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In this paper we give a proof of the Continuum Hypothesis.

Theorem "Continuum Hypothesis": There exist a bijection between the set
of real numbers numbers R and the power set of N.

Proof: Let R+ � R be the complete free semialgebra of nonnegative numbers,
and let R+2 be the complete free semialgebra of dyadic nonnegative numbers,
which, by the division algorithm in complete free semialgebras, is isomorphic
to R+. Then, since R+2 , as a semialgebra over its subsemialgebra B = f0; 1g,
is isomorphic to the direct sum �

i2Z
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therefore, by the Cantor-Bernstein-Schröder theorem, there exist a bijection
between R and the power set of N.

Thus, by the Zermelo-Fraenkel axioms, the Choice axiom, the Peano axioms,
the Cantor-Bernstein-Schröder theorem, and the de�nitions of cardinal number
and ordinal number, this theorem in particular proves that there is no cardinal
number between the initial trans�nite cardinal number @0 and 2

@0 . In general,
we have

Corollary "Generalized Continuum Hypothesis": For every cardinal number
�, there is no cardinal number between � and 2�.
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A theorem of universal algebra

Thus not only does this theorem prove that the class of cardinal numbers is
a large category which forms a countable complete strict semiring, with arrows,
the polynomial maps and the exponential maps, which is an e-algebra by the
action of the covariant exponential functor semiring e, itself, a functor e-algebra,
but also, by de�nition of limit ordinal number, that the P-algebra of limit ordinal
numbers, where P is the power set functor, is isomorphic to the complete strict
e-algebra of trans�nite cardinals.

The theorem in categorical logic

In categorical logic, as all �rst order theories are linear orders, this theorem
proves that all higuer order theories are continuums since they are preorders
which are countable products of linear orders having trans�nite cardinal number
� � 2@0 .

The theorem in topos theory

In topos theory, not only does this theorem prove that the category Card
of (small) cardinal numbers is a topos, but also that the category of set-valued
contravariant functors which assign to every function f : � ! � for every car-
dinal numbers � and � its set of cardinal-valued functions on � is its topos of

sheaves SetsCard
*

where Card* is the dual category of Card.
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