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Abstract

The Gravity Probe B (GP-B) experiment measured the geodetic precession due to parallel trans-

port in a curved space-time metric, as predicted by de Sitter, Fokker and Schiff. Schiff included

the Thomas precession in his treatment and argued that it should be zero in a free fall orbit. We

review the existing interpretations regarding the relation between the Thomas precession and the

geodetic precession for a gyroscope in a free fall orbit. Schiff and Parker had contradictory views

on the status of the Thomas precession in a free fall orbit, a contradiction that continues to exist

in the literature. In the second part of this paper we derive the geodetic precession as a global

Thomas Precession by use of the Equivalent Principle and some elements of hyperbolic geometry,

a derivation that allows the treatment of GP–B physics in between SR and GR courses.
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I. REVIEW OF EXISTING INTERPRETATIONS OF THE RELATION BE-

TWEEN THE THOMAS PRECESSION AND THE GEODESIC PRECESSION

A. Parallel transport of the spin vector of a gyroscope

In flat Euclidian three space with a Newtonian time the parallel transport of a vector

along a closed curve is rotation free, meaning that after one complete rotation the vector will

have an unchanged orientation in space. In Special Relativity, a velocity vector in parallel

transport along a circular path will have changed its orientation after one loop with an angle

called the Thomas rotation angle. The same goes for the spin angular momentum connected

to a gyroscope in circular rotation in Special Relativity. The measurable effect is then called

the Thomas precession, acquired by the spin orientation of the gyroscope. Both cases basi-

cally deal with parallel transport of a velocity vector in a three dimensional velocity vector

space or rapidity space. In General Relativity the deviation from its original orientation

of the spin angular momentum of a gyroscope in a gravitational orbit is more complicated

and the connected parallel transport of this vector has its setting in four dimensional curved

space-time. The deviation from parallel transport can be split in a part that is quite analo-

gous to the Thomas precession but three times as big, called the geodesic precession, and a

part that is caused by the fact that the central mass has an angular momentum of its own

and this rotating mass is dragging the surrounding space, including the orbiting gyroscope,

with it. This dragging effect is called the Lense–Thirring effect. The magnitude of the

geodesic precession, or the deviation angle from its original orientation despite the parallel

transport procedure, reflects the curvature factor of space-time as caused by mass. The

different interpretations existing in the literature as to the connection between the geodesic

precession and the Thomas precession is the main subject of this paper. The attempts to

grasp parallel transport in curved environments are at the core of understanding space-time.

Pauli stated that: The concept of parallel displacement of a vector has turned out to be more

and more fundamental to the geometrical basis of the tensor calculus in Riemannian space.

[...] Hessenberg and Levi-Civita found a geometrical, intuitive, interpretation of the curva-

ture tensor by starting from the concept of the parallel displacement of a vector. [...] If,

however, a vector undergoes parallel displacement along a closed curve, one obtains a vector

which is different from the original vector. This fact can be used for the definition of the
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curvature tensor.1
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FIG. 1. The Gravity Probe B experiment. The star is at infinity so its rays of light define the

Euclidian parallel direction on the orbit. The gyro spin vector ω is at the beginning aligned with

the starlight and parallel transported along the orbit but nevertheless deviates from the Euclidian

parallel direction after rotation. The deviation angle ∆θGP reflects the curvature of space-time

and ∆θLT the dragging of space-time.

B. The Pugh-Schiff proposal leading to the GP-B experiment

In 1916 de Sitter2 derived the geodetic precession of a spinning satellite in the orbit around

a mass M as an effect of curved space-time on the spin axis of rotation of the satellite3.

The calculations of de Sitter regarding the geodetic precession were extended by Schouten4

in 1918 and two years later again by Kramers5 and finally adjusted by Fokker6. In 1929

Fokker7 presented the geodesic precession angle as
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2
· m
r
· 2π, (1)

using G = 1 and c = 1, with r = R and m = M as in Fig.(1).

In 1959-60 Pugh8 and Schiff9 independently proposed to test the geodetic precession

using a gyroscope in an orbiting satellite. Pugh primarily focussed on measuring the Lense–

Thirring precession, with the de Sitter–Fokker precession as an important secondary effect in
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the experiment. In his 1959 proposal he did not mention the Thomas precession. According

to the analysis of Schiff, the total relativistic precession ΩR experienced by a gyroscope in an

orbiting satellite had to be a superposition of the Thomas precession, the geodetic precession

and the Lense–Thirring precession,

ΩR = ΩT + ΩG + ΩLT , (2)

with

ΩT + ΩG =
1

2
· F × v
mc2

+
3

2
· GM
Rc2

·Ω, (3)

F as an external non-gravitational force and v andm as the velocity and mass of the satellite.

Schiff argued that he was the first to derive the total relativistic precession including all

three terms. In his derivation he started with an observer on earth, derived the gyroscope’s

precession using General Relativity and then performed a coordinate transformation in order

to get the precession from the perspective of a comoving observer on the satellite, with

Eqs.(2) and (3) as the result10.

Schiff noticed that if v was of constant speed and F the gravitational force, then the

resulting Thomas precession was one third of the geodetic precession and of the same sign.

If we omit the Lense-Thirring precession, Eq. (3) should then become

ΩR = ΩT + ΩG =
1

2
α ·Ω +

3

2
α ·Ω =

4

2
α ·Ω, (4)

a result discussed by Schiff for the case of a quasi–uniform motion, when M and R are very

large but g = GM/R2 remains constant11. The result of Eq. (4) was avoided by Schiff by

the demand that the force F in the Thomas precession factor ΩT should be an external non-

gravitational force only. In Schiff’s analysis, a satellite in a free fall orbit had no external

forces working on it, which meant that it didn’t experience any boost in the perspective of

a comoving observer and without such a succession of boosts there couldn’t be a Thomas

precession. In his own words:

If a spinning particle is in free fall, as in a satellite, then F = 0. For an orbit

in the earth’s equatorial plane, for example,

Ω = (3GM/2rc2)ω0 − (2MGR2/5c2r3)ω

where ω0 = (r× v)/r2 is the instantaneous orbital angular velocity vector of the

particle.9
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If we compare the force of gravity to the electric force, a clear difference arises. Given

a satellite and a non rotating central mass with only electric forces working between the

two, then the spin of the satellite acquires a relativistic precession equal to the Thomas

precession ΩT . A comoving observer can measure the electric force and use it to calculate

the Thomas precession. When the electric force is replaced by the gravitational force,

the Thomas precession is zero and only the Geodetic precession is present as relativistic

effect. At least, according to Schiff. Because of the principle of equivalence, the comoving

observer cannot measure the force of gravity and hence he cannot determine the existence of

a Thomas precession. Schiff’s assumption comes down to the statement that all forces except

gravity produce a Thomas precession as relativistic precession and that gravity produces a

relativistic precession not by force but through a four dimensional space-time curvature

of the metric, the geodetic precession. For the experiment Schiff proposed, and given his

interpretation of ΩR, the relativistic precession of a gyroscope in an orbiting satellite consists

of two factors, the geodetic and the Lense–Thirring precessions.

Eventually, the Pugh-Schiff proposal lead to the GP-B experiment. The orbit of the

GP-B satellite was chosen such that ΩLT and ΩG were independent of each other due to

their perpendicular spin axes of rotation. For the GP-B experiment, the predicted geodetic

precession was ΩG = 6.6 arcs/year, given Schiff’s ΩR interpretation. The results of the

GP-B experiment was in accordance with Schiff’s prediction. A relativistic precession of

ΩR = ΩG = 6.6018±0.0183 arcs/year was measured, were a precession of ΩR = ΩG = 6.6061

arcs/year was predicted, so the predicted geodetic effect was confirmed to better than 0.5

percent12.

C. The Schiff–Weinberg interpretation.

Since Schiff’s proposal, different interpretations of the geodetic precessions and the role

of the Thomas precession therein have been proposed by several physicists. We will review

the three most significant interpretations, the Schiff–Weinberg interpretation, the Fokker–

Parker interpretation and the Schwinger interpretation. All three lines of interpretations

have the same outcome for a GP-B like experiment, i.e. the de Sitter–Fokker prediction.

But we start with two possible interpretations, possible from a logical point of view

but contradicted by the GP-B outcome. If space-time in a field of gravity was Minkowski
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flat and gravity was a force just like the electric force, then the outcome of the GP-B

experiment should have been ΩR = ΩT = 2.2 arcs/year. This option has been ruled out by

the outcome of the GP-B experiment. Based on this result, either the force of gravity is

more complicated than a pure electric Coulomb force or space-time is not Minkowski flat,

or both apply simultaneously. This means that GP-B has ruled out the option that the field

of gravity is a pure scalar field in Minkowski flat space–time.

Another logical possibility might be that the Thomas precession is a pure kinematic

relativistic effect that is always present, regardless of gravity as correctly described by the

Einstein Equations. In this logical situation, the Thomas precession depends on the orbit

only, independent of forces, free fall and curvature. Then for the GP-B experiment an extra

ΩT = 2.2 arcs/year had to be added and a total ΩR = ΩG + ΩT = 8.8 arcs/year should be

measured. This option has also been ruled out by the GP-B experiment.

This means that if the geodesic precession is correctly and exclusively described by the

Fokker–Schiff expression, and exists in nature as such, then the Thomas precession in a free

fall orbit has to be zero, such is the outcome of GP-B. This is the Schiff interpretation,

an interpretation that can also be found in the textbook Gravitation, by Misner, Thorne

and Wheeler, who state that The Thomas precession comes into play for a gyroscope on

the earth, but not for a gyroscope in a freely moving satelite. [] The general–relativistic

term is caused by the motion of the gyroscope through the earth’s curved, static space–time

geometry.13

There is another interpretation, formulated by Steven Weinberg, very similar to Schiff’s

interpretation, but the underlying physics is slightly different. According to Weinberg and

in his own words, the geodesic precession or the 3/2 term is essentially just the Thomas

Precession caused by gravitation14. Where Schiff was considering an ad-hoc mathematical

replacement of the Thomas precession by the geodesic precession, Weinberg focusses on

the dynamic, causal continuity instead. The resulting Schiff–Weinberg interpretation is

still common and used in most of the graduate textbooks on General Relativity, often in

combination with the PPN formalism where the 3/2 term is written as (γ + 1/2). We

collected a few relevant examples from the literature.

Robertson and Noonan in 1968: The precession due to the geodesic effect may be con-

trasted with the Thomas precession as follows. The geodesic precession depends on the metric

and appears even in a particle following geodesic motion. The Thomas precession depends
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on the particle’s absolute acceleration and thus vanishes for a particle in geodesic motion.15

Barker and O’Connel in 1970: It is possible to have ΩT essentially zero by putting the

gyroscope in a satellite.18

Lämmerzahl and Neugebauer in 2001: ... with Ω = v × (−1
2
a + 3

2
∇U) + ∇ × h. The

first term v × a is a special relativistic term, called the Thomas precession which is known

from atomic physics. It describes the precession of the spin due to inertial forces. Thus,

the second term, v ×∇U , is a gravity induced Thomas precession, the so called de Sitter

precession or geodetic precession. Note that only the Newtonian potential enters this term.

The last term is purely post-Newtonian and describes the Lense-Thirring effect.17

McGlinn in 2003: This is referred to as the de Sitter precession. It is not the analog of

the Thomas precession – rather, it is the precession of freely falling frames, not frames that

are accelerated, as is the case of the Thomas precession.20

Ryder in 2009: For geodesic motion F = 0; there is no Thomas precession. On a Newto-

nian view the gravitational force is F = GMm
r3

r, so the de Sitter precession could be described

as being like Thomas precession due to the gravitational force, but with an extra factor of 3.

In General Relativity, however, a particle (satellite, gyroscope) in geodesic motion has no

absolute acceleration, so no Thomas precession. On the other hand, there is a precession –

the geodetic precession – given by ΩdeSitter.
21

Ohanian and Ruffine in 2013: Warning: The agreement between parallel transport and

gyroscope transport holds only along a geodesic, that is, the gyroscope has to be in free

fall. Along a nongeodesic worldline, the equation of motion of the spin is given by Fermi-

Walker transport, not parallel transport. Along a nongeodesic worldline in flat spacetime

(that is, a trajectory with acceleration), this gives rise to a Thomas precession. [...] The

geodesic precession has sometimes been described as analogous to the Thomas precession

of special relativity. But this analogy is somewhat misleading: The Thomas precession in

the flat spacetime of special relativity results from nongeodesic motion, that is, it results

from accelerated motion brought about by the push of some force (without torque) acting

on a gyroscope or on a spinning particle, such as an electron. To find a true analogue of

the Thomas precession in curved spacetime, we would have to examine the behavior of a

gyroscope when some extra, non gravitational force makes it deviate from geodesic motion.

The Thomas precession would then arise as an extra contribution to the precession, in excess

of the contribution from parallel transport.22
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The consequential either–or split between an inertial Thomas precession and a gravita-

tional geodetic precession, with the Thomas precession being zero in free fall orbits when

external forces are absent, is what we call the Schiff–Weinberg interpretation. (See also:16,19.)

D. The Fokker–Parker interpretation.

The second interpretation can be called the Fokker–Parker interpretation. It is connected

to the derivation of geodesic precession by Schouten in 19184, which resulted in a precession

angle of GM
Rc2
· 2π, so two third of the actual precession. In 1920, Fokker corrected the

derivation of Schouten: The problem should be put as one of four-dimensional geometry;

it is a problem of mechanics, and not a problem of three-dimensional geometry. If this be

done properly, then the result is that we are to expect a precession one and a half times the

precession foreseen by Schouten.6 In 1921 Schouten explained the one and a half difference

between his derivation and Fokker’s derivation as caused by the use of the spatial part

of the linear element of Schwarzschild in his own case and the complete linear element of

Schwarzschild in a four dimensional derivation by Fokker. In the words of Schouten23: Now

we can show that this difference is caused by the fact, that the fourdimensional problem can

be reduced then and only then to a threedimensional one, when the square of the velocity is

of order G2M2

R2 , the square of the real occurring velocity in general being of order GM
R

.

In 1963 Fokker commented on these papers in an AIP interview:24 The first idea was

given by (Schouten), but he made a mistake in his calculation. The idea was very good,

however; he said when you have a curvature of space and you go around and you have it

parallel to itself, and you make a circuit; then you will have a change of direction, you see.

And that struck me very much, and I spoke of it with Lorentz. [...] I found the thought that

was mistaken, because in making the circumference he only had looked at the curvature of the

surface and he had forgotten what we call now the precession of Thomas. And if you add the

precession of Thomas to the curvature precession then you get the right value, you see, and I

had the right value. So in 1920 Fokker explained the difference between Schouten’s geodesic

precession angle 2
2
· GM
Rc2
· 2π and his 3

2
· GM
Rc2
· 2π result as a difference between working in

curved 3-space versus curved 4-space-time. Then in 1963 this same difference was explained

as adding or not adding the gravitational Thomas precession angle 1
2
· GM
Rc2
· 2π to the curved

3-space result of Schouten.
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In 1968 Parker had the same idea, independent of Fokker, but also motivated by the

paper of Schouten. Parkers hypothesis stated that the actual motion of the spin is just

the sum of the effect of the curvature of the physical three dimensional space in which the

particle moves, plus the effect of the gravitational field strength in the absence of any spatial

curvature.25 Parker added: In 1918, Schouten assumed that in the absence of any other

causes of precession, the spin axis of a planet in a circular orbit around the sun will move

by parallel transfer in the three-dimensional Schwarzschild space. This assumption yielded

two-thirds of the full general relativistic precession. Schouten would have obtained the full

value if he had realized that there was an additional effect which would remain even if the

three-space were flat. However, the additional effect, as we shall see, is a consequence of the

Thomas precession which was not discovered until 1926, eight years after Schouten’s work.

In his calculations Parker added the inertial Thomas precession as caused by an external

force and he didn’t include the Lense–Thirring frame dragging effect. In our symbolism, the

total relativistic precession is then given by Parker as ΩR = ΩT i + ΩTg + ΩC , and

ΩR =
1

2
· F × v
mc2

+
1

2
α · ω0 +

2

2
α · ω0 =

1

2
· a× v

c2
+

3

2
α · ω0, (5)

with ΩC as the effect of 3-space curvature on the precession of an orbiting gyroscope or

the Schouten precession, ΩT i as the inertial Thomas precession caused by an external force

and ΩTg as the weak field, Minkowski space-time gravitational Thomas precession. His end

result is equivalent to the Schiff interpretation and in the absence of any external force it

equals the geodetic precession of de Sitter and Fokker.

Since the 1969 paper of Parker in the American Journal of Physics, the linear splitting

of the geodesic precession in a Schouten precession and a Thomas precession remained

popular. In 1972, Fischer wrote:26 The Thomas precession is a kinematical effect which

depends only upon the velocity and acceleration of the object. Since it does not matter

what caused the acceleration the effect has interesting applications to electrons accelerated

by the electric field in atoms, neutrons, and protons accelerated by nuclear forces, and earth

satellites accelerated by gravity. The Parker interpretation also appeared in the paper by

Shapiro and others published in 1988. We quote Shapiro:27 The de Sitter precession may be

thought of as having contributions from two sources: The first is the effect of mass on the

curvature of space, which results in locally measured angles differing from those measured

with respect to the fixed stars. The second source, which contributes half as much as the
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first, is the gravitational analog of the spin-orbit coupling of an electron in an atom. We

translate this into the mathematical equation

ΩR = ΩS + ΩT =
2

2
α · ω0 +

1

2
α · ω0 =

3

2
α · ω0 = ΩG, (6)

with ΩS as the effect of curvature on the precession of an orbiting gyroscope and ΩT as the

spin-orbit term.

In 1988, Everitt referred to the spin-orbit Thomas precession term, as it was also men-

tioned in the work of Thorne, as an effect of the lateral motion of the gyroscope throuth

the radial gradient in the time dimension of the Schwarzschild metric. Everitt, following

Thorne, wondered if this split in ΩS and ΩT followed the 3 space plus 1 time split in rela-

tivity. Regarding this 3 + 1 split in the relativistic precession, Everitt added: An interesting

investigation not yet attempted would be to see whether the time gradient part of the gyro pre-

cession can be derived from the equivalence principle by an argument analogous to Einstein’s

argument for light deflection. Schiff would have said no.28

Rindler and Perlick wrote in 1990: It can be shown fairly simply that two-thirds of the

precession can be ascribed to the spatial geometry of the Schwarzschild metric, while one-

third is essentially due to Thomas precession; however, the latter is now in the forward rather

than the retrograde sense, for it is now the frame of the field that Thomas-precesses around

the gyroscope, which itself is free, i.e. unaccelerated.29 Rindler stated in his 2001 textbook

that in the post–Newtonian approximation: The total effect, geometric and Thomas, gives

the well–known de Sitter precession.30 In the same textbook, Rindler also gives a direct

calculation of the de Sitter precession via rotating coordinates and then there is no split

in two different terms, but just a direct calculation of the geodetic precession in the 4-D

Schwarzschild metric, with the remark by Rindler that in flat space–time the same method

results in the Thomas precession.

In 2007 Wortel, Malin and Semon interpreted the outcome of the GP-B experiment,

in the line of Parker, as an experimental confirmation of the Thomas precession.31 From

the paper of Wortel et. al. we select two quotes. The Stanford–NASA satellite Gravity

Probe B (GP–B), launched in 2004, contains four gyroscopes predicted to precess, in part,

due to Thomas precession. [...] Consequently, a measurement of the net precession in the

satellites orbital plane should detect both Thomas and geodetic precession. In their paper,

these authors explicitly refer to the GP–B experiment as a confirmation of the Thomas
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precession analogous to its original appearance in quantum physics where the electron with

spin orbits the nucleus of a hydrogen atom.

It is our opinion that the most accurate, non–confusing way to describe the Fokker–

Parker interpretation of the geodesic precession is to portrait it as a linear splitting of the

geodesic precession in a Schouten precession and a Thomas precession. In this interpretation,

the Schouten precession is caused by parallel transport of a gyroscope in curved 3–space

in a Schwarzschild metric and the Thomas precession is caused by parallel transport of

a gyroscope in a Minkowski metric in which a Newtonian force of gravity exists. The

gravitational Thomas precession is somehow connected to the time aspect in the full 4-D

space-time Schwarzschild metric, but, as was mentioned by Everett, this connection has not

been clarified yet.

E. The Schwinger interpretation and gravitomagnetism I.

A prominent line of interpretations follows the gravitomagnetic analogy of Schwinger.32

According to Schwinger, ΩR = ΩSO + ΩT + ΩLT with ΩSO as the spin–orbit coupling term

and ΩLT as derived from the analogy between relativistic electrodynamics and General

Relativity. Schwinger calculated the ΩLT from the analogous situation in electromagnetics

where a rotating uniformly charged spherical shell produces a constant magnetic field in

its interior and used the correspondences e → 2m, Q → 2M and 1/(4π) → −G to derive

the ’outer’ Lense–Thirring effect. Then he calculated the spin–orbit coupling precession as

being twice the Schouten precession. Schwinger derived the spin–orbit coupling term not

by using electromagnetic analogs but by using the interaction stress–energy tensor terms

for an orbiting satellite. His derivation was not based on parallel transport in a 3–space

Schwarzschild metric but on manipulations of the stress energy tensor for a spinning satellite

and thus his spin–orbit precession term is not a Schouten precession. If we assume ΩLT = 0,

then Swinger stated that

ΩR = ΩSO + ΩT =
4

2
α · ω0 −

1

2
α · ω0 =

3

2
α · ω0 = ΩG. (7)

Thus according to Schwinger’s 1974 interpretation, the Thomas precession of a satellite in

a free fall orbit is not zero but equal to the expected electric analogue. By adding a spin–

orbit interaction term of twice the Schouten precession to the negative gravitational Thomas
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precession, Schwinger recovered the quantitative result obtained by Schiff.

In 1994, Bini, Carini, Jantzen and Wilkins wrote a paper on the Thomas precession in

post-Newtonian gravitoelectromagnetism, in which they reported of a split of the geodesic

precession in a gravitomagnetic part equal to twice the Schouten precession and a gravita-

tional Thomas precession, which added up as in Eq.(7). Where Schwinger gave a gravitomag-

netic derivation of the Lense–Thirring effect, Bini et.al. had a gravitomagnetic derivation

of a term equal to twice the Schouten precession.33

Holstein and Vető also extended the approach to what they call the spin–orbit interac-

tion term which for both resulted in twice the Schouten precession term. By subtracting the

Thomas precession term they arrived at the correct geodesic precession, as did Schwinger.

The approaches of Holstein and Vető to arrive at twice the Schouten precession are very dif-

ferent. Holstein connects his derivation to the regular General Relativistic textbook deriva-

tion by using the geodesic equation. This equation is then interpreted as the analogue of

the Lorentz Force Law, an analogue which is used to arrive at a first order approximation of

the geodesic equation much like the Lorentz Force Law. In a similar manner he goes from

the General Relativistic spin–field expression to the gravitomagnetic expression for spin in

a gravitomagnetic field. This leads to the gravitomagnetic spin–orbit precession as being

twice the Schouten precession. And as with Schwinger, Eq.(7) then leads to the correct

geodesic precession.34

Vető used the gravitomagnetic Biot-Savart law to determine the induced gravitomagnetic

field experienced in the satellite due to the orbiting of the Earth and thus arrived at the

angular velocity of the gravitomagnetic precession of the gyroscope’s spin axis as being

twice the Schouten precession.35 He then argued that since the satellite is orbiting the

Earth, the gyroscope is also undergoing the Thomas precession. This Thomas precession

also takes place in the orbit plane but opposite the orbital velocity. As a result Vető had

ΩG = ΩGM + ΩT as in Eq.(7) with ΩGM = ΩSO = 2ΩS.

Both Holstein, in the American Journal of Physics, and Vető, in the European Journal

of Physics, argue that their versions of the gravitomagnetic approach as simplifications of

the complete General Relativistic derivation are useful for didactic purposes, because they

do not need complex General Relativistic mathematics, as the geodesic equation and the

GR spin equation involving Christoffel symbols, to arrive at the GP–B results. This may be

true, but the fact that they both arrive at twice the Schouten precession, and then subtract
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the Thomas precession in order to arrive at the correct geodesic precession might have a

confusing effect on students when later on will they be confronted with the Fokker–Parker

interpretation of the geodesic precession.

F. The PPN approach, Thorne and gravitomagnetism II.

The parametrized post-Newtonian (PPN) formalism was developed by Nordtvedt, Will,

Thorne and other physicists for high precision test of relativistic theories of gravity.37 Thorne

and Will listed the Schiff proposal and the group of Fairbank at Standford University working

on Schiff’s test of GR as one of the possible new experimental precision tests of relativistic

gravity that made it necessary to improve the PPN formalism of their time. According to

Will and Thorne, the PPN formalism considers all theories of gravity which are compatible

with Special Relativity, are compatible with the local equivalence principle and agree with

Newtonian gravity in the solar system to the then available accuracy. All theories of this

type have to be metric theories, theories that can be put in Riemannian geometric form.36

The parameterized post-Newtonian formalism or PPN formalism is a calculation tool

that expresses the Einstein equations in terms of the lowest-order deviations from Newton’s

law of universal gravitation and is applicable to weak fields and slowly moving objects. It

assigns to each theory of gravity a set of ten experimentally measurable quantities, the PPN

parameters. The values of the PPN parameters of a theory are closely linked to its physical

properties such as strength of curvature and drag coefficient.

In the case of the geodesic precession, only the γ parameter is relevant because it de-

termines the strength of the curvature of space–time. In terms of the PPN formalism the

geodesic precession is given by Hartle as16

ΩG = (γ +
1

2
) · GM

Rc2
·Ω. (8)

Hartle added that a measurement of the geodesic precession thus determines the PPN pa-

rameter γ and tests if the value of γ equals exactly 1, as is predicted by general relativity.

The (γ + 1
2
) formulation of the PPN formalism as applied to the geodesic precession fits

both the Schiff–Weinberg interpretation as the Fokker–Parker interpretation perfectly. It

can be looked upon as one single variable, with the GR prediction giving the value 3/2 for

the strength of space-time curvature. Or it can be seen as expressing the split between the
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Schouten precession connected to the curvature of 3-space strength parameter γ, with GR

prediction γ = 2/2, and the Thomas precession of Special Relativity with the already known

and quantum mechanically tested value 1/2.

Thorne starts with a fully non-linear general relativity tensor theory derivation of the total

precession of a gyroscope orbiting a rotating earth and then applies a PPN linearization by

splitting the resulting precession tensor in three parts. With the appropriate approximation

he gets two precession terms from the diagonal parts of the tensor and one precession term

from the off diagonal terms. The off diagonal terms give the Lense–Thirring precession

ΩLT and Thorne calles it the gravitomagnetic effect or the magnetic analogue part of the

precession, ΩGM . The diagonal terms are split in a space-like part to give the Schouten

precession ΩS and Thorne calles it the Schwarzschild curved 3-space metric effect, ΩC .

Another split of the diagonal term result in a time-like part to give the Thomas precession

ΩT and this part is called the gravitoelectric effect or electric analogue effect but also the

spin–orbit part of the precession , ΩSO.

Thorne’s approach starts with the Weinberg point of view of a fully non-linear Riemannian

metric approach of General Relativity but then he switches to Applied General Relativity,

for which he needs a usable linearization of the resulting precession in curved space-time.

This results in a Fokker–Parker formulation in a mixed curved–gravito–electro–magnetic

nomenclature. In Thorne’s words: I shall introduce you to some unusual but powerful view-

points about general relativistic gravity: (i) the split of the spacetime metric gαβ and its

associated forces into a ”gravitoelectric field” g, a ”gravitomagnetic field” H, and a space

curvature (not spacetime curvature) with metric gik.38 The splitting of the diagonal terms

in a space-like part and a time-like part can be done in many different ways, one of which

we already mentioned as a result reported by Bini et.al.33 The discussion regarding the way

how to linearize the diagonal of the GR tensor in a space-like and a time-like part belongs

on a post-doc level. We just categorize the resulting precession-interpretations.

Although Thorne arrives at the Fokker–Parker split of the geodesic precession, he is not

saying that there is a Thomas precession connected to a gyroscope in a geodesic, free fall

orbit.38 He doesn’t fall back on Minkowski space-time and a Special Relativity calculation

to arrive at the Thomas precession part of the geodesic precession, as Fokker and Parker

did. Thorne starts with the diagonal terms in the resulting GR precession tensor and with

some approximations and linearization of the result arrives at a term that can be called the
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gravitoelectric time-like part of the precession, comparable to the Thomas precession due to

a Newtonian force of gravity in a Minkowski space-time. The practical use in astrophysics

justifies his method and the resulting expressions. Thorne starts with the full GR position

as did Weinberg, and at the end he has a linearized result analog to Parker’s.

It is the resemblance of the results in GR after linearization that motivates Thorne

to use the electromagnetic analogy, whereas Schwinger went the other way and used the

resemblance of the electromagnetic calculations to GR expressions to arrive at the analogy.

This might be the reason why Thorne ends with the Schouten precession and Schwinger

(and Holstein and Vető) with twice the Schouten precession in their linear splitting of the

geodesic precession in two terms.

G. Three interpretations of the geodesic precession’s relation to the Thomas pre-

cession and the Schouten precession

So basically there are at the moment three lines of interpretations of the relativistic pre-

cession of a gyroscope in a free fall orbit around a non rotating mass. First the interpretation

in the line of Schiff and Weinberg, in which the geodetic precession, derived in a four di-

mensional Schwarzschild space-time metric, replaces the Thomas precession that is derived

in a four dimensional Minkowski space-time metric. Second the interpretation in the line

of Fokker–Parker, which follows the 3 + 1 space-time split as a split in a Schouten preces-

sion due to 3-space Schwarzschild curvature and a Thomas precession due to Newtonian

gravity in a flat space-time Minkowski metric on a non-geodesic classical orbit. And third

the interpretation in the line of Swinger in which the geodesic precession is split in a term

that equals twice the Schouten precession, from which is subtracted the second term, the

(gravitoelectric) Thomas precession, to give the total geodesic precession.

Because all three interpretations predict the same outcome, GP–B cannot verify the one

and falsify the other. But given the history of the geodesic effect and also from a didactic

point of view, we think that in educating the GP–B physics it is less confusing for the stu-

dents if the Schwinger–Holstein–Vető split of the geodesic precession in twice the Schouten

precession and an inverse Thomas precession is avoided at the level in between Special Rel-

ativity and General Relativity. Presenting both the Schiff–Weinberg interpretation and the

Fokker–Parker interpretation introduces already enough controversy and discussion regard-
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ing the status of the Thomas precession in a free fall orbit. And from an applied GR or PPN

point of view, both the Schiff–Weinberg and the Fokker–Parker interpretations fit well into

the PPN formalism and formula for the geodesic precession. This supports the Thorne–Will

reasoning that the PPN formalism is not restricted to one single theory of gravity, a strict in-

terpretation of Einstein’s GR, but includes a broad range of metric theories of gravity. So in

teaching GP–B physics to students in between SR and GR courses, the Thomas precession,

the Schouten precession and the full geodesic precession can be presented in combination

with the PPN formalism, the applied GR linearization method with ΩG = ΩS + ΩT and

with a discussion regarding the problematic status of the Thomas precession in a geodesic

orbit.

As for the gravitomagnetic vocabulary, in the case of the Thomas precession it is an

obvious analogy that already exists in the classical treatment of the planetary model and in

the resemblance between the laws of Newton and Coulomb. When applied to the Schouten

precession, as Bini et.al. and Vető, its leads to twice the Schouten precession, a result that

is best avoided at the level inbetween SR and GR. Schwinger, Holstein and Thorne all three

do not use the gravitomagnetic analogy for the curved 3-space part of the precession. The

only additional value of the gravitomagnetic analogy is found in the case of the Lense–

Thirring precession, presented as a spin–spin coupling effect with an important analogy in

the hyperfine structure of quantum mechanical treatment of the hydrogen atom. We believe

that in treating the physics of the GP–B precession, it is important to stress the fact that the

Schouten precession has no gravitomagnetic analogy. This means that for parallel transport

in a 3-space Schwarzschild curved metric there exists thus far no viable analogy in Maxwell’s

theory of electromagnetism.

II. THE GEODESIC PRECESSION DERIVED FROM SPECIAL RELATIVITY

AND THE EQUIVALENCE PRINCIPLE

A. Motivations for a new derivation of the geodesic precession

In the following sections we will give a derivation of the geodetic precession that we

will position in the line of the Weinberg interpretation, according to which the geodetic

precession is just the gravitational version of the Thomas precession. We will use only
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Special Relativity and the Equivalence Principle to derive the geodetic precession. Although

we place our approach, involving the equivalence principle, in the line of the Schiff–Weinberg

interpretation, according to Schiff, the geodetic precession and the equivalence principle were

mutually exclusive. In 1960, Schiff stated that: if the precession of the gyroscope axis is to

be significant, the gravitational field cannot be regarded as uniform, and the equivalence

principle is not applicable.11

We will argue that our derivation is not in conflict with Schiff’s assertion because we use

a different geodesic trajectory for our observer. Schiff’s statement applied to an observer

comoving with the gyroscope in the satellite. Our observer will be in a free fall from infinity

towards the surface of the planet and will pass by the orbiting satellite in which the gyroscope

is placed. Schiff used one observer on the planet and one on the satellite. We will use a

third observer, one on a geodesic that connects the distant star with the observer on the

planet by a straight line. In Fig.(4) Schiff’s geodesic is the trajectory 2 and our geodesic is

trajectory 1.

In our derivation we need hyperbolic geometry as the metric of rapidity space in Special

Relativity to derive the gravitational Thomas precession. Our SR approach is not new but

a concise presentation doesn’t exist in the literature so we will present the hyperbolic SR

way to the Thomas precession first. Our subsequent derivation of the geodesic precession

based on SR and the Equivalence principle has the advantage that it can be presented at

the undergraduate level as an introduction to GR. And the derivation will allow us to sketch

a new perspective on the Schouten precession and on the status of the Thomas precession

in a free fall orbit.

B. Thomas precession and hyperbolic geometry

In 1925 Uhlenbeck and Goudsmit, also from Leiden University in the Netherlands as were

de Sitter, Kramers and Fokker, introduced the concept of electron-spin. With this idea of

electron-spin and its precession in the orbit around the nucleus they managed to explain

the doublet terms in the Hydrogen atom’s spectral lines in the Röntgen region and also

the a-normal Zeeman-effect.40 But they didn’t manage to explain the factor 2 difference

in the magnitude of the coupling of their electron spin to its intrinsic magnetic momentum

needed to explain the correct width of the splitting of spectral lines in the a-normal Zeeman-
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effect.41 They send their results to Bohr, who discussed it with Kramers, who was working

in Kopenhagen on his Ph.D. under Bohr’s direction. While Bohr and Kramers were arguing

about the idea of spin, Thomas, who was there too at the time, joined the discussion: I

being a reasonably brash young man in the presence of Bohr said, ”Why doesn’t someone

work it out relativistically.” Kramers who had known of the earlier work on the motion of

the moon by De Sitter said to me ”It would be a very small relativistic correction. You can

work it out, I won’t.”42 Thomas did work out the idea of a relativistic precession of the

orbit of the electron, the Thomas precession, that produced effects that had to be added

to the precession of the electron–spin in its own rest–system.43 He showed that this extra

orbital precession of the electron as a gyroscope was a consequence of relativistic velocity

addition applied to rotations, two successive Lorentz boosts added up to one Lorentz boost

and a rotation. Thomas explained the factor-two difference in the coupling constant α in the

Uhlenbeck and Goudsmit approach as a consequence of the kinematics involved, according to

which the relativistic precession of the orbit of the electron had to be added to the precession

of the spin in the electrons own reference frame.44

The old quantum theory45 as embodied by Bohr and Sommerfeld around 1924 was the

context in which the discovery of electron spin and relativistic precession of the spin axis

of the electron in a circular orbit and the relativistic precession of this orbit itself took

place. Sommerfeld’s book ”Atombau und Spektrallinien”, translated as ”Atomic Structure

and Spectral Lines”, expressed the old approach which was centered around the model

of electrons orbiting a nucleus analogous to the planetary system but subjected to Bohr’s

restrictive quantum postulates.47 Part of the problem of the fine structures was solved by the

innovative work of Uhlenbeck, Goudsmit and Thomas, who were operating in the context

of the Bohr–Sommerfeld approach. In the words of Pais: the discovery of spin, made after

Heisenberg had already published the first paper on quantum mechanics, is an advance in

the spirit of the old quantum theory, that wonderfully bizarre mixture of classical reasoning

supplemented by ad hoc quantum rules.46 In the new Quantum Mechanics of Heisenberg,

Schrödinger, Born, Pauli and Dirac, the atomic theory based on the model of the semi-

classically orbiting electron became outdated and so did the model of the electron with an

internal structure of a spinning gyroscope. Outdated as it might be in Quantum Mechanics,

it is this model that seems to be one of the few existing close connections between spin in

Quantum Mechanics and spin in General Relativity.
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There was another line of thought that afterwards merged with Thomas’ theory on the

precessing electron spin in orbit around a nucleus, the one of hyperbolic geometry as applied

to relativistic velocities. This line started before Thomas’ work on the spinning electron,

and even before the work of de Sitter and Fokker on the geodetic precession. Mathemati-

cians and physicians like Sommerfeld, Robb, Variček, Borel, Föppl and Daniell worked on

the hyperbolic formulation of Special Relativity as it was already nascent in Minkowski’s

approach.48 In 1911 Robb introduced the rapidity ϕ as connected to the velocity v.49 Given

this velocity v, we can define γ as

γ =
1√

1− v2

c2

(9)

and β as β = v
c
. The rapidity ϕ is then defined through β = tanhϕ or through

γ = coshϕ. (10)

Robb and Varičak worked out relativistic velocity addition using rapidities. Given rela-

tivistic velocities v1 and v2, we can add them through the rapidities ϕ1 and ϕ2 according to

the rule formulated in 1912 by Varičak50

cosh(ψ) = cosh(ϕ1) cosh(ϕ2) + sinh(ϕ1) sinh(ϕ2) cos(α), (11)

with the angle α as the angle between the two velocity vectors. If the two velocities are

perpendicular to each other, then cos(α) = 0 and the addition of the rapidities reduces to

cosh(ψ) = cosh(ϕ1) cosh(ϕ2). (12)

α
ϕ

ψ

ϕ
1

2

FIG. 2. The hyperbolic rapidity triangle.

In 1913 Borel formulated what was afterwards called the Thomas rotation and the

Thomas–Wigner rotation angle.51 Borel stated that if the velocity vector of observer A

described a closed path then the axis of A remained parallel for A but rotated with an angle

equal to the enclosed area for an observer who at all times moved at the initial and final
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velocity of observer A. In Fig.(2), this means that if we have for the rapidities as vectors

ϕA = ϕ1 +ϕ2 −ψ then the rotation angle of ϕA equals the gray area of Fig.(2).

In the formulation of Thomas, if we have a local inertial frame of reference undergoing

two subsequent Lorentz boosts, then the result is one Lorentz boost and a rotation. In terms

of rapidities, if the first boost is represented by he rapidity ϕ1 and the second boost by he

rapidity ϕ2, then the resulting Lorentz boost can be represented by the rapidity ψ. The

rotation acquired by ψ = ϕ1 + ϕ2 is what we now call the Thomas-Wigner rotation angle

ϑTW . This angle is equal to the area of the rapidity triangle on the Poincaré disk, the gray

area in Fig.(2).

Borel’s description fits nicely with the approach of Rhodes and Semon towards the

Thomas–Wigner rotation angle and the Thomas precession, especially Rhodes and Semon’s

clear and graphic representation of hyperbolic geometry as applied on the Poincaré rapidity

disk and depicted in fig. 7, 8 and 9 in the Rhodes–Semon paper.52 The Thomas precession

angle was described by Borel as follows: If point A describes a closed curve or, for greater

clarity, a polygon whose sides are very small arcs of great circles, we can define a closer and

closer correspondence between the directions that will be called parallel. We know that when

A will have returned to the starting point, the axes, at each moment supposed to be parallel

to the axes of the neighboring point, have rotated in reality by an angle equal to the surface

of the spherical polygon. Borel described the rapidity disk version of parallel transport of

a vector along a closed path in a curved metric. This description nicely fits the graphic

representation of Rhodes and Semon’s Fig.(12), Polygonal approximations to curved paths

in rapidity space.

Our representation of the Thomas precession is given in Fig.(3). If ϕ1 is the rapidity

connected to an orbiting velocity vorbit and ϕ2 is the rapidity connected to the change in

velocity dvorbit, then the resulting rapidity ψ has an equal magnitude but a slightly different

direction than ϕ1. After one orbit in real space, the rapidity vector on the Poincaré disk

has also closed a circle on the hyperbolic disk. The total rotation or total Thomas-Wigner

rotation angle of the orbiting object is simply the summation of all the infinitesimal Thomas-

Wigner rotation angles. Geometrically, this is equal to the surface of the disk with the

rapidity ψ as radius, see Fig.(3). Now, in hyperbolic geometry the area A of a disk with

radius ψ is given by53

A = (coshψ − 1)2π. (13)
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FIG. 3. A segment of the hyperbolic rapidity circle. The global Thomas precession angle equals the

area of the circle on the hyperbolic disk, which is just the summation over all the local Thomas–

Wigner rotation angles.

We have A = ΣϑTW = ϑT and if we divide the angles ϑT and 2π by the rotation time T

we get the angular velocities Ω. The direction of the Thomas precession is opposite to the

angular momentum of the orbiting object. The Thomas precession results as

ΩT = −(coshψ − 1)Ω. (14)

If we go back to the velocity given in γ, we get the Thomas precession as

ΩT = −(γ − 1)Ω. (15)

The second order in β approximation results in the more familiar formulations of the Thomas

precession

ΩT = −1

2

v2

c2
Ω = −1

2

F × v
mc2

= −1

2

a× v
c2

. (16)

The Thomas rotation angle (coshψ − 1)2π was already derived by Föppl and Daniell in

their 1913 paper54, whereas Borel only gave a graphic description of this rotation angle. The

Föppl–Daniell formula equals the one derived in 1926 by Thomas. In the physics literature,

the precession has been named after Thomas because he could solve a physical enigma with

it, a correct calculation of the anomalous Zeeman effect, whereas Borel, Föppl and Daniell

before him remained on a mathematical, slightly kinematic, level, without connecting it to a

concrete physical application. Since the time of Thomas’ derivation of the electron spin pre-

cession, many derivations and expressions of the Thomas precession have been published.55

21



In our view, the hyperbolic approach is among the more comprehensible and elegant. The

hyperbolic formulation of the Thomas precession of Eq.(14) can also be found in Fokker’s

1960 book on relativity, a book in which he did not yet connect the Thomas precession to

the geodesic precession as in the interview three years later.39

C. The geodetic precession from Special Relativity and the Equivalence Principle

Given a gravitational mass M and the Newtonian potential, then zero gravity exists in

infinity from M . A space ship called Elevator with mass m is in a free fall towards the

planet with mass M . The free fall started at infinity, with v∞ = 0. At a distance R from the

center of the planet, the space ship has gained kinetic energy equal to the loss of potential

energy. Classically, with low velocities, we have

v2 =
2GM

R
. (17)

According to the Equivalence Principle, the space ship is an inertial system so the laws

of special relativity apply to it. This form of the Equivalence Principle equals the one

Everitt refers to in his paper as used by Schiff, Eriksson and others. See ref.[33] in Everitt’s

Overview28. Our approach is also analyzed in detail by Rindler in reaction to Schiff’s deriva-

tion of the bending of light round a mass point56. We use the part of Schiff’s approach that

was approved by Rindler and avoid the crucial point of Rindler’s objection, the premature

and ad hoc use of a curved 3-space metric.

1

2

RM

v, Ω 

FIG. 4. Escape pod GP–B launched from the Elevator

The space ship Elevator has a transparent floor and the astronauts observe a massive
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object M accelerating towards it. Suppose the Elevator itself cannot avoid collision but the

ship’s astronauts can use an escape pod to fly into safety. The captain has to stay behind

because we need him as an inertial observer of the events. The escape pod, named GP–

B, is launched in two successive boosts. The first boost gives the pod an escape velocity

vesc relative to the space ship and radially away from the colliding planet. This first boost

compensates the velocity of the space ship and results for a small moment in an absence of

velocity between escape pod and planet with mass M . The second boost is perpendicular to

the first one and gives the pod an orbiting velocity vorb. Classically, we have for the escape

velocity for an object at rest at a distance R from a planet with mass M

v2esc =
2GM

R
= −2φ (18)

and for the orbiting velocity, due to the virial theorem,

v2orb =
GM

R
= −φ. (19)

The two boosts can be delivered to the escape pod in such a way that both boosts still

happen within the local inertial area of the space ship Elevator. The captain of the Elevator

may apply the rules of Special Relativity regarding the addition of two successive Lorentz

boosts. If we use the rapidities ϕesc and ϕorb, then the total rapidity of escape pod GP–B is

ψ.

ϕ
ψ

ϕ
esc

orbϑTW

FIG. 5. The escape pod rapidity triangle.

Observers on the planet or at rest in infinity, but all on the same radial line that connects

the space ship to the center of the planet, should observe the same total velocity of the

escape pod vtotal and its related rapidity ψ with

cosh(ψ) = cosh(ϕesc) cosh(ϕorb). (20)

The escape pod has been given a total velocity vtotal and rapidity ψ, not only in the per-

spective of the captain of the about to crash space ship, but also in the perspectives of the
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outside observers at infinity and at the planets surface, as long as they interpret it as the

velocity given to the escape pod by the space ship and relative to the space ship during the

small window of its launch by two successive boosts. This velocity enabled the escape pod

to acquire a stable orbit around the planet. The launch events and their respective interpre-

tations happened in the local inertial area of the space ship. The fact that the escape pod

acquires a stable orbit is a global event and can only be observed by the external observers

at infinity and at the surface of the planet.

1

2

M

v, Ω 

ω

∆θ
GP

FIG. 6. Escape pod GP–B as seen from a large number of Elevators

We will go global by adding more and more space ships of the Elevator type in free fall

from infinity as in Fig.(6). Assume that the escape pod is in a stable orbit around the planet

with mass M . Let the velocity situation at launch be represented by the hyperbolic triangle

A in Fig.(7). Let there be an identical space ship in free fall from rest at infinity towards

the planet. This space ship B sees the escape pod closely passing by with rapidity ψ as in

triangle B, so after one quarter of the pod’s orbit. During the fly by of the pod relative

to the space ship B, the pod can be observed in the local inertial area of the space ship.

The captain of ship B will observe a pod with rapidity ψ if the time interval of the fly by

observation is such that the relative acceleration between escape pod and space ship can be

ignored. If captain B observes this rapidity, then should captains C and D, and all other

passing by similar free fall space ships on there way to crash on the surface of the planet.

They all see the same rapidity, but under a different angle. This rapidity changes direction

continuously and when the escape pod has made one revolution, so does the rapidity ψ.

Where a non–inertial observer on the planet will see an escape pod with velocity vorb and
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FIG. 7. The hyperbolic rapidity circle for the global escape pod as seen from a sequence of passing

free falling space ships. The area swept by ψ represents the global Thomas precession.

connected rapidity ϕorb, the inertial observers in the space ships will witness an escape pod

with rapidity ψ. We can construct the trajectory of the escape pod on the basis of a large

number of inertial observers on the free fall space ships, thus forming a polygon around the

planet with radius R and polygon sides dr. On the rapidity disk we get a similar figure with

as radius the rapidity ψ and rapidity changes dψ. This way of going global on the basis of

local inertial frames is the usual procedure in treating accelerations in the context of Special

Relativity. In our procedure, the use of inertial space ships in free fall from infinity and

initially at rest connects all inertial observations to the same zero field potential of φ and to

the same value of vesc. On the rapidity disk the global situation as reconstructed from our

inertial observers is given in Fig.(7).

If we compare Fig.(7) with Fig.(3), it will be clear that, in the perspective of the free

fall geodesic reference frames, the escape pod experiences a Thomas precession. From the

perspective of our polygon–like connected free fall captains, the Thomas precession angle is

represented by the area swept by the escape pods rapidity ψ on the hyperbolic disk during

one orbit, with A = ΣϑTW = ϑT . The connected global Thomas precession acquired by the

escape pod is given by the formula

ΩT = (coshψ − 1)Ω = (cosh(ϕesc) cosh(ϕorb)− 1)Ω, (21)

which can be written as

ΩT = (γescγorb − 1)Ω. (22)
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If we combine Eq. (9) and Eq. (18) we get

γesc =
1√

1 + 2φ
c2

(23)

and Eq. (9) and Eq. (19) gives

γorb =
1√

1 + φ
c2

. (24)

We can insert Eq. (23) and Eq. (24) in Eq. (22) to get

ΩT = (
1√

1 + 2φ
c2

1√
1 + φ

c2

− 1)Ω (25)

and

ΩT = (
1√

1 + 3φ
c2

+ 2φ2

c4

− 1)Ω. (26)

If we neglect the second order in φ/c2 term, we get

ΩT = (
1√

1 + 3φ
c2

− 1)Ω. (27)

In a first order in φ/c2 Taylor expansion the result is

ΩT = − 3φ

2c2
Ω (28)

or

ΩT =
3

2
· GM
Rc2

· Ω =
3

2
α · Ω, (29)

a result that equals the geodetic precession ΩG as it has been measured by GP-B.

The crucial point in our reconstruction of the global orbit on the basis of local observations

is that all local inertial systems, our space ships, started from a gravity free position at

infinity and with the same velocity v∞ = 0, let’s say they all came from a circle defined

by the GP–B guide star IM Pegasi (HR 8703). The fact that the global circular orbit of

GP–B is acceleration connected is countered by having many space ships, with the polygon

approximation that the change from one space ship to the next can be treated as rectilinear

or acceleration free. In the limit of an infinite number of Elevators we thus realize parallel

transport of the gyroscope angular momentum axis from one Elevator to the next and thus

from one GP–B position to the next. When the GP–B with its gyroscope is back to its initial

launching velocity, the gyroscope axis will have rotated with an angle equal to the enclosed
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area on the rapidity disk. In hyperbolic kinematics the rapidity disk metric determines the

rotation angle and the precession, with the space-time metric as secondary or non-relevant

for the precession.

If we go back to Rindler’s analysis of Schiff’s use of the equivalence principle to derive

the bending of light round a mass point56, we can specify that we did not use a space-time

metric that we borrowed from General Relativity to derive the geodesic angle of rotation

in the way Schiff did, at least did according to Rindler, to derive the angle of the bending

of light around a mass point. We used a rapidity metric, the one specified by hyperbolic

special relativity. Of course we started with a Newtonian flat space metric by using the

virial theorem to determine the orbiting velocity

v2orb =
GM

R
= −φ

as an initial condition. But the virial theorem itself is a statement about energies, not

about the space-time metric so it might well be more general than the Newtonian context

we borrowed it from and we can look at it as a good lowest approximation of the orbiting

velocity of the satellite in whatever space-time metric.

The interesting result is that we have to conclude that the space-time metric around a

gravitating mass is curved in such a way that a comoving observer on the orbiting geodesic

of the satellite’s gyroscope will calculate the same precession, but for him based on the

analysis of the motion through this curved space-time metric. In the perspective of an

observer comoving in the rest frame of the gyroscope in free fall, there can be no outside

observable force and no relative motion of the gyroscope so this observer has to place the

gyroscope all around on the origin of his rapidity disk, resulting in a zero surface and thus

a zero precession angle. But he would still measure the geodesic precession and thus he

would be forced to look for a cause outside the realm of Special Relativity and the method

of parallel transport of the gyroscope’s velocity vector on the rapidity disk with a hyperbolic

metric.

III. CONFRONTATION WITH THE EXISTING INTERPRETATIONS

Schiff’s either or interpretation of the relation between the geodetic precession and the

Thomas precession was already attenuated by Weinberg’s interpretation of the geodetic
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precession as a gravity caused Thomas precession. Our derivation of the geodetic precession

has just that form, a gravity caused Thomas precession. But the either or interpretation

is also present in our derivation, because we choose the perspective of an inertial frame in

free fall from an at rest initial position in infinity, without excluding the perspective of an

comoving observer in the satellite, moving side by side with the gyroscope. If this comoving

observer wants to describe the same gravity caused precession as explained from his position,

he will need a space-time metric theory of gravity as for example General Relativity provides

to explain the precession of the gyroscope. From the perspective of a comoving observer

using the rapidity disk method of SR, the de Sitter–Fokker theory is the whole thing and

the Thomas precession on his geodesic motion in a free fall orbit must be absent. So in a

certain sense, the comoving metric field perspective and the infinity inertial perspective are

complementary either–or perspectives, where only one comoving observer is needed beside

the gyroscope and an infinite number of observers on a crash course are needed to make our

free fall perspective accurate enough for a first order approximation (of parallel transport).

As for the Fokker–Parker interpretation, where the relativistic precession is build from

two different sources, first a curved 3-space caused Schouten precession and second a classical

Thomas precession caused by a spin–orbit interaction as

ΩG = ΩS + ΩT =
2

2
α · ω0 +

1

2
α · ω0 =

3

2
α · ω0, (30)

it is possible to interpret our derivation in this line of thought. For this we go back to the

words of Schouten, when he analyzed the difference between his result and Fokker’s result23:

Now we can show that this difference is caused by the fact, that the fourdimensional problem

can be reduced then and only then to a threedimensional one, when the square of the velocity

is of order G2M2

R2 , the square of the real occurring velocity in general being of order GM
R

.

If we were able to reduce the square of the orbital velocity in Fig.(7) slowly from v2orb ∼ φ

to v2orb ∼ φ2 without changing the radius of the orbit and the geodesic character of its orbit,

then Eq.(25) would not lead to the geodesic precession but to the Schouten precession,

exactly as Schouten did get in his General Relativistic analysis of the problem. Such a slow

reduction of the orbital velocity without changing the geodesic or free fall character of the

satellite’s motion is of course physically impossible, due to the virial theorem.

But the fact that if we apply the same change as Schouten did in his GR analysis we

get the same outcome in our SR derivation, means that we can confirm Schouten’s GR
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analysis based on just SR and the Equivalence Principle. On the other hand, if, in our

analysis, we go from gravity to electricity, then we as an uncharged neutral observer can

stay stationary at a distance R from the charged sphere in the center while a charged satellite

is passing by with orbital velocity. In that case Eq.(25) with a zero free fall velocity would

lead to the Thomas precession. By manipulating theoretically the free fall or escape velocity

and the orbital velocity we can arrive at either the Schouten precession or the Thomas

precession. This motivates the same split of the result of our derivation in a Schouten

precession and a Thomas precession, as long as it is interpreted in the line of Thorne and

the PPN formalism as a split at the end of analysis useful for applied physics and not

interpreted as a linear split with its origin at the beginning of the causal chain of events.

Our relativistic precession addition follows relativistic rapidity addition, and that on its

turn is analogous to relativistic velocity addition. The last one is clearly not a simple linear

superposition of velocities. Thus, the assumption that a total relativistic precession can be

given as a simple superposition of two independent relativistic precessions looks like a highly

optimistic approach. Linearization at the end is possible, whereas it is highly problematic

at the beginning of the derivation.

The Schwinger interpretation seems without connection to our derivation. Nowhere do

we arrive at a precession that is twice the Schouten precession. This does in no way mean

that one single interpretation can be given a higher rank on the interpretation scale. All

interpretations give a correct GP–B prediction and thus cannot be falsified.

In our opinion, the Schiff–Weinberg interpretation seems best appropriate for those who

engage in a full course of General Relativity. The discussion how the precession tensor

of GR is best split in a space-like term and a time-like term belongs in our view at a

post GR course level. Our Special Relativity plus Equivalence Principle derivation seems

appropriate for those students who have no working knowledge of General Relativity but a

good training in Special Relativity and are given a basis knowledge of hyperbolic geometry.

The various gravitoelectromagnetic approaches are best kept for the post-doc level, due to

their plurality.57 We believe that he Schwinger interpretation, with 2Ωs, is best discussed in

that post-doc context.

Our derivation has the advantage of introducing the students to the concept of parallel

transport in curved metrics in a way that can be visualized. The rapidity space approach is

equivalent to Sommerfeld’s approach using a sphere with a complex radius, which in turn
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has most of its properties in common with ordinary spheres.58 On an ordinary sphere one

can easily demonstrate the fact that parallel transport of a vector produces a change in

direction. From a real 3-space sphere you go to a complex 3-space sphere and from there to

the hyperbolic rapidity disk.

Our analysis using the rapidity disk showed that in free fall the precession angle during

parallel transport must lead to the conclusion that for a comoving observer in orbital geodesic

the only way to explain the parallel transport precession angle is by assuming a curved space-

time metric. Hence General Relativity.

The Fokker–Parker interpretation and the PPN formalism follow naturally from our

derivation and should be part of the treatment. Discussion of the Fokker–Parker inter-

pretation with its unavoidable but problematic linearization of the geodesic precession in a

3-space Schouten effect and a time-like Thomas effect seems useful in showing the intrinsic

fusion of space and time in General Relativity into a space-time quadruple. Our derivation

put in PPN form ΩG = ΩS + ΩT = (γ + 1/2)ΩT can be interpreted as a GR independent

first order approximation SR plus EP derivation of the space-time curvature parameter γ,

together with the remark that the full PPN formalism there are ten parameters due to the

fact that a symmetric tensor in the full theory of relativity has ten independent variables.

Our derivation of the geodesic precession based on hyperbolic relativity and the equivalence

principle has in our view its natural place in between a course in Special Relativity and

General Relativity, either at the end of the first or at the beginning of the latter.
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