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In this work, the properties of the water are briefly revisited. Though liquid water has a
fleeting structure, it displays an astonishingly stable network of hydrogen bonds. Thus,
even as a liquid, water possesses a local lattice with short range order. The presence
of hydroxyl (O�H) and hydrogen (H � � �OH2) bonds within water, indicate that it can
simultaneously maintain two separate energy systems. These can be viewed as two
very different temperatures. The analysis presented uses results from vibrational spec-
troscopy, extracting the force constant for the hydrogen bonded dimer. By idealizing
this species as a simple diatomic structure, it is shown that hydrogen bonds within wa-
ter should be able to produce thermal spectra in the far infrared and microwave regions
of the electromagnetic spectrum. This simple analysis reveals that the oceans have a
physical mechanism at their disposal, which is capable of generating the microwave
background.

While water is the best studied molecule on Earth [1],
it remains one of the most mysterious. The unusual prop-
erties of this solvent are generated by its hydrogen bonding
network [1–4]. In the condensed state, these relatively weak
bonds (H � � �OH2) interlink water into a local intermolecular
lattice. Conversely, the robust intramolecular hydroxyl bond
(O�H) permits water to be treated as a rigid unit. Water,
in the solid state, can take up to one dozen possible crystal
structures. Through hydrogen bonding, each molecule is in-
corporated into a structure wherein the oxygen atoms assume
tetrahedral coordination as illustrated in Figure 1 [1]. As for
the O�H � � �O bond angle, it deviates only slightly from lin-
earity in ordinary ice, or ice Ih [1; p. 200].

Yet, it is the nature of liquid water which has largely cap-
tivated the interest of physical chemists. It has been said that:
“the H-bond network of liquid water is, in the average, the
same as that of ice” [1; p. 223]. In liquid water, the aver-
age tetrahedral geometry of the oxygen is maintained, but at
the expense of tremendous dynamic bending of the hydrogen
bonds [1; p. 223]. Nonetheless, to a first approximation, and
for the purposes of the discussion which is to follow, the av-
erage O�H � � �O bond angle will not be considered to deviate
substantially from linear. The energetic dynamic bending of
hydrogen bonds will be neglected.

Liquid water has been tenacious in withholding its se-
crets. Still, scientists have not relented in the study of this
universal solvent. Some of our knowledge has come from
the study of the simple water dimer [5–9], the gaseous adduct
of two molecules linked by a single hydrogen bond (see Fig-
ure 2). The structure of the dimer was first elucidated in 1977
by Dyke, Mack, and Muenter [7]. In its most stable form, the
water dimer displays a trans-linear arrangement [7], where
the O�H � � �O linkage deviates only slightly from a linear

configuration. The stability of the trans-linear form has been
confirmed repeatedly for this adduct, using both experimental
and ab initio evaluations [5–9]. The energy of its hydrogen
bond is �5 kcal/mol (�21 kJ/mol; [6]).

Since the water molecules making up the dimer are some-
what rigid due to their strong hydroxyl bonds (�119 kcal/mol
or �497 kJ/mol [10; p. 9–74]), it is possible to treat this
adduct as a monomer-monomer system. It is true that the
dimer can undergo significant tunneling and rearrangements
[5–9], but the resultant conformations do not produce the low-
est energy species. As such, one can solely consider the trans-
linear form [7] and treat each water molecule as a single, rigid
unit. Under this scenario, the water dimer can be modeled as a
harmonic oscillator [11–12] about the hydrogen bond. Dyke,
Mack, and Muenter [7] have determined that the fundamental
stretching frequency of the dimer corresponds to �143 cm�1

[7]. This frequency lies in the far infrared. It might be re-
called, for instance, that NASA’s COBE FIRAS (Far Infrared
Absolute Spectrophotometer) instrument scanned the sky in a
frequency range from 2 to 95 cm�1 [13].

Given a fundamental frequency at 143 cm�1, it is possi-
ble to infer the force constant for the hydrogen bond in the
water dimer [11–12]. The reduced mass, �r, of the dimer is
equal to 1.495�10�23 g/molecule: �r = 18�18

36�(6:02�1023) . The
fundamental frequency of oscillation is related to the force
constant, k, and reduced mass, �r, as follows:

! [cm�1] =
1

2�c

�
k
�r

�1=2

;

therefore, the force constant for the dimer corresponds to a
very small 0.108�105 dyn/cm. The force constant for the hy-
droxyl (O�H) bond within each molecule can be obtained
from the literature [10]. It corresponds to 8.45 N/cm, which
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Fig. 1: Schematic representation of the water lattice. Each water
molecule acts to accept and donate a total of four hydrogen bonds.
Note the essentially linear O�H � � �O subunit.

is equivalent to 8.45�105 dyn/cm [10; p. 9–99].
In the ideal case, it should be possible to calculate the en-

ergy of each of these systems by considering the expression
E= 1

2 kx
2, where k is the force constant and x is the infinites-

imal displacement of the fundamental oscillation. The latter
will be treated as an undetermined variable for each of these
two subsystems.

Within the local water lattice, one can observe that the
fundamental subunit of the dimer is also present (see Fig-
ure 1). That is, the linear O�H � � �O structure found within
the trans-linear water dimer is constantly repeated. Indeed, if
this were not the case, there would be little interest in studying
the water dimer [5–9]. In this configuration, two bonds link
every hydrogen atom to the adjacent oxygens (O�H � � �O):
the hydrogen bond with a force constant of � 0.108�105

dyn/cm and the hydroxyl linkage with a force constant of
�8.45�105 dyn/cm. Since the grouping is a linear one, the
displacement of the hydrogen atom must occur in the line
linking the two oxygen atoms. If one isolates the hydrogen
bonding system from this short range lattice, its energy will
be roughly equal toE1 = 1

2 k1(x1)2. Similarly, the energy for
the hydroxyl system will be given by E2 = 1

2 k2(x2)2. Thus,
as there is a single hydrogen atom involved in the oscillation,
it is immediately clear that jx1j= jx2j and to a first approxi-
mation, E2=E1 = k2=k1.

Water should then be capable of sustaining thermal emis-
sions over two very distinct regions of the electromagnetic
spectrum. The first of these regions occurs in the infrared
and is generated by the hydroxyl bond. A second thermal
emission region exists in the far infrared or microwave re-
gion. These emissions are produced by the hydrogen bond.
They represent energies which are a factor of about 80 times
(k2=k1 = 78) lower than the frequencies observed for the hy-
droxyl bonds. Although knowledge of emission frequencies
cannot be easily correlated with temperatures, this result im-
plies that the thermal photons produced by the hydrogen
bonding network might be detectable at apparent tempera-
tures which are 80 fold below the real temperatures of the
water system.

Fig. 2: Schematic representation of the trans-linear water dimer.
Note the essentially linear O�H � � �O unit.

The thermodynamics of hydrogen bond rearrangements
in the liquid phase have recently been examined [14]. This
work gives a value of 1.5� 0.5 kcal/mol (�6.3 kJ/mol) for
the rearrangement energy. As these energies are directly as-
sociated with the formation and breaking of hydrogen bonds,
it implies that the true energy of these bonds is closer to
1.5� 0.5 kcal/mol in the liquid state, not the 5 kcal/mol ob-
tained from dimer studies [6]. Therefore, the appropriate
force constant for the hydrogen bond in liquid water could
be nearly 3 fold lower, yielding a ratio of force constants
(k2=k1) in a range of 80–240. Consequently, the hydrogen
bonding system in water could produce a thermal spectrum
reporting a temperature which is 80–240 fold lower than the
true temperature of the water system.

An analysis of the hydrogen bonding system within water
helps to explain how the oceans of the Earth could produce a
thermal spectrum with an apparent temperature much lower
than their physical temperature [15, 16]. This occurs despite
the fact that sea water contains cations and anions [17, 18].
Note that the molar concentration and the physical influence
of the salts in sea water (mostly NaCl at � 0.12 M) does not
interfere significantly with the H-bonding network of �110
M hydrogen atoms [17, 18]. For instance, studies of the ef-
fects of cations and anions on the water system, tend to utilize
ion concentrations which are more than 10 times those found
in sea water [17, 18]. It is interesting however, that while the
lifetimes of the first excited state for the hydroxyl (O�H � � � )
stretch in liquid water is on the order of �1 psec, this value
increases to �2.6 psec in the vicinity of chloride ions [19,
20]. Nonetheless, it is unlikely that the presence of ions in the
oceans will dramatically alter the conclusions reached herein,
even though the presence of ions can produce small changes
in the first solvation shell [17, 18].

Maréchal [1; p. 220] illustrates how liquid water displays
strong hydroxyl absorption bands at 1644 cm�1 (H�O�H
bending) and 3400 cm�1 (hydrogen bonded O�H stretch).
Importantly, the spectra also revealed broad and powerful li-
bration bands (hindered rotations about the hydrogen bond;
O � � �H) at�700 cm�1 and hydrogen bond stretches (O � � �H)
centered at �200 cm�1 which extend to lower frequencies.
Since water is a good absorber in the far infrared, these stud-
ies were executed on samples which were only 1-�m thick.
Consequently, it would not be unexpected that the support-
ing matrix and a small sample thickness could alter both the
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position and amplitude of the hydrogen bonding stretching
and libration bands. The findings reported by Maréchal [1;
p. 220] are interesting, but inconclusive as related to the hy-
drogen bond itself.

Reflecting on the paucity of supportive data, in this very
difficult experimental region of the far infrared, it seems that
much more needs to be learned about the emissions due to
hydrogen bonds in nature. In particular, the lack of a signal
specifically assigned to hydrogen bonds from water on Earth
gives cause for concern. This is because the microwave back-
ground [21] was assigned to the universe [22] when virtually
nothing was known about the spectroscopic signature of the
hydrogen bond.

Consideration of these findings reveals why the author has
advanced [15, 16] that the microwave background [21] does
not correspond to an astrophysical signal [22], but instead is
generated by the oceans [15, 16, 23]. Water has the means to
generate thermal emissions in the far infrared and microwave
regions. The fundamental oscillator involved is best repre-
sented by the dimer subunit and its associated hydrogen bond
within liquid water itself. In the gas phase, the dimer is known
to have a fundamental frequency in the far infrared [7], very
close to the region sampled by the COBE FIRAS instrument
[13]. It is quite reasonable to expect that the emissions from
the oceans occur in the same region.

In summary, the microwave background can be under-
stood as follows: photons are being produced by the oceans
and they are then scattered in the atmosphere such that a com-
pletely isotropic signal is observed [15]. The isotropy of the
microwave background was first reported by Penzias and Wil-
son [21]. The signal is independent of temperature variations
on the globe, since the hydrogen bonding energy system is
already fully occupied at earthly temperatures. This explains
why the microwave background is independent of seasonal
changes [21]. Satellite data obtained by COBE strengthen the
idea that the Earth does produce the microwave background
[24, 25]. This hypothesis has not been refuted either by the
three year [26] or five year WMAP findings.
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