The Continuum Hypothesis

Daniel Cordero Grau dcgrau01@yahoo.co.uk

In this paper we give a proof of the Continuum Hypothesis.

Theorem "Continuum Hypothesis": There exist a bijection between the set of real numbers numbers \mathbb{R} and the power set of \mathbb{N} .

Proof: Let $\mathbb{R}^+ \subset \mathbb{R}$ be the complete free semialgebra of nonnegative numbers, and let \mathbb{R}_2^+ be the complete free semialgebra of dyadic nonnegative numbers, which, by the division algorithm in complete free semialgebras, is isomorphic to \mathbb{R}^+ . Then, since \mathbb{R}_2^+ , as a semialgebra over its subsemialgebra $B = \{0, 1\}$, is isomorphic to the direct sum $\bigoplus B_i$ where $B_i \cong B$ for every i, that is, $\mathbb{R}_2^+ \cong$ $\bigoplus B_i$, and since the cardinal number of the indexing set \mathbb{Z} for the direct sum is equal to the cardinal number of \mathbb{N} , \mathbb{N}_0 , the cardinal number $|\bigoplus B_i|$ of the set $\bigoplus B_i$, indexed by \mathbb{N} , is equal to the cardinal number $|\bigoplus B_i|$ of $\bigoplus B_i$. Thereby, $i \in \mathbb{N}$ $B_i = \bigcap_{i \in \mathbb{N}} \bigcup_{j=0}^k \prod_{i=j}^\infty B_i$ and the sets \mathbb{R} and \mathbb{R}^+ are equipotent as well as the indexing sets $\{i \in \mathbb{N} : i \ge j\}$ for every $\prod_{i=j}^\infty B_i$ for all $j \in \mathbb{N}$, $|\mathbb{R}| = |\mathbb{R}^+| = |\mathbb{R}_2^+| = |\bigoplus B_i| = |\bigoplus B_i| = |\bigcap_{k=0}^\infty \bigcup_{j=0}^k \prod_{i=j}^\infty B_i|$

$$= \inf_{k \in \mathbb{N}} \sup_{j \le k} |\prod_{i=j}^{\infty} B_i| = \inf_{k \in \mathbb{N}} \sup_{j \le k} 2^{|\omega|} = \liminf_{k \to \infty} 2^{\aleph_0},$$

therefore, by the Cantor-Bernstein-Schröder theorem, there exist a bijection between \mathbb{R} and the power set of \mathbb{N} .

Thus, by the Zermelo-Fraenkel axioms, the Choice axiom, the Peano axioms, the Cantor-Bernstein-Schröder theorem, and the definitions of cardinal number and ordinal number, this theorem in particular proves that there is no cardinal number between the initial transfinite cardinal number \aleph_0 and 2^{\aleph_0} . In general, we have

Corollary "Generalized Continuum Hypothesis": For every cardinal number α , there is no cardinal number between α and 2^{α} .

A theorem of universal algebra

Thus not only does this theorem prove that the class of cardinal numbers forms a complete strict semiring category, with arrows, the polynomial maps and the exponential maps, which is an *e*-algebra by the action of the covariant exponential functor semiring *e*, itself, a functor *e*-algebra, but also, by definition of limit ordinal number, that the \mathcal{P} -algebra of limit ordinal numbers, where \mathcal{P} is the power set functor, is isomorphic to the countable complete strict *e*-algebra of transfinite cardinals.