The Continuum Hypothesis

Daniel Cordero Graudcgrau01@yahoo.co.uk

In this paper we give a proof of the Continuum Hypothesis

Lemma "Continuum Hypothesis": There exist a bijection between the set of real numbers numbers \mathbb{R} and the power set of \mathbb{N} .

Proof: Let $\mathbb{R}^+ \subset \mathbb{R}$ be the complete free \mathbb{N} -semialgebra of nonnegative numbers, and let \mathbb{R}_2^+ be the \mathbb{N} -semialgebra of dyadic nonnegative numbers isomorphic to \mathbb{R}^+ , then, for \mathbb{R}_2^+ is a complete free \mathbb{N} -semialgebra with its multiplicative cyclic subgroup $\langle 2 \rangle$ as basis, it is isomorphic to the cartesian product $\prod_{i \in \mathbb{N}} B_i$

where $B_i = \{0,1\}$ for every i, then, since the sets \mathbb{R} and \mathbb{R}^+ are equipotent, that is, the cardinal number $|\mathbb{R}|$ of \mathbb{R} and that of \mathbb{R}^+ , $|\mathbb{R}^+|$, are equal,

$$|\mathbb{R}| = |\mathbb{R}^+| = |\mathbb{R}_2^+| = |\prod_{i \in \mathbb{N}} B_i| = 2^{\aleph_0},$$

therefore, by the Cantor-Bernstein-Schröder theorem, there exist a bijection between \mathbb{R} and the power set of \mathbb{N} .

Thereby, by the ZFC axioms and definition of cardinal number, this lemma proves that there is no cardinal number between the initial transfinite cardinal number \aleph_0 and 2^{\aleph_0} . In general, we have

Corollary "Generalized Continuum Hypothesis": For every cardinal number α , there is no cardinal number between α and 2^{α} .

Thus the set of cardinal numbers is countable and forms a category which is a monoid with arrows the exponential maps.