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Abstract

In this paper, we have used the partial Euler product to examine the validity of the Rie-
mann Hypothesis. The Dirichlet series with the Mobius functionM(s) =

∑∞
n=1 1/ns has been

modified and represented in terms of the partial Euler product by progressively eliminating
the numbers that first have a prime factor 2, then 3, then 5, ..up to the prime number pr to
obtain the series M(s, pr). It is shown that the series M(s) and the new series M(s, pr) have
the same region of convergence for every pr. Unlike the partial sum of M(s) that has irreg-
ular behavior, the partial sum of the new series exhibits regular behavior as pr approaches
infinity. This has allowed the use of integration methods to compute the partial sum of the
new series to determine its region of convergence and to provide an answer for the validity
of the Riemann Hypothesis.
Keywords: Riemann zeta function, Mobius function, Riemann hypothesis, conditional con-
vergence, Euler product.
Classification: Number Theory, 11M26

1 Introduction

The Riemann zeta function ζ(s) satisfies the following functional equation over the complex
plain [1]

ζ(1− s) = 2(2π)2 cos(0.5sπ)Γ(s)ζ(s), (1)

where, s = σ + it is a complex variable and s 6= 1.

For σ > 1 (or <(s) > 1 ), ζ(s) can be expressed by the following series

ζ(s) =
∞∑
n=1

1

ns
, (2)

or by the following product over the primes pi’s

1

ζ(s)
=
∞∏
i=1

(
1− 1

psi

)
. (3)

where, p1 = 2,
∏∞
i=1(1 − 1/pi

s) is the Euler product and
∏r
i=1(1 − 1/pi

s) is the partial Euler
product. The above series and product representations of ζ(s) are absolutely convergent for
σ > 1.
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The region of the convergence for the sum in Equation (2) can be extended to <(s) > 0 by
using the alternating series η(s) where

η(s) =
∞∑
n=1

(−1)n−1

ns
, (4)

and
ζ(s) =

1

1− 21−s η(s). (5)

One may notice that the term 1− 21−s is zero at s = 1. This zero cancels the simple pole that
ζ(s) has at s = 1 enabling the extension (or analog continuation) of the zeta function series
representation over the critical strip 0 < <(s) < 1.

It is well known that all of the non-trivial zeros of ζ(s) are located in the critical strip
0 < <(s) < 1. Riemann stated that all non-trivial zeros were very probably located on the
critical line<(s) = 0.5 [2]. There are many equivalent statements for the Riemann Hypothesis
(RH) and one of them involves the Dirichlet series with the Mobius function.

The Mobius function µ(n) is defined as follows
µ(n) = 1, if n = 1.
µ(n) = (−1)k, if n =

∏k
i=1 pi, pi’s are distinct primes.

µ(n) = 0, if p2|n for some p.

The Dirichlet series M(s) with the Mobius function is defined as

M(s) =
∞∑
n=1

µ(s)

ns
. (6)

This series is absolutely convergent to 1/ζ(s) for <(s) > 1 and conditionally convergent to
1/ζ(s) for <(s) = 1. The Riemann hypothesis is equivalent to the statement that M(s) is con-
ditionally convergent to 1/ζ(s) for <(s) > 0.5.

Gonek, Hughes and Keating [3] have done an extensive research into establishing a re-
lationship between ζ(s) and its partial Euler product for <(s) < 1. Gonek stated ”Analytic
number theorists believe that an eventual proof of the Riemann Hypothesis must use both
the Euler product and functional equation of the zeta-function. For there are functions with
similar functional equations but no Euler product, and functions with an Euler product but
no functional equation.” In section 4, we will present a functional equation for ζ(s) using its
partial Euler product. The method is based on writing the Euler product formula as follows

1/ζ(s) =
∞∏
i=1

(
1− 1

psi

)
=

r∏
i=1

(
1− 1

psi

) ∞∏
r+1

(
1− 1

psi

)
.

The above equation is valid for σ > 1. To be able to represent ζ(s) in term of its partial Euler
product for σ ≤ 1, we have to replace the term

∏∞
r (1− 1/psi ) with an equivalent one that

allows the analytic continuation for the representation of ζ(s) for σ ≤ 1. Thus, the new term,
that we need to introduce to replace

∏∞
r (1− 1/psi ), must have a zero that cancels the pole that

ζ(s) has at s = 1. In the section 4, we will use the complex analysis to compute this new term
and then represent ζ(s) in terms of its partial Euler product. In sections (2), (5) and (6), we
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have introduced an alternative method to compute ζ(s) in terms of its partial Euler product.
This alternative method is based on modifying the Dirichlet series with the Mobius function.
The results of these two methods were then analyzed and used to examine the validity of the
Riemann Hypothesis

In this paper, we claim the the Riemann Hypothesis is invalid. We support our claim by
proving that the series M(σ) is divergent for σ < 1. We have achieved this result by intro-
ducing a method to represent the Dirichlet series M(s) (defined by Equation (6)) in terms of
the partial Euler product. This task is achieved by first eliminating the numbers that have
the prime factor 2 to generate the series M(s, 2). For the series M(s, 2), we then eliminate the
numbers with the prime factor 3 to generate the series M(s, 3), and so on, up to the prime
number pr. In essence, in sections 2, we have applied the sieving technique to modify the
series M(s) to include only the numbers with prime factors greater than pr. In the literature,
numbers with prime factors less than y are called y-smooth while numbers with prime factors
greater than y are called y-rough. In essence, our approach is to compute the Dirichlet series
over pr-rough numbers. In section 3, we have shown that the series M(s) and the new series
M(s, pr) have the same region of convergence.

So far, the efforts to use the series M(σ) to examine the validity of the Riemann Hypothe-
sis have failed due to the irregular behavior of the partial sum of the series M(σ). In sections
5 and 6, we have shown that the partial sum of the new series M(σ, pr) exhibits regular be-
havior as pr approaches infinity. This has allowed the use of integration methods to compute
the partial sum of the new series and consequently determine its region of convergence. With
this analysis and using the zeta function representation in terms of its partial Euler product
(section 4), we have been able to show in section 6 that the series M(σ, pr) and M(σ) are di-
vergent for σ < 1. Thus, non-trivial zeros can be found arbitrary close to the line Re(s) = 1.

2 Applying the Sieving Method to the Dirichlet Series M(s).

The Dirichlet series M(s) with the Mobius function is defined as

M(s) =
∞∑
n=1

µ(s)

ns
,

where µ(n) is the Mobius function. Thus,

M(s) = 1− 1

2s
− 1

3s
+

0

4s
− 1

5s
+

1

6s
....

It should be pointed out that our definition of M(s) is different from Mertins function M(x)
that is commonly found in the literature and defined as M(x) =

∑
1≤n≤x µ(n).

Next, we introduce the series M(s, 2) by eliminating all the numbers that have a prime
factor 2. Thus, M(s, 2) can be written as

M(s, 2) = 1− 1

3s
− 1

5s
− 1

7s
+

0

9s
− 1

11s
− 1

13s
+

1

15s
.....
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Our analysis to test the conditional convergence of these series (M(s) and M(s, 2) for
σ ≤ 1) is based on comparing correspondent terms of these two series. Therefore, rearrange-
ment and permutation of the terms may have a significant impact on analyzing the region of
convergence of both series. Thus, it essential to have the same index for both series M(s) and
M(s, 2) refer to the same term. Hence, we will represent M(s, 2) as follows

M(s, 2) = 1 +
0

2s
− 1

3s
+

0

4s
− 1

5s
+

0

6s
− 1

7s
− 0

8s
....,

or

M(s, 2) =
∞∑
n=1

µ(n, 2)

ns
, (7)

where
µ(n, 2) = µ(n), if n is an odd number,
µ(n, 2) = 0, if n is an even number.

The above seriesM(s, 2) can be further modified by eliminating all the numbers that have
a prime factor 3 to get the series M(s, 3) where

M(s, 3) = 1− 1

5s
− 1

7s
− 1

11s
− 1

13s
− 1

17s
− 1

19s
− 1

23s
+

0

25s
....,

or more conveniently

M(s, 3) = 1 +
0

2s
− 0

3s
+

0

4s
− 1

5s
+

0

6s
− 1

7s
− 0

8s
....,

and so on.

Let I(pr) represent, in ascending order, the integers with distinct prime factors that belong
to the set {pi : pi > pr}. Let {1, I(pr)} be the set of 1 and I(pr) (for example, {1, I(2)} is the
set of square-free odd numbers), then we define the series M(s, pr) as

M(s, pr) =
∞∑
n=1

µ(n, pr)

ns
, (8)

where
µ(n, pr) = µ(n), if n ∈ {1, I(pr)} ,
otherwise, µ(n, pr) = 0.

It can be easily shown that, for every prime number pr, the series M(s, pr) converges
absolutely for <(s) > 1 . Furthermore, it can be shown that, for <(s) > 1, M(s, pr) satisfies
the following equation

M(s) = M(s, pr)
r∏
i=1

(
1− 1

psi

)
. (9)

Since

M(s) =
1

ζ(s)
=
∞∏
i=1

(
1− 1

psi

)
,

then we conclude that, for <(s) > 1, M(s, pr) approaches 1 as pr approaches infinity.
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3 The region of convergence for the series M(s) and M(s, pr).

In this section, we will deal with the question of the relationship between the conditional
convergence of the two series M(s, pr) and M(s) over the strip 0.5 < <(s) ≤ 1. Theorem
1 establishes the the relationship between the conditional convergence of the series M(s, pr)
and M(s) along the real axis (or along the line 0.5 < σ ≤ 1 ) while Theorems 2 establishes
the relationship between the conditional convergence of the two series M(s) and M(s, pr) for
0.5 < <(s) ≤ 1.

Theorem 1 For s = σ + i0, where 0.5 < σ ≤ 1 and for every prime number pr, the series M(σ)
converges conditionally if and only if the seriesM(σ, pr) converges conditionally. Furthermore, M(σ)
and M(σ, pr) are related as follows

M(σ) = M(σ, pr)
r∏
i=1

(
1− 1

pσi

)
. (10)

The proof of Theorem 1 is outlined in Appendix 1.

Theorem 2 For s = σ + it, where 0.5 < σ ≤ 1 and for every prime number pr, the series M(s)
converges conditionally if and only if the series M(s, pr) converges conditionally. Furthermore, M(s)
and M(s, pr) are related as follows

M(s) = M(s, pr)
r∏
i=1

(
1− 1

psi

)
. (11)

The proof of Theorem 2 follows from the fact that M(s) and M(s, pr) are Dirichlet series.
Consequently, the series M(s) is conditionally convergent if and only if the series M(σ) is
conditionally convergent. Also, the series M(s, pr) is conditionally convergent if and only
if the series M(σ, pr) is conditionally convergent. Using Theorem 1, we then conclude that
the series M(s) is conditionally convergent if and only if the series M(s, pr) is conditionally
convergent.

The second part of the theorem can be also proved by first defining M(s, pr;N1, N2) as the
partial sum

M(s, pr;N1, N2) =
N2∑

n=N1

µ(n, pr)

ns
, (12)

where N2 ≥ pr. Then, we have

M(s, pr−1; 1, Npr) = M(s, pr; 1, Npr)−
1

psr
M(s, pr; 1, N). (13)

Since the series M(s, pr) is conditionally convergent, then the partial sums M(s, pr; 1, Npr)
and M(s, pr; 1, N) are both convergent to M(s, pr) as N approaches infinity. Hence, as N
approaches infinity, we obtain

M(s, pr−1) = lim
N→∞

M(s, pr−1; 1, Npr) = M(s, pr)

(
1− 1

psi

)
.

By repeating this process r − 1 times, we then obtain

M(s) = M(s, pr)
r∏
i=1

(
1− 1

psi

)
.
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4 Functional representation of ζ(s) using its partial Euler product.

Theorems 1 and 2 of the previous section provide a relationship between ζ(s) = 1/M(s) and
the partial Euler product

∏r
i=1(1− 1/psi ). In this section, we will use the prime counting func-

tion to derive a functional representation for ζ(s) using its partial Euler product. This func-
tional representation is then used to provide a second relationship between ζ(s) = 1/M(s)
and the partial Euler product

∏r
i=1(1 − 1/psi ). These two relationships will then analyzed in

sections (5) and (6) and later used to examine the validity of the Riemann Hypothesis.

We will start this task by first writing ζ(s) for σ > 1 as follows

1/ζ(s) =
∞∏
i=1

(
1− 1

psi

)
=

r∏
i=1

(
1− 1

psi

) ∞∏
r+1

(
1− 1

psi

)
. (14)

For σ > 0.5, we have

log
r2∏
i=r1

(
1− 1

psi

)
=

r2∑
i=r1

log

(
1− 1

pis

)
,

or

log
r2∏
i=r1

(
1− 1

psi

)
=

r2∑
i=r1

(
− 1

pis
− 1

2pi2s
− 1

3pi3s
− ...

)
.

Let δ be defined as the sum

δ =
r2∑
i=r1

(
− 1

2pi2s
− 1

3pi3s
− 1

4pi4s
...

)
. (15)

Thus,

log
r2∏
i=r1

(
1− 1

psi

)
= −

r2∑
i=r1

1

pis
+ δ. (16)

Since |δ|<
∑∞
n=pr1

(
1

2n2σ + 1
3n3s + 1

4n4s ...
)

, thus δ = O(p1−2σ
r1 /(2σ − 1)). Furthermore, if 2σ − 1

is a fixed positive number, then δ = O(p1−2σ
r1 ).

Using the Prime Number Theorem (PNT) with a suitable constant a > 0, the number of
primes less than x is given by [4, page 43]

π(x) = Li(x) +O

(
xe−a

√
log x

)
, (17)

or
π(x) = Li(x) +O

(
x/(log x)k

)
, (18)

where Li(x) is the Logarithmic Integral of x and k is a number greater than zero.

Using Stieltjes integral [5], we may write the sum
∑r2
i=r1

1
piσ

for σ > 1 as follows

r2∑
i=r1

1

piσ
=

∫ pr2

x=pr1

dπ(x)

xσ
. (19)
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Using Equation (18) for the representation of π(x), we may then write the integral in Equation
(19) as [5, Theorem 2, page 57]

r2∑
i=r1

1

pσi
=

∫ pr2

pr1

1

xσ
1

log x
dx+O

(
1

(log pr1)k

)
, (20)

where k is a number greater than zero. Therefore,

r2∑
i=r1

1

pσi
=

∫ ∞
pr1

1

xσ
1

log x
dx−

∫ ∞
pr2

1

xσ
1

log x
dx+O

(
1

(log pr1)k

)
. (21)

Recalling that the Exponential Integral E1(r) is given by

E1(r) =

∫ ∞
r

e−u

u
du,

and using the substitutions u = (σ−1) log pr, du = (σ−1)dx/x and xσ/x = eu, then for σ > 1,
we may write Equation (21) as

r2∑
i=r1

1

pσi
= E1 ((σ − 1) log pr1)− E1 ((σ − 1) log pr2) +O

(
1

(log pr1)k

)
. (22)

Combining Equations (16) and ((22)) and noting that, for σ > 1, E1 ((σ − 1) log pr2) ap-
proaches zero as pr2 approaches infinity, we may write Equation (14) for σ > 1 as

− log ζ(σ) =
r∑
i=1

log

(
1− 1

piσ

)
−

∞∑
i=r+1

1

piσ
+ δ,

or

log ζ(σ) +
r∑
i=1

log

(
1− 1

piσ

)
− E1 ((σ − 1) log pr+1) = ε,

where ε = O(1/(log pr1)k) is an arbitrarily small number attained by setting pr sufficiently
large. Therefore,

ζ(σ)
r∏
i=1

(
1− 1

pσi

)
exp (−E1((σ − 1) log pr+1)) = 1 + ε. (23)

As pr approaches infinity, ε approaches zero. Hence, the right side of the above equation ap-
proaches 1 as pr approaches infinity.

Similarly, for <(s) > 1, we can use the following expression for E1(s)

E1(s) =

∫ ∞
1

e−xs

x
dx,

to show that

lim
r→∞

{
ζ(s)

r∏
i=1

(
1− 1

psi

)
exp (−E1((s− 1) log pr+1))

}
= 1. (24)
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Let the function G(s, pr) be defined as

G(s, pr) = ζ(s)
r∏
i=1

(
1− 1

psi

)
exp (−E1((s− 1) log pr+1)) (25)

where, G(s, pr) is a regular function for <(s) > 1. Referring to Equation (24), the function
G(s, pr) approaches 1 as pr approaches infinity. It should be noted that, for every pr, the func-
tion exp (−E1((s− 1) log pr+1)) is an entire function, the function ζ(s) is analytic everywhere
except at s = 1 and the function

∏r
i=1(1− 1/psi ) is analytic for <(s) > 0. Thus, for any σ > 1,

the function G(s, pr) can be considered as a sequence of analytic functions. Furthermore, as
pr (or r) approaches infinity, this sequence is uniformly convergent over the half plane with
σ > 1 + ε (where, ε is an arbitrary small number). Therefore, by the virtue of the Weiestrass
theorem, the limit is also analytic function [6] (Weiestrass theorem states that if the function
sequence fn is analytic over the region Ω and fn is uniformly convergent to a function f , then
f is also analytic on Ω and fn

′
converges uniformly to f

′
on Ω). If we define this limit as G(s),

where
G(s) = lim

r→∞
G(s, pr) (26)

then,G(s) is analytic over the half plane <(s) > 1 and it is equal to 1 by the virtue of Equation
(24).

Next, we will extend the above results to the line s = 1 + it. We will then show that if RH
is valid, then for the strip s = σ + it where, 0.5 < σ < 1, the above results will also be valid
with the limit of G(s, pr) is 1 as pr approaches infinity.

We will start this task by showing that although both ζ(s) and E1((s− 1) log pr+1) have a
singularity at s = 1, the product G(s, pr) has a removable singularity at s = 1 for every pr.
This can be shown by first expanding ζ(s) as a Laurent series about its singularity at s = 1

ζ(s) =
1

s− 1
+ γ − γ1(s− 1) + γ2

(s− 1)2

2!
− γ3

(s− 1)3

3!
+ ..., (27)

where γ is the Euler-Mascheroni constant and γi’s are the Stieltjes constants. For s = 1 + ε,
where ε = ε1 + iε2, ε1 and ε2 are arbitrary small numbers, the above equation can be written
as

ζ(s) =
1

ε
+ γ − γ1ε+ γ2

ε2

2!
− γ3

ε3

3!
+ ... (28)

Furthermore, for σ > 1, using the definition of the Exponential Integral, we may write
E1(s) as

E1(s) = −γ − log s+ s− s2

2 2!
+

s3

3 3!
− s4

4 4!
+ .... (29)

Thus, for s = 1 + ε, we have

exp (−E1((s− 1) log pr)) = eγε log pr exp

(
−ε log pr +

(ε log pr)
2

2 2!
− (ε log pr)

3

3 3!
+ ....

)
. (30)

By taking the product ζ(s) exp (−E1((s− 1) log pr)) and allowing ε to approach zero, we then
obtain

lim
s→1
{ζ(s) exp (−E1((s− 1) log pr))} = eγ log pr. (31)
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However, it is well known that the partial Euler product at s = 1 can be written as [8]

r∏
i=1

(
1− 1

pi

)
=

e−γ

log pr
+O

(
1

(log pr)2

)
. (32)

Multiplying Equations (31) and (32), we may conclude that at s = 1, G(s, pr) approaches 1 as
pr approaches infinity. Furthermore, for s = 1 + it and t 6= 1, the value of exp(−E1(it log pr))
approaches 1 as pr approaches infinity and since

lim
r→∞

{
ζ(s)

r∏
i=1

(
1− 1

pis

)}
= 1,

therefore, for s = 1 + it, we have the following

lim
r→∞

G(s, pr) = lim
r→∞

{
ζ(s)

r∏
i=1

(
1− 1

psi

)
exp (−E1((s− 1) log pr+1))

}
= 1.

So far, we have shown that the functionG(s, pr) is uniformly convergent to 1 when<(s) >
1. We have also shown that G(s, pr) is convergent to 1 for <(s) = 1. In the following, we
will show that, assuming the validity of the Riemann Hypothesis, the function G(s, pr) is
uniformly convergent to 1 for every value of s with <(s) > 0.5 + ε, where ε is an arbitrary
small number. Toward this goal, we will first show that the function G(s, pr) is convergent
for any value of s on the real axis with σ > 0.5. This can be achieved by first writing the
expressions forG(σ, pr1) andG(σ, pr2) (where r2 is an arbitrary large number greater than r1)

G(σ, pr1) = ζ(σ) exp (−E1((σ − 1) log pr1+1))
r1∏
i=1

(
1− 1

pσi

)
, (33)

G(σ, pr2) = ζ(σ) exp (−E1((σ − 1) log pr2+1))
r2∏
i=1

(
1− 1

pσi

)
. (34)

Since the function G(s, pr) is analytic that is not equal to 0 for σ > 0.5, hence we can divide
Equation (34) by Equation (33) and then take the logarithm to obtain

log

(
G(σ, pr2)

G(σ, pr1)

)
= E1 ((σ − 1) log pr1+1)− E1 ((σ − 1) log pr2+1) + log

 r2∏
i=r1+1

(
1− 1

piσ

) .
(35)

To compute the logarithm of the partial Euler product in Equation (35), we recall Equation
(16)

log
r2∏
r1+1

(
1− 1

psi

)
= −

r2∑
i=r1+1

1

pis
+ δ,

where δ = O(p1−2σ
r1 /(2σ − 1)). Furthermore, on RH, we have

π(x) = Li(x) +O
(√
x log x

)
, (36)
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where Li(x) is the Logarithmic Integral of x. Using Equation (36) for the representation of the
prime counting function, we may then obtain (Appendix 2)

r2∑
i=r1+1

1

piσ
= E1((σ − 1) log pr1+1)− E1((σ − 1) log pr2) + ε,

where ε = O
(
pr1

0.5−σ log pr1/(σ − 0.5)2
)
. Hence, Equation (35) can be written as

log

(
G(σ, pr2)

G(σ, pr1)

)
= ε+ δ + E1((σ − 1) log pr2)− E1((σ − 1) log pr2+1).

Since E1((σ − 1) log pr2)−E1((σ − 1) log pr2+1) approaches zero as pr2 approaches zero, thus

lim
pr2→∞

log

(
G(σ, pr2)

G(σ, pr1)

)
= ε+ δ.

For the above equation, it should be pointed that we have kept pr1 fixed while we allowed
pr2 to approach infinity. Hence G(σ, pr) is bounded as pr approaches infinity. Furthermore,
for σ > 0.5 + ε, ε + δ can be made arbitrary small by choosing pr1 arbitrary large, thus the
limit of G(σ, pr) exists as pr approaches infinity and it is given by

G(σ) = lim
r→∞

G(σ, pr) (37)

This proves that, on RH, G(σ, pr) is convergent as pr approaches infinity and thus G(σ)
exists for σ > 0.5. In Appendix 3, we have shown that, on RH and for <(s) > 0.5, we have

r2∑
i=r1

1

pis
= E1((s− 1) log pr1)− E1((s− 1) log pr2) + ε, (38)

where ε = O
(
|s|+1

(σ−0.5)2
pr1

0.5−σ log pr1
)

. Thus, we can follow the same steps and show that
G(s, pr) is convergent as pr approaches infinity and thus G(s) exists for <(s) > 0.5 (it should
be pointed out, that the term ε in Equation (38) can be determined in terms of the non-trivial
zero if the von Mangoldt function is used in deriving Equation (38) instead of using the prime
counting function).

It should be noted that, while the function sequence G(s, pr) is not uniformly convergent
when the region of convergence is extended all the way to the line σ = 0.5, it is however
uniformly convergence for any rectangle extending from −iT to iT (for any arbitrary large
T ) and with σ > 0.5 + ε, where ε is an arbitrary small number. This follows from the fact
that, on RH, ε (or, the O term) is bounded for any σ > 0.5 + ε. Since G(s, pr) is analytic for
<(s) > 0 and it is uniformly convergent for <(s) > 0.5 + ε, thus G(s) is analytic for the half
right complex plain with <(s) > 0.5 + ε (Weiestrass theorem [6]). Since we have shown that
G(s) = 1 for <(s) ≥ 1, thus on RH, G(s) = 1 for <(s) > 0.5 + ε. Hence, we have the following
theorem

Theorem 3 For s = σ + it and σ > 0.5, the following holds if RH is valid

lim
r→∞

{
ζ(s)

r∏
i=1

(
1− 1

psi

)
exp (−E1((s− 1) log pr+1))

}
= 1. (39)

lim
r→∞

{M(s, pr) exp (E1((s− 1) log pr+1))} = 1. (40)
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It should be also pointed out that Theorem 3 can be generalized to the case where there are
no non-trivial zeros for values of s with <(s) > a (where a > 0.5). For this case, Equation (39)
is valid for every s with <(s) > a and ε in Appendix 3 is given by O

(
|s|+1

(σ−a)2
pr1

a−σ log pr1
)

.

Equation (39) of Theorem 3 can be written as follows

log ζ(s) + log
r2∏
i=1

(
1− 1

psi

)
− E1 ((s− 1) log pr2+1) = 0,

where the equality of both sides is attained as r2 (or pr2) approaches infinity. It should be
noted that while both functions log ζ(s) and E1((s− 1) log pr2+1) have a branch cut along the
real axis where 0.5 ≤ σ < 1, the difference (i.e. log ζ(s)− E1((s− 1) log pr2+1)) does not have
a branch cut. For r < r2, the above equation can be then written as

log ζ(s) = E1 ((s− 1) log pr2+1)−
r∑
i=1

log

(
1− 1

psi

)
−

r2∑
i=r+1

log

(
1− 1

psi

)
.

Since, on RH and for <(s) > 0.5, we have (refer to Appendix 3)

−
r2∑

i=r+1

log

(
1− 1

psi

)
=

r2∑
i=r+1

1

pis
+ δ = E1 ((s− 1) log pr+1)− E1 ((s− 1) log pr2) + ε

where ε = O
(

t+1
(σ−0.5)2

pr
0.5−σ log pr

)
, therefore

log ζ(s) = −
r∑
i=1

log

(
1− 1

psi

)
+ E1 ((s− 1) log pr+1) +O

(
t+ 1

(σ − 0.5)2
pr

0.5−σ log pr

)
. (41)

Taking the exponential of both side, we then obtain

ζ(s)
r∏
i=1

(
1− 1

psi

)
= exp (E1 ((s− 1) log pr+1))

(
1 +O

(
t+ 1

(σ − 0.5)2
pr

0.5−σ log pr

))
. (42)

or,

M(s, pr) = exp (−E1 ((s− 1) log pr))

(
1 +O

(
t+ 1

(σ − 0.5)2
pr

0.5−σ log pr

))
. (43)

In the following two sections, we will use Theorem 3 and Equation (38) in conjunction
with Theorems 1 and 2 to show that the series M(σ, pr) and M(σ) diverge for σ < 1

5 The series M(σ, pr) at σ = 1.

In this section, we will provide an estimate for the partial sumM(1, pr; 1, pr
a) as a approaches

infinity. This estimate will be computed by using Equation (38) and noting that M(1, pr)
equals zero for every pr. Therefore, for every pr, M(1, pr; 1, pr

a) approaches zero as a ap-
proaches infinity. In Appendix 4, we have first shown that the partial sum M(1, pr; 1, pr

a) is
bounded and that for every pr and N , we have

11



|M(1, pr; 1, N)|=
∣∣∣∣∣
N∑
n=1

µ(n, pr)

n

∣∣∣∣∣ ≤ 2.

Before we present the details of our method, it is important to note that the partial sum
M(1, pr; 1, pr

a) can be also generated using y-smooth numbers. The y-smooth numbers are
the numbers that have only prime factors less than or equal to y. These numbers have been
extensively analyzed in the literature [10]. In [10], a clever method was presented to generate
the partial sum M(1, pr; 1, pr

a). With this method and using the inclusion-exclusion principle
[10, page 248], one can then provide an estimate for the partial sum M(1, pr; 1, pr

a). In this
section, we will provide a more general approach to compute M(1, pr; 1, pr

a). The main ad-
vantage of our approach is the ability to extend it to compute the partial sum for values of s
other than 1. We will present our method in the following two steps.

• In the first step of our approach, we will show that, for every a and as pr approaches
infinity, the partial sum M(1, pr; 1, pr

a) is a function of only a (independent of pr).

Toward this end, we define the function f(a, pr) as

f(a, pr) = M(1, pr; 1, pr
a) =

pra∑
n=1

µ(n, pr)

n
.

We will then show that, for every a and as pr approaches infinity, the function f(a, pr) ap-
proaches a deterministic function ρ(a). In other words; if we plot M(1, pr; 1, N) (where
N = pr

a ) as a function of a = logN/log pr, then for each value of a and as pr approaches
infinity, f(a, pr) approaches a unique value ρ(a). This is equivalent to the statement

ρ(a) = lim
pr→∞

f(a, pr) = lim
pr→∞

M(1, pr; 1, pr
a).

This result can be achieved by first noting that the partial sumM(1, pr; 1, pr
a) for 1 < a < 2

is given by

M(1, pr; 1, pr
a) = 1−

∑
pr≤pi<pra

1

pi
.

If we define M1(1, pr; 1, pr
a) as

M1(1, pr; pr, pr
a) =

∑
pr≤pi<pra

1

pi
,

then, using Stieltjes integral, we obtain

M(1, pr; 1, pr
a) = 1−M1(1, pr; pr, pr

a) = 1−
∫ pra

pr

dπ(x)

x
= 1−

∫ a

1

dπ(pr
y)

pry
.

On RH, we have

dπ(pr
y) = dLi(pr

y) + dO(
√
pry log(pr

y)),

or
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dπ(pr
y) =

1

log(pry)
dpr

y + dO(
√
pry log(pr

y)) =
pyr
y
dy + dO(

√
pry log(pr

y)).

Hence, for 1 < a < 2, we have

M(1, pr; 1, pr
a) = 1−

∫ a

1

dy

y
+

∫ a

1

dO(
√
pry log(pr

y))

pry
= 1− log(a) +O(g1(pr, a)),

where

O(g1(pr, a)) =

∫ a

1

dO(
√
pry log(pr

y))

pry
.

As pr approaches infinity, O(g1(pr, a) approaches zero. Consequently,

lim
pr→∞

M(1, pr; 1, pr
a) = 1− log a.

The terms of the partial sum M(1, pr; 1, pr
a) for a in the range 1 < a < 3 are either a

reciprocal of a prime or a reciprocal of the product of two primes. Therefore, for 1 < a < 3,
we have

M(1, pr; 1, pr
a) = 1−

∑
pr≤pi<pra

1

pi
+

∑
pr≤pi1<pi2<pi1pi2<pra

1

pi1pi2
,

where pi1 and pi2 are two distinct primes that are greater than or equal to pr. LetM2(1, pr; 1, pr
a)

be defined as

M2(1, pr; 1, pr
a) =

∑
pr≤pi1<pi2<pi1pi2<pra

1

pi1pi2
=

1

2

∑
pr≤pi<pra−1

1

pi
M1(1, pr; pr, p

a
r/pi) + r2,

where the factor of half was added since each term of the form 1/(pi1pi2) is repeated twice.
It should be also noted that the second sum of the above equation includes non square-free
terms (notice that, there is no repetition in any of the non square-free terms). The term r2 was
added to offset the contribution by these non square-free terms. We will show later that the
contribution by these terms (or r2) approaches zero as pr approaches infinity. Using Stieltjes
integral, we then have

M2(1, pr; 1, pr
a) =

1

2

∫ a−1

1

dπ(pr
y)

pry
(log(a− y) +O(g1(pr, a− y))) + r2.

Hence

M(1, pr; 1, pr
a) = 1− log(a) +O(g1(pr, a)) +

1

2

∫ a−1

1

log(a− y)

y
dy +O(g2(pr, a− y)),

where

O(g2(pr, a)) =

∫ a−1

1

O(g1(pr, a− y))

y
dy +

∫ a−1

1
log(a− y)

dO(
√
pry log(pr

y))

pyr
+

∫ a−1

1
O(g1(pr, a− y))

dO(
√
pry log(pr

y))

pyr
+ r2.
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It can be easily shown that, for any fixed value of a, the three integrals on the right side of
the above equation approach zero as pr approaches infinity. We will also show later that r2

approaches zero as pr approaches infinity. Thus, for 1 ≤ a < 3, we have

lim
pr→∞

M(1, pr; 1, pr
a) = 1− log a+

∫ a−1

1

log(a− y)

y
dy

Therefore, as pr approaches infinity, M(1, pr; 1, pr
a) is only dependent on a.

Repeating the previous process bac times (where bxc is the integer value of x) and by
using the induction method, we can show that, as pr approaches infinity, the partial sum
M(1, pr; 1, pr

a) is dependent on only a. Specifically, we first write the partial sumM(1, pr; 1, pr
a)

as follows

M(1, pr; 1, pr
a) = 1−M1(1, pr; 1, pr

a) +M2(1, pr; 1, pr
a)− ...+ (−1)jMj(1, pr; 1, pr

a) + ...+

(−1)bac−1Mbac−1(1, pr; 1, pr
a) + (−1)bacMbac(1, pr; 1, pr

a),

where

Mj(1, pr; 1, pr
a) =

∑
pr≤pi1<pi2<..<pij<pi1pi2..pij<pra

1

pi1pi2...pij
.

and pi1, pi2, ..., pij are j distinct prime numbers greater than or equal to pr. If we assume that
Mj−1(1, pr; 1, pr

a) is given by

Mj−1(1, pr; 1, pr
a) = hj−1(a) +O(gj−1(pr, a))

where hj−1(a) is a function of a and O(gj−1(pr, a)) approaches zero as pr approaches infinity,
then

Mj(1, pr; 1, pr
a) =

1

j

∑
pr≤pi<pra−1

1

pi
Mj−1(1, pr; pr, p

a
r/pi) + rj ,

where the factor of 1/j was added since each term of the form 1/(pi1pi2...pij) is repeated j
times. It should be also noted that the sum of the above equation includes non square-free
terms. The term rj was added to offset the contribution by these non square-free terms. We
will show later that the contribution by these terms (or rj) approaches zero as pr approaches
infinity. Using Stieltjes integral, we then have

Mj(1, pr; 1, pr
a) =

1

j

∫ a−1

1

dπ(pr
y)

pry
(hj−1(a− y) +O(gj−1(pr, a− y))) + rj .

Hence

Mj(1, pr; 1, pr
a) =

1

j

∫ a−1

1

hj−1(a− y)

y
dy +O(gj(pr, a)),

where the first term is a definite integral with only one variable y integrated over the range
1 ≤ y ≤ a − 1. Thus, the definite integral is a function of only a. We define this function as
hj(a). The second term is given by
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O(gj(pr, a)) =

∫ a−1

1

O(gj−1(pr, a− y))

y
dy +

∫ a−1

1
hj−1(a− y)

dO(
√
pry log(pr

y))

pyr
+

∫ a−1

1
O(gj−1(pr, a− y))

dO(
√
pry log(pr

y))

pyr
+ rj .

It can be easily shown that, for a fixed value of a, the three integrals on the right side of
the above equation approach zero as pr approaches infinity. We will also show later that rj
approaches zero as pr approaches infinity. Hence, as pr approaches infinity, we have

lim
pr→∞

Mj(1, pr; 1, pr
a) =

1

j

∫ a−1

1

hj−1(a− y)

y
dy = hj(a)

where h1(a) = log(a). Hence, for every a and as pr approaches infinity, we have

lim
pr→∞

M(1, pr; 1, pr
a) = 1− h1(a) + h2(a)− h3(a) + ...+ (−1)bachbac(a) = ρ(a). (44)

It should be pointed out that the above equation implies that the partial sums M(1, pr; 1, pr
a)

and M(1, pyr ; 1, pr
ay) (where, pyr is a prime number) have the same limit as pr approaches

infinity. Hence,
lim
pr→∞

M(1, pr; 1, pr
a) = lim

pr→∞
M(1, pyr ; 1, pr

ay) = ρ(a). (45)

Equation (45) will be used in the next step to estimate the asymptotic behavior of the function
ρ(a) as a approaches infinity.

As it mentioned earlier, the partial sum M(1, pr; 1, pr
a) constructed by this process in-

cluded non square-free terms (i.e ri’s). In the following, we will show that, for every a and as
pr approaches infinity, the total contribution by these non square-free terms approaches zero
as well. Toward this end, let S0 be the sum of the terms with the factor 1/p2

r . Let S1 be the sum
of the remaining terms with the factor 1/(pr+1)2, S2 be the sum of the remaining terms with
the factor 1/(pr+2)2, and so on. Let S be sum of all the terms associated with non square-free
terms. Thus, S is given by

S =
1

pr2
S0 +

1

pr+1
2
S1 + ...+

1

pr+l2
SL,

where pr+l is the largest prime where its square is less than pra. However,

|S0|, |S1|, ..., |Sl|< 1 +
1

2
+

1

3
+ ...+

1

pra
.

Thus,

|S0|, |S1|, ..., |Sl|= O(a log pr).

Therefore

S =

(
1

pr2
+

1

pr+1
2

+ ...+
1

pr+l2

)
O(a log pr).
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Hence, the contribution by the non square-free terms R is given by,

S = O(a log pr/pr).

Consequently, for every a and as pr approaches infinity, S (or the contribution by the non
square-free terms) approaches zero.

• In the second step, we write the partial sum M(1, pr; 1, pr
a) as the sum of two compo-

nents. The first one is the deterministic or regular component and it is given by ρ(a). The
second one is the irregular componentR(1, pr; 1, pr

a) given byM(1, pr; 1, pr
a)−ρ(a). We

will then show that the function ρ(a) is the Dickman function that has been extensively
used to analyze the properties of y-smotht numbers.

Toward this end, we write the partial sum M(1, pr; 1, pr
a) as the following sum

M(1, pr; 1, pr
a) = 1−

∑
pr≤pi<pra/2

1

pi
M(1, pi; 1, pr

a/pi)−
∑

pra/2≤pi<pra

1

pi
. (46)

Notice that the above equation is justified by the virtue that M(1, pi; 1, pr
a/pi) is comprised

of 1 and the terms of the form 1/n where pi < n ≤ pa/pi. Furthermore, every factor of n is
greater than pi. The second sum was added since the first sum is void of the terms 1/pi’s for
pi
a/2 ≤ pi ≤ par . Using Stieltjes integral, we can write the above equation as follows

M(1, pr; 1, pr
a) = 1−

∫ a/2

1

dπ(pr
y)

pyr
M(1, pr

y; 1, par/p
y
r)−

∫ a

a/2

dπ(pr
y)

pyr
, (47)

where, on RH, dπ(pr
y) is given by dLi(pr

y) + dO(
√
pry log(pr

y)). It should pointed out that
while Equations (46) and (47) provide the value of the partial sumM(s, pr; 1, par) at s = 1, they
can be easily modified to compute the partial sum for any value of s to the right of the line
σ = 0.5. This task will be achieved in the next section and it will be the key step to examine
the validity of the Riemann Hypothesis

As pr approaches infinity, M(1, pr
y; 1, pa−yr ) approaches ρ(a/y−1) (refer to Equation (45)).

Therefore, as pr approaches infinity, we have

ρ(a) = 1−
∫ a/2

1

ρ
(
a
y − 1

)
y

dy −
∫ a

a/2

dy

y
. (48)

It is shown in Appendix 4 that |M(1, pr; 1, pr
a)|≤ 2 for every pr and a. Hence, |ρ(a)|≤ 2.

Consequently, ρ(a) approaches zero as a approaches infinity (this follows from the fact that
if ρ(a) does not converge to zero, then the first integral of the above equation diverges as a
approaches infinity which then leads to the divergence of ρ(a). This contradicts our earlier
statement that |ρ(a)|≤ 2). Thus, as a approaches infinity, we have

∫ a/2

1

ρ
(
a
y − 1

)
y

dy = 1− log 2. (49)

A key step in our method to examine the validity of the the Riemann Hypothesis is the com-
putation of the rate at which ρ(a) decays to zero. This task will be achieved by using Equation
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(48) to compute the difference ρ(a + ∆a) − ρ(a) (where, ∆a is an arbitrary small number) to
obtain

ρ(a+ ∆a)−ρ(a) = −
∫ (a+∆a)/2

1

ρ
(
a+∆a
y − 1

)
y

dy+

∫ a/2

1

ρ
(
a
y − 1

)
y

dy−
∫ (a+∆a)

(a+∆a)/2

dy

y
+

∫ a

a/2

dy

y
.

Since the third integral of the above equation is equal to the fourth integral, therefore

ρ(a+ ∆a)− ρ(a) = −
∫ (a+∆a)/2

1

ρ
(
a+∆a
y − 1

)
y

dy +

∫ a/2

1

ρ
(
a
y − 1

)
y

dy.

If we define y = (1 + ∆a/a)z, then we have

ρ(a+ ∆a)− ρ(a) = −
∫ ((a+∆a)/2)/(1+∆a/a)

1/(1+∆a/a)

ρ
(
a
z − 1

)
z

dz +

∫ a/2

1

ρ
(
a
y − 1

)
y

dy.

Thus,

ρ(a+ ∆a)− ρ(a) = −
∫ 1

1/(1+∆a/a)

ρ
(
a
z − 1

)
z

dz.

Dividing both sides of the above equation by ∆a and letting ∆a approach zero, we then
obtain

dρ(a)

da
= −ρ(a− 1)

a
, (50)

where ρ(a) = 1−log(a) for 1 ≤ a ≤ 2. Equation (50) is a first order non-linear delay differential
equation that has been extensively analyzed in the literature [10][12]. The function ρ(a) is
known as the Dickman function. As a approaches infinity, ρ(a) can be given by the following
estimate [10]

ρ(a) =

(
e+ o(1)

a log a

)a
. (51)

For sufficiently large values of a (a > 20), we have ρ(a) < a−a.

To compute the irregular component of M(1, pr; 1, par), we notice that R(1, pr; 1, pr
a) is

given by

R(1, pr; 1, pr
a) = M(1, pr; 1, par)− ρ(a).

Thus, R(1, pr; 1, pr
a) can be computed by subtracting Equation (48) from Equation (47) to

obtain

R(1, pr; 1, pr
a) = −

∫ a/2

1
ρ (a/y − 1)

dO(
√
pry log(pr

y))

pyr
−
∫ a/2

1
R(1, pr

y; 1, pa−yr )
dπ(pyr)

pyr
−

∫ a

a/2

dO(
√
pry log(pr

y))

pyr
. (52)

For sufficiently large a and due to the exponential decay of ρ(a/y− 1) and pr−y, the contribu-
tion by first integral of the above equation is negligible compared to the other terms. Thus,
for sufficiently large a, the above equation can be written as follows
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R(1, pr; 1, pr
a) = −

∫ a/2

1
R(1, pr

y; 1, pa−yr )
dπ(pyr)

pyr
−
∫ a

a/2

dO(
√
pry log(pr

y))

pyr
. (53)

So far, we have shown that the regular component of M(1, pr; 1, par) is given by ρ(a). Since∫ a
1 dρ(x) = ρ(a) − ρ(1) = ρ(a) − 1, therefore the regular component of M(1, pr; 1, par) can be

also written as
ρ(a) =

∫ a

1
dρ(x) + 1 = 1 +

∫ a

0
ρ′(x)dx.

Similarly, for values of s 6= 1, we can consider that M(s, pr; 1, par) is comprised of two com-
ponents. The first component is the regular component defined as F (α, a) (where α = (s −
1) log pr) and is given by

F (α, a) = 1 +

∫ a

1
pr

(1−s)xdρ(x) = 1 +

∫ a

0
pr

(1−s)xρ′(x)dx,

or,

F (α, a) = 1 +

∫ a

0
e−αxρ′(x)dx, (54)

while the irregular component is given by M(s, pr; 1, par)− F (α, a). Notice that for s = 1, we
have α = 0 and F (0, a) = ρ(a). We now define F (α) as

F (α) = lim
a→∞

F (α, a) = 1 +

∫ ∞
0

e−αxρ′(x)dx. (55)

Thus, for <(s) ≥ 1, α is a complex variable in the complex plane to the right of the line σ = 1.
Hence, the integral

∫∞
0 e−αxρ′(x)dx is the Laplace transform of the function ρ

′
(x) and is given

by F (α) − 1 (where F (α) is the regular component of the series M(s, pr), i.e. M(s, pr; 1,∞)).
Since the Laplace transform of ρ(x) is given by e−E1(s)/s [11, page 569][12], therefore the
Laplace transform of ρ

′
(x) is then given by sL(ρ(x))− ρ(0). Hence

F (α) = e−E1(α)

Remarkably, these results agree with what we have obtained in Theorem 3. In Theorem 3,
we have shown that

lim
r→∞

{M(s, pr) exp (E1((s− 1) log pr+1))} = 1,

or referring to Equation (43), we have

M(s, pr) = e−E1(α) (1 + ε(pr, s)) , (56)

where ε(pr, s) = O
(

|s|
(σ−0.5)2

p
1/2−σ
r log pr

)
. Consequently, for <(s) ≥ 1, we then obtain

M(s, pr) = F (α) (1 + ε(pr, s)) . (57)

where F (α) is the regular component of the series M(s, pr) and F (α)ε(pr, s) is the irregular
component of the series M(s, pr). It should be emphasized here that the regular component
F (α) is the value ofM(s, pr) due to the Li(x) component of the prime counting function π(x).
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It is also important to note that the irregular component is not the same as the difference
between the partial sum M(s, pr; 1, pr

a) and the series M(s, pr).Therefore, except for s = 1
(where the irregular component ε(pr, s) is zero for every pr), ε(pr, s) is not zero although it
approaches zero as pr approaches infinity

Notice that on RH, the previous analysis should also hold for <(s) > 0.5. This analysis
and its application to examine the validity of the Riemann Hypothesis will be presented in
the next section.

6 The series M(σ, pr) for σ < 1 and the Riemann Hypothesis.

In this section, we will examine the convergence of the series M(s, pr) for 0.5 < <(s) < 1
by first computing the partial sum M(s, pr; 1, pr

a). In the previous section, Equation (46) was
used to compute M(1, pr; 1, pr

a). In this section, we will modify this equation to compute
M(s, pr; 1, pr

a) for s 6= 1 as follows

M(s, pr; 1, pr
a) = 1−

∑
pr≤pi<pra/2

1

psi
M(s, pi; 1, pr

a/pi)−
∑

pra/2≤pi<pra

1

psi
. (58)

Using Stieltjes integral, we can write the above equation as

M(s, pr; 1, pr
a) = 1−

∫ a/2

1

dπ(pr
y)

psyr
M(s, pr

y; 1, par/p
y
r)−

∫ a

a/2

dπ(pr
y)

psyr
. (59)

On the real axis (i.e. s = σ), we then have

M(σ, pr; 1, pr
a) = 1−

∫ a/2

1

dπ(pr
y)

pσyr
M(σ, pr

y; 1, pa−yr )−
∫ a

a/2

dπ(pr
y)

pσyr
. (60)

Using Theorem 3, on RH, the partial sum M(σ, pr; 1, pr
a) is convergent as a approaches

infinity and its value is given by

lim
a→∞

M(σ, pr; 1, pr
a) = M(σ, pr) = exp (−E1(−β)) (1 + ε(pr, s)) , (61)

where β = −α = (1− σ) log pr (note that β > 0 for σ < 1).

Since the right side of Equation (60) is convergent as a approaches infinity, therefore the
differentiation of the left side with respect to a has to approach zero as a approaches infinity.
In other words; on RH and for σ > 0.5, we have

lim
a→∞

d

da

(∫ a/2

1

dπ(pr
y)

pσyr
M(σ, pr

y; 1, pa−yr ) +

∫ a

a/2

dπ(pr
y)

pσyr

)
= 0 (62)

We claim that, for σ < 1, the above derivative diverges to infinity as a approaches infinity.
Consequently, the series M(σ, pr) and M(σ, pr) diverge for σ < 1 and non-trivial zeros can be
found arbitrary close to the line <(s) = 1. To prove our claim, we first write the first integral
in Equation (62) as follows
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∫ a/2

1
M(σ, pr

y; 1, pa−yr )
dπ(pr

y)

pσyr
=

∫ a/2

1
F ((σ − 1) log pyr , a/y − 1)

dπ(pr
y)

pσyr
+

∫ a/2

1
R(σ, pr

y; 1, pa−yr )
dπ(pr

y)

pσyr
. (63)

The first integral on the right side of Equation (63) can be then written as∫ a/2

1
F ((σ − 1) log pyr , a/y − 1)

dπ(pr
y)

pσyr
=

∫ a/2

1
F ((σ − 1) log pyr , a/y − 1)

dLi(pr
y)

pσyr
+

∫ a/2

1
F ((σ − 1) log pyr , a/y − 1)

dO(
√
pry log(pr

y))

pσyr
.

where
F ((σ − 1) log pr , a) = 1 +

∫ a

0
ρ′(x)ex(1−σ) log prdx = 1 +

∫ a

0
ρ′(x)exβdx,

and

F ((σ − 1) log pyr , a/y − 1) = 1 +

∫ a/y−1

0
ρ′(x)ex(1−σ) log pyrdx = 1 +

∫ a/y−1

0
ρ′(x)eyxβdx.

Hence, the first integral on the right side of Equation (63) can be then written as∫ a/2

1
F ((σ− 1) log pyr , a/y− 1)

dπ(pr
y)

pσyr
=

∫ a/2

1

dLi(pr
y)

pσyr
+

∫ a/2

1

dLi(pr
y)

pσyr

∫ a/y−1

0
ρ′(x)eyxβdx+

∫ a/2

1
F ((σ − 1) log pyr , a/y − 1)

dO(
√
pry log(pr

y))

pσyr
. (64)

To compute the second integral on the right side of Equation (63) (i.e. the integral∫ a/2
1 R(σ, pr

y; 1, pa−yr )dπ(pr
y)/pσyr ), we first write Equation (52) for σ > 0.5 as follows

R(σ, pr; 1, pr
a) = −

∫ a/2

1
F ((σ − 1) log pyr , a/y − 1)

dO(
√
pry log(pr

y))

pσyr
−

∫ a/2

1
R(σ, pr

y; 1, pa−yr )
dπ(pyr)

pσyr
−
∫ a

a/2

dO(
√
pry log(pr

y))

pσyr
,

or ∫ a/2

1
R(σ, pr

y; 1, pa−yr )
dπ(pyr)

pσyr
= −R(σ, pr; 1, pr

a)−
∫ a

a/2

dO(
√
pry log(pr

y))

pσyr
−

∫ a/2

1
F ((σ − 1)pyr , a/y − 1)

dO(
√
pry log(pr

y))

pσyr
. (65)

Combining Equations (64) and (65), we then obtain
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∫ a/2

1
M(σ, pr

y; 1, pa−yr )
dπ(pr

y)

pσyr
=

∫ a/2

1

dLi(pr
y)

pσyr
+

∫ a/2

1

dLi(pr
y)

pσyr

∫ a/y−1

0
ρ′(x)eyxβdx−

R(σ, pr; 1, pr
a)−

∫ a

a/2

dO(
√
pry log(pr

y))

pσyr
.

Let J be defined as

J =

∫ a/2

1

dπ(pr
y)

pσyr
M(σ, pr

y; 1, pa−yr ) +

∫ a

a/2

dπ(pr
y)

pσyr
,

then

J =

∫ a

1

dLi(pr
y)

pσyr
+

∫ a/2

1

dLi(pr
y)

pσyr

∫ a/y−1

0
ρ′(x)eyxβdx−R(σ, pr; 1, pr

a)−
∫ a

1

dO(
√
pry log(pr

y))

pσyr
(66)

To compute the derivative of J with respect to a as a approaches infinity, we note that on RH
and for σ < 0.5, R(σ, pr; 1, pr

a) is convergent as a approaches infinity. Hence, as a approaches
infinity, dR(σ, pr; 1, pr

a)/da approaches zero. Furthermore, it can be easily shown that the
derivative of the last term with respect to a rapidly approaches zero as a approaches infinity.
Consequently, as a approaches infinity, we have

dJ

da
=

d

da

∫ a

1

dLi(pr
y)

pσyr
+

d

da

∫ a/2

1

dLi(pr
y)

pσyr

∫ a/y−1

0
ρ′(x)eyxβdx.

The derivative of the first integral of the above equation can be easily computed as follows

d

da

∫ a

1

dLi(pr
y)

pσyr
=

d

da

∫ a

1

1

prσy
pr
ydy

y
=

d

da

∫ a

1

eβy

y
=
eβa

a
.

The derivative of the second integral can be computed as follows

d

da

∫ a/2

1

dLi(pr
y)

pσyr

∫ a/y−1

0
ρ′(x)eyxβdx =

lim
∆a→∞

1

∆a

(∫ (a+∆a)/2

1

eβy

y
dy

∫ (a+∆a)/y−1

0
ρ′(x)eyxβdx−

∫ a/2

1

eβy

y
dy

∫ a/y−1

0
ρ′(x)eyxβdx

)
.

Since ρ′(x) = 0 for 0 ≤ x < 1, therefore

d

da

∫ a/2

1

eβy

y
dy

∫ a/y−1

0
ρ′(x)eyxβdx = lim

∆a→∞

1

∆a

(∫ a/2

1

eβy

y
dy

∫ (a+∆a)/y−1

a/y−1
ρ′(x)eyxβdx

)
,

or

d

da

∫ a/2

1

eβy

y

∫ a/y−1

0
ρ′(x)eyxβdx = lim

∆a→∞

1

∆a

(∫ a/2

1

eβy

y
ρ′(a/y − 1)e(a/y−1)yβ∆a

y
dy

)
.

Therefore
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d

da

∫ a/2

1

eβy

y

∫ a/y−1

0
ρ′(x)eyxβdx = eaβ

∫ a/2

1

ρ′(a/y − 1)

y2
dy

Let c be defined as

c = lim
a→∞

∫ a/2

1

ρ′(a/y − 1)

y2
dy.

Therefore, as a approaches infinity, we have

d

da

(∫ a/2

1

dπ(pr
y)

pσyr
M(σ, pr

y; 1, pa−yr ) +

∫ a

a/2

dπ(pr
y)

pσyr

)
=
eaβ

a

(
1 +

c

a

)
.

Thus, for β > 0 or for σ < 1 (recall that β = (1−σ) log pr), the above derivative approaches in-
finity as a approaches infinity. Thus, the series M(σ, pr) diverges for σ < 1. This implies that
the Riemann Hypothesis is invalid and the zeros can be found arbitrary close to line <(s) = 1.

Appendix 1
To prove the first part of Theorem 1 (i.e. for s = σ + i0 and 0.5 < σ ≤ 1, the series M(σ, pr)
converges conditionally if M(σ) converges conditionally), we first start with proving that
M(σ, 2) is conditionally convergent if M(σ) is convergent. Since M(σ) is convergent, then for
any arbitrary small number δ, there exists an integer N0 such that for every integer N > N0

|M(σ;N,∞)| =
∣∣∣∣∣
∞∑
n=N

µ(n)

nσ

∣∣∣∣∣ < δ (67)

Let the sumsM(σ; 1, N),M(σ;N+1, 2N),M(σ; 2N+1, 22N),M(σ; 22N+1, 23N), ...,M(σ; 2L−1N+
1, 2LN) be defined as

M(σ; 1, N) =
N∑
n=1

µ(n)

nσ
= A1,

M(σ;N + 1, 2N) =
2N∑

n=N+1

µ(n)

nσ
= δ1,

M(σ; 2N + 1, 22N) =
22N∑

n=2N+1

µ(n)

nσ
= δ2,

M(σ; 22N + 1, 23N) =
23N∑

n=22N+1

µ(n)

nσ
= δ3,

M(σ; 2L−1N + 1, 2LN) =
2LN∑

n=2L−1N+1

µ(n)

nσ
= δL.
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Throughout the analysis in this appendix, N will be a fixed number (that is larger than N0)
while the test for the convergence will be achieved by letting L approach infinity.

Let δ(l) be defined as the maximum of |δl|, |δl+1|, |δl+2|, ..., |δL|, |δl + δl+1|, |δl + δl+1 +
δl+2|, ..., |δl + δl+1 + ...+ δL|, then by the virtue of the convergence of M(σ),

|δ1|, |δ2|, |δ3|, ..., |δL|, |δ1 + δ2|, |δ1 + δ2 + δ3|, ..., |δ1 + δ2 + δ3 + ...+ δL|≤ δ(1) ≤ 2δ.

We also have

|δl|, |δl+1|, |δl+2|, ..., |δL|, |δl + δl+1|, |δl + δl+1 + δl+2|, ..., |δl + δl+1 + ...+ δL|≤ δ(l),

where by the virtue of the convergence of M(σ), δ(l) can be set arbitrary close to zero (since
δ, defined in Equation 67, can be set arbitrary close to zero by setting N0 arbitrary large).

Furthermore, let the sumsM(σ, 2; 1, N),M(σ, 2;N+1, 2N),M(σ, 2; 2N+1, 22N),M(σ, 2; 22N+
1, 23N), ..., M(σ, 2; 2L−1N + 1, 2LN) be defined as

M(σ, 2; 1, N) =
N∑
n=1

µ(n, 2)

nσ
= B1,

M(σ, 2;N + 1, 2N) =
2N∑

n=N+1

µ(n, 2)

nσ
= ε1,

M(σ, 2; 2N + 1, 22N) =
22N∑

n=2N+1

µ(n, 2)

nσ
= ε2,

M(σ, 2; 22N + 1, 23N) =
23N∑

n=22N+1

µ(n, 2)

nσ
= ε3,

M(σ, 2; 2L−1N + 1, 2LN) =
2LN∑

n=2L−1N+1

µ(n, 2)

nσ
= εL,

Since

2N∑
n=1

µ(n)

nσ
=

2N∑
n=1

µ(n, 2)

nσ
−

N∑
n=1

µ(n, 2)

(2n)σ
,

thus

M(σ; 1, 2N) = M(σ, 2; 1, 2N)− 1

2σ
M(σ, 2; 1, N).

Similarly, since

2l+1N∑
n=2lN+1

µ(n)

nσ
=

2l+1N∑
n=2lN+1

µ(n, 2)

nσ
−

2lN∑
n=2l−1N+1

µ(n, 2)

(2n)σ
,

thus

M(σ; 2lN + 1, 2l+1N) = M(σ, 2; 2lN + 1, 2l+1N)− 1

2σ
M(σ, 2; 2l−1N + 1, 2lN).
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Rearranging the previous equations, we then have

A1 + δ1 = B1 + ε1 −
1

2σ
B1, (68)

δ2 = ε2 −
1

2σ
ε1,

δ3 = ε3 −
1

2σ
ε2,

δL = εL −
1

2σ
εL−1,

where |δ1|, |δ2|, |δ3|, ..., |δL|, |δ1 + δ2|, |δ1 + δ2 + δ3|, |δ1 + δ2 + δ3 + ...+ δL|≤ δ(1) ≤ 2δ and δ can
be set arbitrary close to zero. Hence

ε2 =
1

2σ
ε1 + δ2,

ε3 =
1

2σ
ε2 + δ3 =

1

22σ
ε1 +

1

2σ
δ2 + δ3,

ε4 =
1

2σ
ε3 + δ4 =

1

23σ
ε1 +

1

22σ
δ2 +

1

2σ
δ3 + δ4,

εL =
1

2σ
εL−1 + δL =

1

2(L−1)σ
ε1 +

1

2(L−2)σ
δ2 +

1

2(L−3)σ
δ3 + ...+ δL.

Therefore,

ε1 + ε2 + ε2 + ...+ εL =

(
1 +

1

2σ
+

1

22σ
+ ...+

1

2(L−1)σ

)
ε1 + (δ2 + δ3 + ...+ δL)+

1

2σ
(δ2 + δ3 + ...+ δL−1) +

1

22σ
(δ2 + δ3 + ...+ δL−2) + ...+

1

2(L−2)σ
δ2.

Since |δ2|≤ δ(1), | |δ2 + δ3|≤ δ(1), ..., |δ1 + δ2 + δ3 + ...+ δL|≤ δ(1), hence

|δ2 +δ3 + ...+δL|+
1

2σ
|δ2 +δ3 + ...+δL−1|+...+

1

2(L−2)σ
|δ2|≤

∣∣∣∣δ(1) +
1

2σ
δ(1) + ...+

1

2(L−2)σ
δ(1)

∣∣∣∣ ,
or

|δ2 + δ3 + ...+ δL|+
1

2σ
|δ2 + δ3 + ...+ δL−1|+...+

1

2(L−2)σ
|δ2|≤

2σ

2σ − 1
|δ(1)|.

Therefore
ε1 + ε2 + ε3 + ...+ εL =

(
1 +

1

2σ
+

1

22σ
+ ...+

1

2Lσ

)
ε1 + γ1,

where γ1 is of the same order as that of δ(1) (where δ(1) can be set arbitrary close to zero by
setting δ, defined in Equation 67, arbitrary close to zero).
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As L approaches infinity, we then obtain

∞∑
i=1

εi =
2σ

2σ − 1
ε1 + γ1.

Therefore, if the series M(σ) is convergent, then the sum M(σ, 2;N + 1,∞) (which is equal to
ε1 + ε2 + ε3 + ... ) is bounded by the sum M(σ, 2;N + 1, 2N) (which is equal to ε1).

The previous process can be repeated with the substitution of A1 and B1 in Equation (68)
with A2 and B2, where A2 = M(σ; 1, 2N) and B2 = M(σ, 2; 1, 2N), to obtain

A2 + δ2 = B2 + ε2 −
1

2σ
B2.

Thus,

A2 = B2 −
1

2σ
B2 +

1

2σ
ε1.

Following the same process, we can show that the sum M(σ, 2; 2N + 1,∞) is given by

∞∑
i=2

εi =
1

2σ − 1
ε1 + γ2.

where γ2 is of the same order as that of δ(2) (where δ(2) can be set arbitrary close to zero by
setting δ, defined in Equation 67, arbitrary close to zero).

If we repeat the process l times, we obtain

Al = Bl −
1

2σ
Bl +

1

2(l−1)σ
ε1,

where Al = M(σ; 1, 2lN) and Bl = M(σ, 2; 1, 2lN) and the sum M(σ, 2; 2lN + 1,∞) is given
by

∞∑
i=l

εi =
1

2(l−2)σ

1

2σ − 1
ε1 + γl.

where γl is of the same order as that of δ(l). Since by the virtue of the convergence of M(σ),
δ(l) tends to zero as l approaches infinity, therefore γl and the above sum approach zero as l
approaches infinity.

Thus, we conclude that M(σ, 2; 2lN + 1,∞) (given by
∑∞
i=l εi) approaches zero as l ap-

proaches infinity. Furthermore, as l approaches infinity, B = liml→∞Bl approaches its limit
given by (

1− 1

2σ

)
B = M(σ; 1,∞).

Hence, (
1− 1

2σ

)
M(σ, 2) = M(σ).
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Similarly, following the same steps, we can show that(
1− 1

3σ

)
M(σ, 3; 1,∞) = M(σ, 2; 1,∞).

or (
1− 1

2σ

)(
1− 1

3σ

)
M(σ, 3; 1,∞) = M(σ; 1,∞).

This task can be achieved by first defining

M(σ, 2; 1, N) =
N∑
n=1

µ(n, 2)

nσ
= A1,

M(σ, 2;N + 1, 3N) =
3N∑

n=N+1

µ(n, 2)

nσ
= δ1,

M(σ, 2; 3N + 1, 32N) =
32N∑

n=3N+1

µ(n, 2)

nσ
= δ2,

M(σ, 2; 3L−1N + 1, 3LN) =
3LN∑

n=3L−1N+1

µ(n, 2)

nσ
= δL,

and

M(σ, 3; 1, N) =
N∑
n=1

µ(n, 3)

nσ
= B1,

M(σ, 3;N + 1, 3N) =
3N∑

n=N+1

µ(n, 3)

nσ
= ε1,

M(σ, 3; 3N + 1, 32N) =
32N∑

n=3N+1

µ(n, 3)

nσ
= ε2,

M(σ, 3; 3L−1N + 1, 3LN) =
3LN∑

n=3L−1N+1

µ(n, 3)

nσ
= εL,

Since

3N∑
n=1

µ(n, 2)

nσ
=

3N∑
n=1

µ(n, 3)

nσ
−

N∑
n=1

µ(n, 3)

(3n)σ
,

thus

M(σ, 2; 1, 3N) = M(σ, 3; 1, 3N)− 1

3σ
M(σ, 3; 1, N)
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Similarly,

M(σ, 2; 3lN + 1, 3l+1N) = M(σ, 3; 3lN + 1, 3l+1N)− 1

3σ
M(σ, 3; 3l−1N + 1, 3lN)

Following the same process, we can show that

∞∑
i=1

εi =
3σ

3σ − 1
ε1 + γ1,

where γ1 is of the same order as that of δ(1) (δ(l) is defined as the maximum of |δl|, |δl+1|, |δl+2|, ..., |δL|, |δl+
δl+1|, |δl + δl+1 + δl+2|, ..., |δl + δl+1 + ...+ δL|).

Similarly, if we define A2 = M(σ, 2; 1, 3N) and B2 = M(σ, 3; 1, 3N), then

A2 = B2 −
1

3σ
B2 +

1

3σ
ε1.

Therefore
∞∑
i=2

εi =
1

3σ − 1
ε1 + γ2.

where γ2 is of the same order as that of δ(2).

Repeating the steps l times, we then obtain

∞∑
i=l

εi =
1

3(l−2)σ

1

3σ − 1
ε1 + γl.

where γl is of the same order as that of δ(l). Hence the above sum approaches zero as l ap-
proaches infinity

Thus, we conclude that M(σ, 3; 3lN + 1,∞) (given by
∑∞
i=l εi) approaches zero as l ap-

proaches infinity. Furthermore, as l approaches infinity, B = liml→∞Bl approaches its limit
given by (

1− 1

3σ

)
B = M(σ, 2; 1,∞).

Hence, (
1− 1

3σ

)
M(σ, 3) = M(σ, 2).

Repeating the process r times, we then conclude

M(σ) = M(σ, pr)
r∏
i=1

(
1− 1

piσ

)
.

The second part of the theorem can be proved by recalling
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M(s, pr−1; 1, Npr) = M(s, pr; 1, Npr)−
1

psr
M(s, pr; 1, N).

If both seriesM(s, pr−1) andM(s, pr) are convergent, then asN approaches infinity, we obtain

M(s, pr−1) = M(s, pr)

(
1− 1

psi

)
.

Repeating the process r times, we then conclude

M(σ) = M(σ, pr)
r∏
i=1

(
1− 1

piσ

)
.

Appendix 2
Assuming RH is valid and for σ > 0.5, to show that

r2∑
i=r1

1

piσ
= E1((σ − 1) log pr1)− E1((σ − 1) log pr2) + ε

where, ε = O
(

t
(σ−0.5)2

pr1
1/2−σ log pr1

)
, we first recall that

r2∑
i=r1

1

pσi
=

∫ pr2

pr1

dπ(x)

xσ
=

∫ pr2

pr1

1

xσ log x
dx+

∫ pr2

pr1

1

xσ
dO

(√
x log x

)
.

We will first compute the integral with the O notation. This can be done by integration by
parts to obtain∫ pr2

pr1

1

xσ
dO

(√
x log x

)
=
O
(√
pr2 log pr2

)
pr2σ

−
O
(√
pr1 log pr1

)
pr1σ

−
∫ pr2

pr1
O
(√
x log x

)
d

(
1

xσ

)
Since x > 0, thus∫ pr2

pr1

1

xσ
dO

(√
x log x

)
=
O
(√
pr2 log pr2

)
pr2σ

−
O
(√
pr1 log pr1

)
pr1σ

−O
(∫ pr2

pr1

√
x log x d

(
1

xσ

))
With the substitution of variables y = log x, we then obtain∫ pr2

pr1

√
x log x d

(
1

xσ

)
= −

∫ pr2

pr1
σye( 1

2
−σ)ydy.

Since ∫
xeaxdx =

(
x

a
− 1

a2

)
eax,

therefore∫ pr2

pr1

√
x log x d

(
1

xσ

)
= −σ

(
log pr2
0.5− σ

− 1

(0.5− σ)2

)
pr2

0.5−σ+σ

(
log pr1
0.5− σ

− 1

(0.5− σ)2

)
pr1

0.5−σ.
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Hence, for σ > 0.5, we have∫ pr2

pr1

1

xσ
dO

(√
x log x

)
= O

(
pr1

0.5−σ log pr1
(σ − 0.5)2

)
(69)

For σ ≥ 1, the integral
∫ pr2
pr1

1
xσ log xdx can be computed directly from the definition of the

Exponential Integral E1(r) =
∫∞
r

e−u

u du (where r ≥ 0) to obtain∫ pr2

pr1

1

xσ log x
dx = E1((σ − 1) log pr1)− E1((σ − 1) log pr2)

It should be pointed out that although the functions E1((σ− 1) log pr1) and E1((σ− 1) log pr2)
have a singularity at σ = 1, the difference has a removable singularity at σ = 1. This follows
from the fact that as σ approaches 1, the difference can be written as

E1((σ − 1) log pr1)−E1((σ − 1) log pr2) = − log ((1− σ) log pr1)− γ + log ((1− σ) log pr2) + γ

or,

lim
σ→1

∫ pr2

pr1

1

xσ log x
dx = lim

σ→1
E1((σ − 1) log pr1)−E1((σ − 1) log pr2) = − log log pr1 + log log pr2

To compute the integral
∫ pr2
pr1

1
xσ log xdx for σ < 0, we first use the substantiation y = log x

to obtain∫ pr2

pr1

1

xσ log x
dx =

∫ log pr2

log pr1

e(1−σ)y

y
dy =

∫ log pr2

ε

e(1−σ)y

y
dy −

∫ log pr1

ε

e(1−σ)y

y
dy

where, ε is an arbitrary small positive number. With the variable substantiations z1 = y/log pr1
and z2 = y/log pr2 , we then obtain∫ pr2

pr1

1

xσ log x
dx =

∫ 1

ε/log pr2

e(1−σ)(log pr2)z2

z2
dz2 −

∫ 1

ε/log pr1

e(1−σ)(log pr1)z1

z1
dz1.

With the variable substantiations w1 = (1 − σ)(log pr1)z1 and w2 = (1 − σ)(log pr2)z1 and by
adding and subtracting the terms −

∫ (1−σ) log pr2
(1−σ)ε

dw2
w2

+
∫ (1−σ) log pr1

(1−σ)ε
dw1
w1

, we then have

∫ pr2

pr1

1

xσ log x
dx =

∫ (1−σ) log pr2

(1−σ)ε

ew2 − 1

w2
dw2 −

∫ (1−σ) log pr1

(1−σ)ε

ew1 − 1

w1
dw1+

∫ (1−σ) log pr2

(1−σ)ε

dw2

w2
−
∫ (1−σ) log pr1

(1−σ)ε

dw1

w1
.

Using the following identity [9, page 230]∫ a

0

et − 1

t
dt = −E1(−a)− log(a)− γ

where a > 0, we then obtain for σ < 1,∫ pr2

pr1

1

xσ log x
dx = E1((σ − 1) log pr1)− E1((σ − 1) log pr2)
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Hence, for σ > 0.5, we have

r2∑
i=r1

1

piσ
= E1((σ − 1) log pr1)− E1((σ − 1) log pr2) + ε

It should be pointed out that in general, if there are no non-trivial zeros for values of s
with <(s) > a, then by following the same steps, we may also show that for σ > a, we have

r2∑
i=r1

1

piσ
= E1((σ − 1) log pr1)− E1((σ − 1) log pr2) + ε

where, ε = O
(
pr1

a−σ log pr1/(σ − a)2
)
.

Appendix 3
Assuming RH is valid and for σ > 0.5, to show that

r2∑
i=r1

1

pis
= E1((s− 1) log pr1)− E1((s− 1) log pr2) + ε

where, ε = O
(
|s|+1

(σ−0.5)2
pr1

1/2−σ log pr1
)

, we first recall that

r2∑
i=r1

1

pis
=

∫ pr2

pr1

dπ(x)

xs
=

∫ pr2

pr1

1

xs log x
dx+

∫ pr2

pr1

1

xs
dO

(√
x log x

)
.

We will first compute the integral with the O notation. This can be done by integration by
parts to obtain∫ pr2

pr1

1

xs
dO

(√
x log x

)
=
O
(√
pr2 log pr2

)
pr2s

−
O
(√
pr1 log pr1

)
pr1s

−
∫ pr2

pr1
O
(√
x log x

)
d

(
1

xs

)
The integral on the right side of the above equation can be then written as∫ pr2

pr1
O
(√
x log x

)
d

(
1

xs

)
= −s

∫ pr2

pr1
O
(√
x log x

)
x−s−1dx.

Hence, ∣∣∣∣∫ pr2

pr1
O
(√
x log x

)
d

(
1

xs

)∣∣∣∣ ≤ |s|∫ pr2

pr1
O
(√
x log x

)
|x−s−1|dx.

Consequently, ∫ pr2

pr1

1

xs
dO

(√
x log x

)
= O

(
(|s|+1)

pr1
0.5−σ log pr1

(σ − 0.5)2

)
.
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For <(s) ≥ 1, the integral
∫ pr2
pr1

1
xs log xdx can be computed directly from the definition of

the Exponential Integral E1(z) =
∫∞

1
e−tz

t dt (where <(z) ≥ 0) to obtain∫ pr2

pr1

1

xs log x
dx = E1((s− 1) log pr1)− E1((s− 1) log pr2)

To compute the integral
∫ pr2
pr1

1
xs log xdx for <(z) < 1, we first write the integral as follows

∫ pr2

pr1

1

xs log x
dx =

∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx− i

∫ pr2

pr1

e−σ log x sin(t log x)

log x
dx.

The first integral on the right side
∫ pr2
pr1

e−σ log x cos(t log x)
log x dx can be computed by using the sub-

stitution y = log x to obtain∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx =

∫ pr2

pr1

e(1−σ)y cos(ty)

y
dy,

or ∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx =

∫ pr2

pr1

e(1−σ)y cos(ty)

y
dy +

∫ pr2

pr1

e(1−σ)y

y
dy −

∫ pr2

pr1

e(1−σ)y

y
dy.

Hence,∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx =

∫ pr1

ε

e(1−σ)y(1− cos(ty))

y
dy −

∫ pr2

ε

e(1−σ)y(1− cos(ty))

y
dy−

∫ pr1

ε

e(1−σ)y

y
dy +

∫ pr2

ε

e(1−σ)y

y
dy

where, ε is an arbitrary small positive number. With the variable substantiations z1 = y/log pr1
and z2 = y/log pr2 , we then obtain∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx =

∫ 1

ε/log pr1

e(1−σ)(log pr1)z1(1− cos(t(log pr1)z1))

z1
dz1−

∫ 1

ε/log pr2

e(1−σ)(log pr2)z2(1− cos(t(log pr2)z2))

z2
dz2−

∫ 1

ε/log pr1

e(1−σ)(log pr1)z1

z1
dz1 +

∫ 1

ε/log pr2

e(1−σ)(log pr2)z2

z2
dz2

By the virtue of the following identity ([9], page 230)∫ 1

0

eat(1− cos(bt))

t
dt =

1

2
log(1 + b2/a2) + Li(a) + <[E1(−a+ ib)],

where a > 0 , we then obtain the following∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx = <[E1((s− 1) log pr1)] + Li((1− σ) log pr1)−
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<[E1((s− 1) log pr2)]− Li((1− σ) log pr2)−∫ 1

ε/log pr1

e(1−σ)(log pr1)z1

z1
dz1+

∫ 1

ε/log pr2

e(1−σ)(log pr2)z2

z2
dz2

With the variable substantiations w1 = (1 − σ)(log pr1)z1 and w1 = (1 − σ)(log pr1)z1 and by
adding and subtracting the terms −

∫ (1−σ) log pr2
(1−σ)ε

dw2
w2

+
∫ (1−σ) log pr1

(1−σ)ε
dw1
w1

, we then have

∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx = <[E1((s− 1) log pr1)] + Li((1− σ) log pr1)−

<[E1((s− 1) log pr2)]− Li((1− σ) log pr2)+∫ (1−σ) log pr2

(1−σ)ε

ew2 − 1

w2
dw2 −

∫ (1−σ) log pr1

(1−σ)ε

ew1 − 1

w1
dw1+

∫ (1−σ) log pr2

(1−σ)ε

dw2

w2
−
∫ (1−σ) log pr1

(1−σ)ε

dw1

w1
.

Using the following identity [9, page 230]∫ a

0

et − 1

t
dt = Ei(a)− log(a)− γ

where a > 0, we then obtain for σ < 1,∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx = <[E1((s− 1) log pr1)]−<[E1((s− 1) log pr2)]

Similarly, using the identity [9, page 230]∫ 1

p0

eat sin(bt)

t
dt = π − arctan(b/a) + =[E1(−a+ ib)],

where a > 0 , we can show that for σ < 1, we have

−
∫ pr2

pr1

e−σ log x sin(t log x)

log x
dx = =[E1((s− 1) log pr1)]−=[E1((s− 1) log pr2)].

Therefore, for <(s) > 0.5, we have

r2∑
i=r1

1

pis
= E1((s− 1) log pr1)− E1((s− 1) log pr2) + ε

where, ε = O
(
|s|+1

(σ−0.5)2
pr1

1/2−σ log pr1
)

.
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Appendix 4
To show that ∣∣∣∣∣

N∑
n=1

µ(n, pr)

n

∣∣∣∣∣ ≤ 2

we first note that∑
d/n µ(d, pr) = 1, if n = 1,∑
d/n µ(d, pr) = 1, if all the prime factors of n are less than pr,∑
d/n µ(d, pr) = 0, if any of the prime factors of n is greater than pr.

Adding all the terms
∑
d/n µ(d, pr) for 1 ≤ n ≤ N , we then obtain

0 <
N∑
n=1

µ(n, pr)

⌊
N

n

⌋
≤ N,

where bxc refers to the integer value of x. Define rn as

rn =
N

n
−
⌊
N

n

⌋
,

where 0 ≤ rn < 1. Hence, we have

N∑
n=1

µ(n, pr)rn <
N∑
n=1

µ(n, pr)

⌊
N

n

⌋
+

N∑
n=1

µ(n, pr)rn ≤
N∑
n=1

µ(n, pr)rn

Since

−N ≤
N∑
n=1

µ(n, pr)rn ≤ N,

thus, for every pr we have

−N <
N∑
n=1

µ(n, pr)
N

n
≤ 2N,

or

−1 <
N∑
n=1

µ(n, pr)

n
≤ 2.
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