The Continuum Hypothesis

Daniel Cordero Graudcgrau01@yahoo.co.uk

In this paper we give a proof of the Continuum Hypothesis.

Theorem "Continuum Hypothesis": There exist a bijection between the set of real numbers numbers \mathbb{R} and the power set of \mathbb{N} .

Proof: Let $\mathbb{R}^+ \subset \mathbb{R}$ be the complete free \mathbb{N} -semialgebra of nonnegative numbers and let the multiplicative cyclic subgroup $\langle 2 \rangle$ be a basis of \mathbb{R}^+ , let \mathbb{R}_2^+ be the \mathbb{N} -semialgebra of dyadic nonnegative numbers, which, by the existence of the identity bijection on the basis $\langle 2 \rangle$, it is isomorphic to \mathbb{R}^+ , then, for \mathbb{R}_2^+ is complete free with $\langle 2 \rangle$ as basis, it is also isomorphic to the cartesian product $\prod_{i \in \mathbb{Z}} B_i$ where $B_i = \{0,1\}$ for every i, then, since the sets \mathbb{R} and \mathbb{R}^+ are equipotent, that is, the cardinal number $|\mathbb{R}|$ of \mathbb{R} and that of \mathbb{R}^+ , $|\mathbb{R}^+|$, are equal,

$$|\mathbb{R}| = |\mathbb{R}^+| = \left|\mathbb{R}_2^+\right| = \left|\prod_{i \in \mathbb{Z}} B_i\right| = 2^{\aleph_0},$$

therefore, by the Cantor-Bernstein-Schröder theorem, there exist a bijection between $\mathbb R$ and the power set of $\mathbb N$.

Thereby, by the ZFC axioms and definition of cardinal number, this theorem proves that there is no cardinal number between the initial transfinite cardinal number \aleph_0 and 2^{\aleph_0} . In general, we have

Corollary "Generalized Continuum Hypothesis": For every cardinal number α , there is no cardinal number between α and 2^{α} .

A theorem of universal algebra

Thus this theorem not only proves that the class of cardinal numbers forms a complete strict semiring category, with arrows, the polynomial maps and the exponential maps, which is an e-algebra by the action of the covariant exponential functor semiring e, itself, a functor e-algebra, but also, by definition of ordinal number, that the \mathcal{P} -algebra of limit ordinal numbers, where \mathcal{P} is the power set functor, is isomorphic to the countable complete strict e-algebra of transfinite cardinals.