

dJ(pr
y)

pyr
−
∫ a/3

1
ρ(a− y)

dJ(pyr)

pyr
=

∫ a/3

1
log y

dJ(pyr)

pyr
−
∫ a/3

y=1

dJ(pyr)

pyr

∫ a−y

v=(a−y)/y
log(v − 1)

dv

v
.

For values of y in the range a/3 ≤ y ≤ a− 2, we have

ρ(a− y) = 1− log(a− y) +

∫ a−y

2
log(v − 1)

dv

v
,

and
ρ

(
1

y
(a− y)

)
= 1 + log y − log(a− y).

Thus,∫ a−2

a/3
ρ (a/y − 1)

dJ(pr
y)

pyr
−
∫ a−2

a/3
ρ(a− y)

dJ(pyr)

pyr
=

∫ a−2

a/3
log y

dJ(pyr)

pyr
−
∫ a−2

a/3

dJ(pyr)

pyr

∫ a−y

2
log(v − 1)

dv

v
.

For values of y in the range a− 2 ≤ y ≤ a/2, we have∫ a/2

a−2
ρ (a/y − 1)

dJ(pr
y)

pyr
−
∫ a/2

a−2
ρ(a− y)

dJ(pyr)

pyr
=

∫ a/2

a−2
log y

dJ(pyr)

pyr
,

For values of y in the range a/2 ≤ y ≤ a− 1, we have

−
∫ a−1

a/2
ρ(a− y)

dJ(pyr)

pyr
= −

∫ a−1

a/2
(1− log(a− y))

dJ(pyr)

pyr
.

while for values of y in the range a− 1 ≤ y ≤ a, we have

−
∫ a

a−1
ρ(a− y)

dJ(pyr)

pyr
= −

∫ a

a−1

dJ(pyr)

pyr
.

To compute the integral
∫ a/2

1 R(1, pr
y; 1, pa−yr )dπ(py)/py, we refer to Equation (90). On RH

and for a ≤ 3, we then have
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R(1, pr; 1, par) = −
∫ a

1
ρ(a− x)

dJ(pxr )

pxr
+O(pr

−1 log pr).

Therefore, for a ≤ 4 and 1 ≤ y ≤ a/2, we have

R(1, pr
y; 1, pa−yr ) = −

∫ a−y

z=y
ρ

(
a− y
y
− z

y

)
dJ(pzr)

pzr
+O(pr

−1 log pr),

and∫ a/2

1
R(1, pr

y; 1, pa−yr )
dπ(pyr)

pyr
= −

∫ a/2

1

(∫ a−y

z=y
ρ

(
a− y
y
− z

y

)
dJ(pzr)

pzr
+O(pr

−1 log pr)

)
dπ(pyr)

pyr
.

Hence∫ a/2

1
R(1, pr

y; 1, pa−yr )
dπ(pyr)

pyr
=

∫ a/2

1
log y d

(∫ a−y

z=y
ρ

(
a− y
y
− z

y

)
dJ(pzr)

pzr

)
+O(pr

−1 log pr).

The change in the integral
∫ a−y
z=y ρ

(
a−y
y −

z
y

)
dJ(pzr)
pzr

due to the change in y by ∆y is given by

∆

(∫ a−y

z=y
ρ

(
a− y
y
− z

y

)
dJ(pzr)

pzr

)
=

∫ a−y−∆y

z=y+∆y
ρ

(
a− z
y + ∆y

− 1

)
dJ(pr

z)

prz
−
∫ a−y

z=y
ρ

(
a− z
y
− 1

)
dJ(pzr)

pzr
,

or

∆

(∫ a−y

z=y
ρ

(
a− y
y
− z

y

)
dJ(pzr)

pzr

)
= −

∫ y+∆y

z=y
ρ

(
a− z
y
− 1

)
dJ(pzr)

pzr
−

∫ a−y

z=a−y−∆y
ρ

(
a− z
y
− 1

)
dJ(pr

a−z)

pra−z
+

∫ a−y

z=y

(
ρ

(
a− z
y + ∆y

− 1

)
− ρ

(
a− z
y
− 1

))
dJ(pzr)

pzr
,

where

ρ

(
a− z
y + ∆y

− 1

)
− ρ

(
a− z
y
− 1

)
= ρ′

(
a− z
y
− 1

)
a− z
y2

∆y.

Consequently

∆

(∫ a−y

z=y
ρ

(
a− y
y
− z

y

)
dJ(pzr)

pzr

)
= −ρ(a− 2)

dJ(pzr)

pzr
− ρ(0)

dJ(pr
a−z)

pra−z
+

∫ a−y

z=y
ρ′
(
a− z
y
− 1

)
a− z
y2

dJ(pzr)

pzr

and∫ a/2

1
R(1, pr

y; 1, pa−yr )
dπ(pyr)

pyr
= −ρ(a− 2)

∫ a/2

1
log y

dJ(pzr)

pzr
−
∫ a/2

1
log y

dJ(pr
a−z)

pra−z
+

34



∫ a/2

1
log y

∫ a−y

z=y
ρ′
(
a− z
y
− 1

)
a− z
y2

dJ(pzr)

pzr

Thus, on RH and for 3 ≤ a ≤ 4, the difference between the two representations of the term
R(1, pr; 1, pr

a) is given by

R(1, pr; 1, par) +

∫ a

1
ρ(a− y)

dJ(pyr)

pyr
=

−
∫ a/2

1
log y

dJ(pyr)

pyr
+

∫ a/3

1

dJ(pyr)

pyr

∫ a−y

(a−y)/y
log(v − 1)

dv

v
+

∫ a−2

a/3

dJ(pyr)

pyr

∫ a−y

2
log(v − 1)

dv

v
+

∫ a

a/2
ρ(a− y)

dJ(pyr)

pyr
+ ρ(a− 2)

∫ a/2

1
log y

dJ(pyr)

pyr
−
∫ a/2

a−1
log(a− y)

dJ(pr
y)

pry
−

∫ a/2

1
log y

∫ a−y

z=y
ρ′
(
a− z
y
− 1

)
a− z
y2

dJ(pzr)

pzr
−
∫ a

a/2

dJ(pyr)

pyr
+O(pr

−1 log pr). (91)

Therefore, for the Riemann Hypothesis to be valid, the above equation (for the difference
between the two representations of the termR(1, pr; 1, pr

a)) should be given byO(pr
−1 log pr).

Referring to Equation (86), on RH and for any arbitrary small h and δ and for any b > h, we
can find infinitely many pr satisfying the following equation∫ b

y=1

dJ(pyr)

pyr
= (1 + δ)

∫ 1+h

y=1

dJ(pyr)

pyr
,

Therefore, to simplify our analysis to examine Equation (91) for the validity of RH, we will
choose pr sufficiently large so that we consider only the terms with values of y in the vicinity
of 1. Let A be given by

A = (−1 + ρ(a− 2))

∫ a/2

1
log y

dJ(pyr)

pyr
+

∫ a/3

1

dJ(pyr)

pyr

∫ a−y

(a−y)/y
log(v − 1)

dv

v
−

∫ a/2

y=1
log y

∫ a−y

z=y
ρ′
(
a− z
y
− 1

)
a− z
y2

dJ(pzr)

pzr
(92)

In the vicinity of y = 1, the first integral on the right side of Equation (92) can be written as

log y = (y − 1)− 1

2
(y − 1)2 +O((y − 1)3),

For the second integral, we first define the integral
∫ a−y
z=y ρ

′
(
a−z
y − 1

)
as g(y). Expanding the

function g(y) as a Taylor series in the vicinity of y = 1 yields∫ a−y

(a−y)/y
log(v − 1)

dv

v
= log(a− 2)(y − 1)− 1

2

(
log(a− 2) +

a− 1

a− 2

)
(y − 1)2 +O((y − 1)3).

For the third integral on the right side of Equation (92), we first rearrange the double integral
as follows∫ a/2

y=1
log y

∫ a−y

z=y
ρ′
(
a− z
y
− 1

)
a− z
y2

dJ(pzr)

pzr
=

∫ a/2

y=1

dJ(pyr)

pyr

∫ y

x=1
log x ρ′

(
a− y
x
− 1

)
a− y
x2

dx
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where in the above equation, we ignored the terms with dJ(pyr)/p
y
r for values of y in the range

a/2 ≤ y ≤ a− 1. Hence, on RH and for sufficiently large pr, we then have∫ a/2

1
log y

∫ a−y

z=y
ρ′
(
a− z
y
− 1

)
a− z
y2

dJ(pzr)

pzr
=

∫ a/2

y=1

dJ(pyr)

pyr

∫ y

x=1
ρ′
(
a− y
x
− 1

)
a− y
x2

(
(x− 1) +O((x− 1)2)

)
dx,

or∫ a/2

1
log y

∫ a−y

z=y
ρ′
(
a− z
y
− 1

)
a− z
y2

dJ(pyr)

pyr
=

∫ a/2

y=1

dJ(pyr)

pyr
(a− 1)ρ′(a− 2)

(
(y − 1)2

2
+O((y − 1)3)

)
.

Consequently, on RH and for sufficiently large pr, we have

A = (1 + δ2)

∫ a/2

1

(
D (y − 1)2 +O((y − 1)3)

) dJ(pyr)

pyr

where δ2 can be made arbitrary small by choosing pr sufficiently large and

D = −3

2
log(a− 2)− 1

2

a+ 1

a− 1
− (a− 1)ρ′(a− 2)

2
.

Therefore, on RH and for values of a in the range 3 ≤ a ≤ 4, we can find infinitely many
pr satisfying the following equation

R(1, pr; 1, par) +

∫ a

1
ρ(a− y)

dJ(pyr)

pyr
= (1 + δ3)

∫ a/2

1

(
D (y − 1)2 +O((y − 1)3)

) dJ(pyr)

pyr
(93)

where δ3 can be made arbitrary small by choosing pr arbitrary large and |D|> 0. Using the
method of integration by parts and taking advantage of the fact that on RH, dJ(pyr)/p

y
r is

given by Ω(pr
−1/2−ε), we then have

R(1, pr; 1, par) +

∫ a

1
ρ(a− y)

dJ(pyr)

pyr
= Ω(pr

−1/2−ε)

However this result is inconsistent with our assertion that on RH, the above difference should
be given by O((pr

−1 log pr). This inconsistency points to the invalidity of the Riemann Hy-
pothesis. Similar inconsistency is also attained if we assume that there are no zeros to the
right of the line <(s) = c for any c < 1. This follows from the fact if there are no zeros to right
of the line <(s) = c for any c > 1, then J(x) is given by O(x1−c log x) and this will lead to
similar inconsistency. This indicates that non-trivial zeros can be found arbitrary close to the
line <(s) = 1.

More importantly, Equation (93) can be also used to estimate where the distribution of the
prime number start to deviate from what has been predicted by the Riemann hypotheses. As
mentioned earlier, we don’t expect to have inconsistent results with RH for values of a less
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than 3. Hence, we need set a greater than 3. In the following, we will set a equal to 4. On RH,
the right side of this equation can be written as

R(1, pr; 1, p4
r) +

∫ 4

1
ρ(4− y)

dJ(pyr)

pyr
< k1p

−1
r log pr

For the right side of Equation (93), it can be shown that on RH

(1 + δ3)

∫ 2

1

(
−1.12 (y − 1)2 +O((y − 1)3)

) dJ(pyr)

pyr
> k2

p
−1/2
r

(log pr)3

Therefore, if pr1 satisfies the following equation

k1p
−1
r1 log pr1 = k2

p
−1/2
r1

(log pr1)3
, (94)

then we expect that the distribution of the prime numbers greater than pr1 will not follow
what has been predicted by the Riemann hypothesis. Notice that the estimation of pr1 de-
pends on accurate estimation of the constants k1 and k2

Appendix 1
Assuming RH is valid and for σ > 0.5, to show that

r2∑
i=r1

1

piσ
= E1((σ − 1) log pr1)− E1((σ − 1) log pr2) + ε(pr1, pr2, σ)

where, ε(pr1, pr2, σ) =
∫ pr2
pr1

dJ(x)/xσ = O
(

1
(σ−0.5)2

pr1
1/2−σ log pr1

)
and J(x) = π(x) − Li(x),

we first recall that
r2∑
i=r1

1

pσi
=

∫ pr2

pr1

dπ(x)

xσ
=

∫ pr2

pr1

dLi(x)

xσ
+

∫ pr2

pr1

dJ(x)

xσ
,

or
r2∑
i=r1

1

pσi
=

∫ pr2

pr1

dπ(x)

xσ
=

∫ pr2

pr1

1

xσ log x
dx+

∫ pr2

pr1

1

xσ
dO

(√
x log x

)
.

We will first compute the integral with the O notation. This can be done by integration by
parts to obtain∫ pr2

pr1

1

xσ
dO

(√
x log x

)
=
O
(√
pr2 log pr2

)
pr2σ

−
O
(√
pr1 log pr1

)
pr1σ

−
∫ pr2

pr1
O
(√
x log x

)
d

(
1

xσ

)
Since x > 0, thus∫ pr2

pr1

1

xσ
dO

(√
x log x

)
=
O
(√
pr2 log pr2

)
pr2σ

−
O
(√
pr1 log pr1

)
pr1σ

−O
(∫ pr2

pr1

√
x log x d

(
1

xσ

))
With the substitution of variables y = log x, we then obtain∫ pr2

pr1

√
x log x d

(
1

xσ

)
= −

∫ pr2

pr1
σye( 1

2
−σ)ydy.
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Since ∫
xeaxdx =

(
x

a
− 1

a2

)
eax,

therefore∫ pr2

pr1

√
x log x d

(
1

xσ

)
= −σ

(
log pr2
0.5− σ

− 1

(0.5− σ)2

)
pr2

0.5−σ+σ

(
log pr1
0.5− σ

− 1

(0.5− σ)2

)
pr1

0.5−σ.

Hence, for σ > 0.5, we have∫ pr2

pr1

1

xσ
dO

(√
x log x

)
= O

(
pr1

0.5−σ log pr1
(σ − 0.5)2

)
(95)

For σ ≥ 1, the integral
∫ pr2
pr1

1
xσ log xdx can be computed directly from the definition of the

Exponential Integral E1(r) =
∫∞
r

e−u

u du (where r ≥ 0) to obtain∫ pr2

pr1

1

xσ log x
dx = E1((σ − 1) log pr1)− E1((σ − 1) log pr2)

It should be pointed out that although the functions E1((σ− 1) log pr1) and E1((σ− 1) log pr2)
have a singularity at σ = 1, the difference has a removable singularity at σ = 1. This follows
from the fact that as σ approaches 1, the difference can be written as

E1((σ − 1) log pr1)−E1((σ − 1) log pr2) = − log ((1− σ) log pr1)− γ + log ((1− σ) log pr2) + γ

or,

lim
σ→1

∫ pr2

pr1

1

xσ log x
dx = lim

σ→1
{E1((σ−1) log pr1)−E1((σ−1) log pr2)} = − log log pr1 +log log pr2

To compute the integral
∫ pr2
pr1

1
xσ log xdx for σ < 0, we first use the substantiation y = log x

to obtain∫ pr2

pr1

1

xσ log x
dx =

∫ log pr2

log pr1

e(1−σ)y

y
dy =

∫ log pr2

ε

e(1−σ)y

y
dy −

∫ log pr1

ε

e(1−σ)y

y
dy

where, ε is an arbitrary small positive number. With the variable substantiations z1 = y/log pr1
and z2 = y/log pr2 , we then obtain∫ pr2

pr1

1

xσ log x
dx =

∫ 1

ε/log pr2

e(1−σ)(log pr2)z2

z2
dz2 −

∫ 1

ε/log pr1

e(1−σ)(log pr1)z1

z1
dz1.

With the variable substantiations w1 = (1 − σ)(log pr1)z1 and w2 = (1 − σ)(log pr2)z1 and by
adding and subtracting the terms −

∫ (1−σ) log pr2
(1−σ)ε

dw2
w2

+
∫ (1−σ) log pr1

(1−σ)ε
dw1
w1

, we then have

∫ pr2

pr1

1

xσ log x
dx =

∫ (1−σ) log pr2

(1−σ)ε

ew2 − 1

w2
dw2 −

∫ (1−σ) log pr1

(1−σ)ε

ew1 − 1

w1
dw1+

∫ (1−σ) log pr2

(1−σ)ε

dw2

w2
−
∫ (1−σ) log pr1

(1−σ)ε

dw1

w1
.
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Using the following identity [9, page 230]∫ a

0

et − 1

t
dt = −E1(−a)− log(a)− γ

where a > 0, we then obtain for σ < 1,∫ pr2

pr1

1

xσ log x
dx = E1((σ − 1) log pr1)− E1((σ − 1) log pr2)

Hence, for σ > 0.5, we have

r2∑
i=r1

1

piσ
= E1((σ − 1) log pr1)− E1((σ − 1) log pr2) + ε(pr1, pr2, σ)

In general, if there are no non-trivial zeros for values of swith <(s) > a, then by following
the same steps, we can also show that for σ > a, we have

r2∑
i=r1

1

piσ
= E1((σ − 1) log pr1)− E1((σ − 1) log pr2) + ε(pr1, pr2, σ)

where, ε(pr1, pr2, σ) =
∫ pr2
pr1

dJ(x)/xσ = O
(
pr1

a−σ log pr1/(σ − a)2
)
.

Appendix 2
Assuming RH is valid and for σ > 0.5, to show that

r2∑
i=r1

1

pis
= E1((s− 1) log pr1)− E1((s− 1) log pr2) + ε(pr1, pr2, s)

where, |ε(pr1, pr2, s)|= O
(

|s|
(σ−0.5)2

pr1
1/2−σ log pr1

)
, we first recall that

r2∑
i=r1

1

pis
=

∫ pr2

pr1

dπ(x)

xs
=

∫ pr2

pr1

1

xs log x
dx+

∫ pr2

pr1

1

xs
dJ(x).

We will first compute the integral with the O notation. This can be done by integration by
parts to obtain ∫ pr2

pr1

1

xs
dJ(x) =

J(pr2)

pr2s
− J(pr1)

pr1s
−
∫ pr2

pr1
O
(√
x log x

)
d

(
1

xs

)
The integral on the right side of the above equation can be then written as∫ pr2

pr1
J(x)d

(
1

xs

)
= −s

∫ pr2

pr1
J(x)x−s−1dx.
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Hence, ∣∣∣∣∫ pr2

pr1
J(x)d

(
1

xs

)∣∣∣∣ ≤ |s|∫ pr2

pr1
O
(√
x log x

)
|x−s−1|dx.

Consequently, ∣∣∣∣∫ pr2

pr1

1

xs
dO

(√
x log x

)∣∣∣∣ = O

(
|s| pr1

0.5−σ log pr1
(σ − 0.5)2

)
.

For <(s) ≥ 1, the integral
∫ pr2
pr1

1
xs log xdx can be computed directly from the definition of

the Exponential Integral E1(z) =
∫∞

1
e−tz

t dt (where <(z) ≥ 0) to obtain∫ pr2

pr1

1

xs log x
dx = E1((s− 1) log pr1)− E1((s− 1) log pr2)

To compute the integral
∫ pr2
pr1

1
xs log xdx for <(z) < 1, we first write the integral as follows

∫ pr2

pr1

1

xs log x
dx =

∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx− i

∫ pr2

pr1

e−σ log x sin(t log x)

log x
dx.

The first integral on the right side
∫ pr2
pr1

e−σ log x cos(t log x)
log x dx can be computed by using the sub-

stitution y = log x to obtain∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx =

∫ pr2

pr1

e(1−σ)y cos(ty)

y
dy,

or ∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx =

∫ pr2

pr1

e(1−σ)y cos(ty)

y
dy +

∫ pr2

pr1

e(1−σ)y

y
dy −

∫ pr2

pr1

e(1−σ)y

y
dy.

Hence,∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx =

∫ pr1

ε

e(1−σ)y(1− cos(ty))

y
dy −

∫ pr2

ε

e(1−σ)y(1− cos(ty))

y
dy−

∫ pr1

ε

e(1−σ)y

y
dy +

∫ pr2

ε

e(1−σ)y

y
dy

where, ε is an arbitrary small positive number. With the variable substantiations z1 = y/log pr1
and z2 = y/log pr2 , we then obtain∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx =

∫ 1

ε/log pr1

e(1−σ)(log pr1)z1(1− cos(t(log pr1)z1))

z1
dz1−

∫ 1

ε/log pr2

e(1−σ)(log pr2)z2(1− cos(t(log pr2)z2))

z2
dz2−

∫ 1

ε/log pr1

e(1−σ)(log pr1)z1

z1
dz1 +

∫ 1

ε/log pr2

e(1−σ)(log pr2)z2

z2
dz2

40



By the virtue of the following identity ([9], page 230)∫ 1

0

eat(1− cos(bt))

t
dt =

1

2
log(1 + b2/a2) + Li(a) + <[E1(−a+ ib)],

where a > 0 , we then obtain the following∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx = <[E1((s− 1) log pr1)] + Li((1− σ) log pr1)−

<[E1((s− 1) log pr2)]− Li((1− σ) log pr2)−∫ 1

ε/log pr1

e(1−σ)(log pr1)z1

z1
dz1+

∫ 1

ε/log pr2

e(1−σ)(log pr2)z2

z2
dz2

With the variable substantiations w1 = (1 − σ)(log pr1)z1 and w1 = (1 − σ)(log pr1)z1 and by
adding and subtracting the terms −

∫ (1−σ) log pr2
(1−σ)ε

dw2
w2

+
∫ (1−σ) log pr1

(1−σ)ε
dw1
w1

, we then have∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx = <[E1((s− 1) log pr1)] + Li((1− σ) log pr1)−

<[E1((s− 1) log pr2)]− Li((1− σ) log pr2)+∫ (1−σ) log pr2

(1−σ)ε

ew2 − 1

w2
dw2 −

∫ (1−σ) log pr1

(1−σ)ε

ew1 − 1

w1
dw1+∫ (1−σ) log pr2

(1−σ)ε

dw2

w2
−
∫ (1−σ) log pr1

(1−σ)ε

dw1

w1
.

Using the following identity [9, page 230]∫ a

0

et − 1

t
dt = Ei(a)− log(a)− γ

where a > 0, we then obtain for σ < 1,∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx = <[E1((s− 1) log pr1)]−<[E1((s− 1) log pr2)]

Similarly, using the identity [9, page 230]∫ 1

p0

eat sin(bt)

t
dt = π − arctan(b/a) + =[E1(−a+ ib)],

where a > 0 , we can show that for σ < 1, we have

−
∫ pr2

pr1

e−σ log x sin(t log x)

log x
dx = =[E1((s− 1) log pr1)]−=[E1((s− 1) log pr2)].

Therefore, for <(s) > 0.5, we have
r2∑
i=r1

1

pis
= E1((s− 1) log pr1)− E1((s− 1) log pr2) + ε(pr1, pr2, s)

where, ε(pr1, pr2, s) =
∫ pr2
pr1

dJ(x)
xs and on RH, |ε(pr1, pr2, s)|= O

(
|s|

(σ−0.5)2
pr1

1/2−σ log pr1
)

.

It is worth mentioning here that the term ε(pr, s) can be represented in terms of the non-
trivial zero if von Mangoldt function is used in this analysis instead of using the prime count-
ing function.
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Appendix 3
To compute the m-th derivative of the function f(β) = e−E1(−β)−εp(β,pr) − e−E1(−β) (where
f(β) = R(σ, pr; 1, pr

∞) =
∫∞
y=1 e

βydR(1, pr; 1, pr
y), β = (1− σ) log pr, εp(β, pr) = εp(pr, σ)− δp

and εp(pr, σ) =
∫∞
y=1 e

βydJ(pyr)/p
y
r ), we write this function as the product of the following

two functions
f(β) = f1(β)f2(β),

where
f1(β) = e−E1(−β),

and
f2(β) = e−εp(β,pr) − 1

The m-th derivative of the function f is then given by

dmf(β)

dβm
=
dmf1

dβm
f2 +m

dm−1f1

dβm−1

df2

dβ
+ ...+

m!

k! (m− k)!

dm−kf1

dβm−k
dkf2

dβk
+ ...+ f1

dmf2

dβm

For the function f2(β), it can be easily shown (by noting that e−εp(β,pr) = 1 − ε(pr, σ) +
O(ε2(pr, σ)), δp = O(ε2(pr, σ)) and for m ≥ 1, dmδp/dβm = O(ε2(pr, σ)) ) that

f2(0) = −ε(pr, 1) +O(ε2(pr, 1)),

df2(β)

dβ
|β=0= − (1 +O(ε(pr, 1))

∫ ∞
y=1

y
dJ(pyr)

pyr
,

and for m ≥ 2
df2

m(β)

dβm
|β=0= − (1 +O(ε(pr, 1))

∫ ∞
y=1

ym
dJ(pyr)

pyr
.

For the function f1(β), we write f1 as follows (refer to Equations (33) )

f1(β) = e−E1(−β) = −eγβeA

where

A = β +
β2

2 2!
+

β3

3 3!
+

β4

4 4!
+ ... .

Thus,
f1(0) = 0,

and the first derivative of f1 is given by

df1(β)

dβ
= −eγeA

(
1 + β

dA

dβ

)
,

At β = 0, A = 0, eA = 1 and dA/dβ = 1, thus

df1(β)

dβ
|β=0= −eγ .

The second derivative of f1 is given by

d2f1(β)

dβ2
= −eγeA

(
2
dA

dβ
+ β

(
d2A

dβ2
+

(
dA

dβ

)2
))

,
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and
d2f1(β)

dβ2
|β=0= −2eγ .

The third derivative of f1 is given by

d3f1(β)

dβ3
= −eγeA

((
3
d2A

dβ2
+ 3

(
dA

dβ

)2
)

+ β

(
d3A

dβ3
+ 3

dA

dβ

d2A

dβ2
+

(
dA

dβ

)3
))

,

At β = 0, eA = 1, dA/dβ = 1 and d2A/dβ2 = 0.5, thus

d3f1(β)

dβ3
|β=0= −9

2
eγ .

Similarly, the fourth derivative of f1 at β = 0 is given by

d4f1(β)

dβ4
|β=0= −34

3
eγ .

Referring to the the binomial expression for the m-th derivative of the function f(β) =
e−E1(−β)−εp(β,pr), we then have

df(β)

dβ
|β=0 = eγ (1 +O(εp(pr, 1))) εp(pr, 1)) = eγ (1 +O(εp(pr, 1)))

∫ ∞
y=1

dJ(pyr)

pyr
,

d2f(β)

dβ2
|β=0 = 2eγ (1 +O(εp(pr, 1)))

∫ ∞
y=1

dJ(pyr)

pyr
+ 2eγ (1 +O(εp(pr, 1)))

∫ ∞
y=1

y
dJ(pyr)

pyr
,

and

d3f(β)

dβ3
|β=0 =

9

2
eγ (1 +O(εp(pr, 1)))

∫ ∞
y=1

dJ(pyr)

pyr
+ 6eγ (1 +O(εp(pr, 1)))

∫ ∞
y=1

y
dJ(pyr)

pyr
+

3eγ (1 +O(εp(pr, 1)))

∫ ∞
y=1

y2dJ(pyr)

pyr

d4f(β)

dβ4
|β=0 =

34

3
eγ (1 +O(εp(pr, 1)))

∫ ∞
y=1

dJ(pyr)

pyr
+ 18eγ (1 +O(εp(pr, 1)))

∫ ∞
y=1

y
dJ(pyr)

pyr
+

12eγ (1 +O(εp(pr, 1)))

∫ ∞
y=1

y2dJ(pyr)

pyr
+ 4eγ (1 +O(εp(pr, 1)))

∫ ∞
y=1

y3dJ(pyr)

pyr
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