
Clifford Clock and the 
Moolakaprithi Cube 

By John Frederick Sweeney 

Abstract: Matter begins with the Clifford Clock at the border of the Substratum
state; then can be traced through to the Moolaprakrithi state. Along the way,
this paper traces the Trigrams of Chinese metaphysics to the Clifford Clock
and the Clock of Complex Spaces, the binary aspects of the trigrams and the
binary aspects of the Octonions and the Fano Plane, then the construction of
the 3 x 3 x 3 Cube from the Trigrams; then isomorphic relations between the
Cube and the Klein Quartic and the Sierspinski Triangle; Clifford Algebras and
their organization via Pascal’s Triangle (Zhang Hui’s Triangle or Mount Meru);
connections  to  the  Magic  Triangle  of  Exceptional  Lie  Algebras  which
terminates with E8. 



Table of Contents 

Introduction                                                                   3
Clifford Clock                                                                4
Clock of Complex Spaces                                            4
Hurwitz Quarternions (Hurwitz Integers)                   16
Binary Trigrams and Octonions                                  19
3 x 3 x 3 Cube of Trigrams                                           23
Sierspinski Triangle                                                      29
Clifford Algebra Classification Pyramid                     34
Klein Quartic                                                                 40
Octonion Power Series                                                44
Moolakaprithi in Vedic Physics                                   47
Conclusion                                                                    49
Bibliography                                                                  50





Introduction 

The author began to write a series of papers on Vixra in order to provide the
foundation in mathematical physics for Chinese divination, specifically for Qi
Men Dun Jia, among the most advanced forms of divination known to the
Chinese for two thousand years or longer.  In order to achieve this purpose, it
soon became necessary to provide the foundation for Vedic Physics in terms
of contemporary science, since Vedic Physics provides the proper scientific
paradigm necessary to prove that divination is not magic, but rather advanced
science that contemporary science fails to explain. 

Vedic Physics originates with the Vedas, or the most ancient books known to
humanity, which in turn were committed to written language after millennia as
an exclusive oral tradition, during the pre – Ice Age era at least 14,000 years
ago. The science is highly advanced, representing a development of five to
ten  thousand  years  beyond  our  present  level  of  science.  Some  books
published in India explain this science but they are poorly written and lack
editing, which makes it all the more difficult to establish credibility in the west,
where people are resistant to doctrines from India and China. 

For this reason, the author of this paper took to editing and re – presenting
some of those works in the hope of their gaining credibility in Europe and the
Americas. Here is an excerpt from one of the books: 

Vedic  Physics  demonstrates  through  algebraic  mathematics  that  the
infinitesimal  displacement  identifying  the  geodesic,  itself  has  a  coherent
potential  that  can be  expressed in  a  self-similar  and  perpetually  coherent
Moolaprakriti power series by a dimensionless variable, up to infinite levels,
which seems to be new to physics.

This paper links the Octonions to the eight trigrams of the I Ching and then to
an Octonion Power Series, the opposite of which is a series of logarithms
moving back to the Substratum. In this sense, this current paper builds on two
earlier  papers  which  explained the  Clifford  Clock,  Bott  Periodicity  and the
Clock of Complex Spaces, which form isomorphic relationships with the basic
Qi Men Dun Jia Cosmic Board. 

The key to these connections lies in a 3 x 3 x 3 cube, which in Vedic Physics,
forms the Moolaprakriti,  a  key component  of  the  Substratum,  the invisible
black  hole  form  of  matter.  At  the  same  time,  the  3  x  3  x  3  cube  forms
isomorphic relations with the eight trigrams of the I Ching, as well as the 64
amino  acids  of  DNA,  then  with  the  Octonions,  the  Klein  Quartic,  the  24
Hurwitz Quarternions (Hurwitz Integers), and the tetrahedron. 



Clifford Clock 

John Baez on the Clifford Clock and 
Clock of Complex Spaces 

Now for some math. It's always great when two subjects you're interested in 
turn out to be bits of the same big picture. That's why I've been really excited 
lately about Bott periodicity and the "super-Brauer group".

I wrote about Bott periodicity in "week105", and about the Brauer group in 
"week209", but I should remind you about them before putting them together.

Bott periodicity is all about how math and physics in n+8-dimensional space 
resemble math and physics in n-dimensional space. It's a weird and wonderful
pattern that you'd never guess without doing some calculations. It shows up in
many guises, which turn out to all be related. The simplest one to verify is the 
pattern of Clifford algebras.

You're probably used to the complex numbers, where you throw in 
just one square root of -1, called i. And maybe you've heard of the 
Quaternions, where you throw in two square roots of -1, called i and j, and 
demand that they anti - commute:

ij = -ji
This implies that k = ij is another square root of -1. Try it and see!
In the late 1800s, Clifford realized there's no need to stop here. He invented 
what we now call the "Clifford algebras" by starting with the real numbers and 
throwing in n square roots of -1, all of which anti - commute with each other. 
The result is closely related to rotations in n+1 dimensions, as I explained in 
"week82".

I'm not sure who first worked out all the Clifford algebras - perhaps it was 
Cartan - but the interesting fact is that they follow a periodic pattern. If we use 

http://math.ucr.edu/home/baez/week105.html
http://math.ucr.edu/home/baez/week82.html
http://math.ucr.edu/home/baez/week209.html


Cn to stand for the Clifford algebra generated by n anti - commuting square 
roots of -1, they go like this:

Number
C0 R
C1 C
C2 H
C3 H + H
C4 H(2)
C5 C(4)
C6 R(8)
C7 R(8) + R(8)
where:

 R(n) means n x n real matrices,

 C(n) means n x n complex matrices, and

 H(n) means n x n quaternionic matrices.

All these become algebras with the usual addition and multiplication of 
matrices. Finally, if A is an algebra, A + A consists of pairs of guys in A, with 
pairwise addition and multiplication.
What happens next? Well, from then on things sort of "repeat" with period 8: 
Cn+8 consists of 16 x 16 matrices whose entries lie in Cn!

So, you can remember all the Clifford algebras with the help of this eight-hour 
clock:

                                    0
                                 
                                    R

                 7                                    1
                                                   
                   R+R                             C

             6   R                                       H   2
 

                    C                             H+H
                 
                  5                                    3

                                    H

                                    4



To use this clock, you have to remember to use matrices of the right size to 
get Cn to have dimension 2n. So, when I write "R + R" next to the "7" on the 
clock, I don't mean C7 is really R + R. 

To get C7, you have to take R + R and beef it up until it becomes an algebra of
dimension 27 = 128. You do this by taking R(8) + R(8), since this has 
dimension 8 x 8 + 8 x 8 = 128.
Similarly, to get C10, you note that 10 is 2 modulo 8, so you look at "2" on the 
clock and see "H" next to it, meaning the Quaternions. 

But to get C10, you have to take H and beef it up until it becomes an algebra of
dimension 210 = 1024. 

You do this by taking H(16), since this has dimension 4 x 16 x 16 = 1024.

This "beefing up" process is actually quite interesting. For any associative 
algebra A, the algebra A(n) consisting of n x n matrices with entries in A is a 
lot like A itself. The reason is that they have equivalent categories of 
representations!

To see what I mean by this, remember that a "representation" of an algebra is 
a way for its elements to act as linear transformations of some vector space. 

For example, R(n) acts as linear transformations of Rn by matrix multiplication,
so we say R(n) has a representation on Rn. More generally, for any algebra A, 
the algebra A(n) has a representation on An.

More generally still, if we have any representation of A on a vector space V, 
we get a representation of A(n) on Vn. It's less obvious, but true, that every 
representation of A(n) comes from a representation of A this way.

In short, just as n x n matrices with entries in A form an algebra A(n) that's a 
beefed-up version of A itself, every representation of A(n) is a beefed-up 
version of some representation of A.

Even better, the same sort of thing is true for maps between representations 
of A(n). This is what we mean by saying that A(n) and A have equivalent 
categories of representations. 

If you just look at the categories of representations of these two algebras as 
abstract categories, there's no way to tell them apart! We say two algebras 
are "Morita equivalent" when this happens.

It's fun to study Morita equivalence classes of algebras - say algebras over 
the real numbers, for example. The tensor product of algebras gives us a way 
to multiply these classes. If we just consider the invertible classes, we get 
a group. This is called the "Brauer group" of the real numbers.

The Brauer group of the real numbers is just Z/2, consisting of the classes [R] 
and [H]. These correspond to the top and bottom of the Clifford clock! Part of 
the reason is that

H tensor H = R(4)

so when we take Morita equivalence classes we get



[H] x [H] = [R]
But, you may wonder where the complex numbers went! Alas, the Morita 
equivalence class [C] isn't invertible, so it doesn't live in the Brauer group. In 
fact, we have this little multiplication table for tensor product of algebras:

        tensor       R       C      H
                  ----------------------
          R      |   R       C      H
                   |
          C      |   C      C+C    C(2)
                  |
          H      |   H      C(2)   R(4)

Anyone with an algebraic bone in their body should spend an afternoon 
figuring out how this works! But I won't explain it now.
Instead, I'll just note that the complex numbers are very aggressive and 
infectious - tensor anything with a C in it and you get more C's. That's 
because they're a field in their own right - and that's why they don't live in the 
Brauer group of the real numbers.

They do, however, live in the super-Brauer group of the real numbers, which 
is Z/8 - the Clifford clock itself!

But before I explain that, I want to show you what the categories of 
representations of the Clifford algebras look like:

1
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1 
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You can read this information off the 8-hour Clifford clock I showed you 
before, at least if you know some stuff:

 A real vector space is just something like Rn

 A complex vector space is just something like Cn

 A quaternionic vector space is just something like Hn

and a "split" vector space is a vector space that's been written as the direct 
sum of two subspaces.

Take C4, for example - 

The Clifford algebra generated by 4 anti - commuting square roots of -1. The 
Clifford clock tells us this is H + H. And if you think about it, a representation of
this is just a pair of representations of H. So, it's two quaternionic vector 
spaces - or if you prefer, a "split" quaternionic vector space.

Or take C7. The Clifford clock says this is R + R... or at least Morita equivalent 
to R + R: it's actually R(8) + R(8), but that's just a beefed-up version of R + R, 
with an equivalent category of representations. So, the category of 
representations of C7 is equivalent to the category of split real vector spaces.

And so on. Note that when we loop all the way around the clock, our Clifford 
algebra becomes 16 x 16 matrices of what it was before, but this is Morita 
equivalent to what it was. So, we have a truly period-8 clock of categories!

But here's the really cool part: there are also arrows going clockwise and 
counterclockwise around this clock! Arrows between categories are called 
"functors".



Each Clifford algebra is contained in the next one, since they're built by 
throwing in more and more square roots of -1. So, if we have a representation
of Cn, it gives us a representation of Cn-1. Ditto for maps between 
representations. 

So, we get a functor from the category of representations of Cn to the category
of representations of Cn-1. This is called a "forgetful functor", since it "forgets" 
that we have representations of Cn and just thinks of them as representations 
of Cn-1.

So, we have forgetful functors cycling around counterclockwise!

Even better, all these forgetful functors have "left adjoints" going back the 
other way. I talked about left adjoints in "week77", so I won't say much about 
them now. I'll just give an example.

Here's a forgetful functor:

                        forget complex structure
complex vector spaces ---------------------------> real vector spaces

which is one of the counterclockwise arrows on the Clifford clock. This functor 
takes a complex vector space and forgets your ability to multiply vectors by i, 
thus getting a real vector space. 

When you do this to Cn, you get R2n.
This functor has a left adjoint:

                               complexify
complex vector spaces      <--------------------------     real vector spaces

where you take a real vector space and "complexify" it by tensoring it with the 
complex numbers. When you do this to Rn, you get Cn.
So, we get a beautiful version of the Clifford clock with forgetful functors 
cycling around counterclockwise and their left adjoints cycling around 
clockwise! When I realized this, I drew a big picture of it in my math notebook 
- I always carry around a notebook for precisely this sort of thing. 
Unfortunately, it's a bit hard to draw this chart in ASCII, so I won't include it 
here.

Instead, I'll draw something easier. For this, note the following mystical fact. 
The Clifford clock is symmetrical under reflection around the 3-o'clock/7-
o'clock axis:

http://math.ucr.edu/home/baez/week77.html
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It seems bizarre at first that it's symmetrical along this axis instead of the more
obvious 0-o'clock/4-o'clock axis. But there's a good reason, which I already 
mentioned: the Clifford algebra Cn is related to rotations in n+1 dimensions.
I would be very happy if you had enough patience to listen to a full 
explanation of this fact, along with everything else I want to say. But I bet you 
don't... so I'll hasten on to the really cool stuff.

First of all, using this symmetry we can fold the Clifford clock in half... and the 
forgetful functors on one side perfectly match their left adjoints on the other 
side!

So, we can save space by drawing this "folded" Clifford clock:

                   split real vector spaces
  
                             | ^
            forget splitting | | double
                             v |
                   
                    real vector spaces

                             | ^
                  complexify | | forget complex structure
                             v |

                   complex vector spaces

                             | ^
               quaternionify | | forget quaternionic structure
                             v |

                  quaternionic vector spaces
  
                             | ^
                      double | | forget splitting
                             v |

                split quaternionic vector spaces

The forgetful functors march downwards on the right, and their left adjoints 
march back up on the left! The arrows going between 7 o'clock and 0 o'clock 
look a bit weird:



                  split real vector spaces
  
                             | ^
            forget splitting | | double
                             V |
                   
                    real vector spaces

Why is "forget splitting" on the left, where the left adjoints belong, when it's 
obviously an example of a forgetful functor?
One answer is that this is just how it works. Another answer is that it happens 
when we wrap all the way around the clock - it's like how going from midnight 
to 1 am counts as going forwards in time even though the number is getting 
smaller. 

A third answer is that the whole situation is so symmetrical that the functors 
I've been calling "left adjoints" are also "right adjoints" of their partners! So, we
can change our mind about which one is "forgetful", without getting in trouble.

But enough of that: I really want to explain how this stuff is related to the 
super-Brauer group, and then tie it all in to the topology of Bott periodicity. 
We'll see how far I get before giving up in exhaustion....

What's a super-Brauer group? It's just like a Brauer group, but where we use 
Super Algebras instead of algebras! A "superalgebra" is just physics jargon for
a Z/2-graded algebra - that is, an algebra A that's a direct sum of an "even" or 
"bosonic" part A0 and an "odd" or "fermionic" part A1:

A = A0 + A1

such that multiplying a guy in Ai and a guy in Aj gives a guy in Ai+j, where we 
add the subscripts mod 2.
The tensor product of Super Algebras is defined differently than for algebras. 
If A and B are ordinary algebras, when we form their tensor product, we 
decree that everybody in A commutes with everyone in B. For Super Algebras 
we decree that everybody in A "super - commutes" with everyone in B - 
meaning that

ab = ba

if either a or b are even (bosonic) while

ab = -ba

if a and b are both odd (fermionic).

Apart from these modifications, the super-Brauer group works almost like the 
Brauer group. We start with Super Algebras over our favorite field - here let's 
use the real numbers. 

We say two Super Algebras are "Morita equivalent" if they have equivalent 
categories of representations. We can multiply these Morita equivalence 
classes by taking tensor products, and if we just keep the invertible classes 
we get a group: the super-Brauer group.

As I've hinted already, the super-Brauer group of the real numbers is Z/8 - just
the Clifford algebra clock in disguise!

Here's why:



The Clifford algebras all become Super Algebras if we decree that all the 
square roots of -1 that we throw in are "odd" elements. And if we do this, we 
get something great:

Cn tensor Cm = Cn + m

The point is that all the square roots of -1 we threw in to get 
Cn anticommute with those we threw in to get Cm.
Taking Morita equivalence classes, this mean

[Cn] [Cm] = [Cn+m] 
but we already know that
[Cn+8] = [Cn]
so we get the group Z/8. It's not obvious that this is all the super-Brauer 
group, but it actually is - that's the hard part.
Now let's think about what we've got. We've got the super-Brauer group, Z/8, 
which looks like an 8-hour clock. But before that, we had the categories of 
representations of Clifford algebras, which formed an 8-hour clock with 
functors cycling around in both directions.

In fact these are two sides of the same coin - or clock, actually. The super-
Brauer group consists of Morita equivalence classes of Clifford algebras, 
where Morita equivalence means "having equivalent categories of 
representations". But, our previous clock just shows their categories of 
representations!

This suggests that the functors cycling around in both directions are secretly 
an aspect of the super-Brauer group. And indeed they are! The functors going
clockwise are just "tensoring with C1", since you can tensor a representation 
of Cn with C1 and get a representation of Cn+1. And the functors going 
counterclockwise are "tensoring with C-1"... or C7 if you insist, since C-1 doesn't
strictly make sense, but 7 equals -1 mod 8, so it does the same job.



Hurwitz Quaternions (or Hurwitz integer)

In mathematics, a Hurwitz quaternion (or Hurwitz integer) is 
a quaternion whose components are either all integers or all half-
integers (halves of an odd integer; a mixture of integers and half-integers is 
not allowed). The set of all Hurwitz Quaternions is

It can be confirmed that H is closed under quaternion multiplication and 
addition, which makes it a subring of the ring of all Quaternions H.

A Lipschitz quaternion (or Lipschitz integer) is a quaternion whose 
components are all integers. The set of all Lipschitz Quaternions

forms a subring of the Hurwitz Quaternions H.

As a group, H is free abelian with generators {½(1+i+j+k), i, j, k}. It 
therefore forms a lattice in R4. This lattice is known as 
the F4   lattice since it is the root lattice of the semisimple Lie algebra F4.
The Lipschitz Quaternions L form an index 2 sublattice of H.

The group of units in L is the order 8 quaternion group Q = {±1, ±i, ±j, 
±k}. The group of units in H is a nonabelian group of order 24 known 
as thebinary tetrahedral group. T

he elements of this group include the 8 elements of Q along with the 
16 Quaternions {½(±1±i±j±k)} where signs may be taken in any 
combination. The quaternion group is a normal subgroup of the binary 
tetrahedral group U(H). The elements of U(H), which all have norm 1, 
form the vertices of the 24-cell inscribed in the 3-sphere.

The Hurwitz Quaternions form an order (in the sense of ring theory) in 
the division ring of Quaternions with rational components. It is in fact 
a maximal order; this accounts for its importance. The Lipschitz 
Quaternions, which are the more obvious candidate for the idea of 
an integral quaternion, also form an order. 

However, this latter order is not a maximal one, and therefore (as it 
turns out) less suitable for developing a theory of left 
ideals comparable to that of algebraic number theory. What Adolf 
Hurwitz realised, therefore, was that this definition of Hurwitz integral 
quaternion is the better one to operate with. This was one major step 
in the theory of maximal orders, the other being the remark that they 
will not, for a non-commutative ring such as H, be unique. One 
therefore needs to fix a maximal order to work with, in carrying over 
the concept of an algebraic integer.
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The norm of a Hurwitz quaternion, given by (see below), is always the 
square root of an integer. By a theorem of Lagrange every 
nonnegative integer can be written as a sum of at most four squares. 
Thus, every nonnegative integer is the squared norm of some 
Lipschitz (or Hurwitz) quaternion. A Hurwitz integer is a prime 
element if and only if its norm is a prime number.

http://en.wikipedia.org/wiki/Prime_number
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Binary Trigrams and Octonions 

Each of the eight trigrams of Chinese metaphysics can be assigned a binary
value as above. The same can be done for each of the Octonions. 

With both systems translated into binary form, we can now begin to explore
the relationships between the 8 x 8 = 64 hexagrams and the 168 aspects of
the Octonions. 

In the advanced Chinese divination method known as Qi Men Dun Jia, one of
the eigth trigram positions (palaces) is always vacant, which means in real
terms that there are only seven functioning trigrams at any time. The missing
eighth trigram represents a vacancy, which means the unknown or not yet
manifest Event - Body which will come into realization at some distant point in
the future, from later the same day to years later. 



3 x 3 x 3 Cube of Trigrams

With binary assignments made, it is possible to assign corner values per each
trigram. (This section courtesy SM Philipps). 



Clifford Algebras consist of tri - vectors. 

The eight  trigrams define the eight  corners of a  cube because their  three
yin/yang  lines  correspond  to  the  three  faces  (positive  or  negative)  that
intersect at these corners.

The left, back and bottom faces are (– ) faces. Their intersection defines the
Earth (K’un) trigram with three yin (negative) lines. Triple combinations of (+)
and (– ) faces define the remaining six corners of the cube. 

The arrows along the edges of the cube indicate the positivity or negativity of
a face. It is a (+) face if the arrow points along the positive X- , Y- or Z-axes
and a (–) face if it points along the negative axes. The table below interprets
the trigrams in terms of the faces of the cube:



As in the case of their binary number representations, in which the integers 0
and 1 in each binary number signify the values of the Cartesian coordinates of
the corners of a cube, the first four trigrams define corners of one face and the
last  four  trigrams  define  corners  of  the  face  parallel  to  it  (Fig.  7).  The
difference here is that the two sets of four trigrams correspond to the top and
bottom faces instead of to the left and right faces.

Note the even - numbers forming the diagonal. 

One might as well assign the 24 Hurwitz Algebras to these sides, which brings
a relationship with the Octonions, for which 168 is a key number:

There are 168 permutations of "twisted Octonions" for each of the 30 sets of
triads (168*30=5040=7!).

The 7  points  of  the  Fano plane represent  the  7  imaginary octonions  and
the 168  symmetries  are  permutation  symmetries  that  preserve
an octonion multiplicatio

The  musical  counterpart  of  the 168 permutations  of  the  seven  unit



imaginary octonionsand their conjugates are the 168 repetitions of all rising
and falling

Remarkable  correspondence  exists  between  the 168 permutations  of  the
seven  3-tuples  of octonions,  the 168 automorphisms  of  the  Klein  Quartic,
the 168

Combinations of one, two and three octonions from the two sets of seven 3-
tuples with (84+84=168) possible orderings of the pairs and triplets in them.

Double cover of the finite subgroup of SU(3) of order 168,

Octonions constituting the root system of E8 form a closed algebra where the
root ...subgroup  is  of  order 168 with  8  conjugacy  classes  possessing  the
structure

The  heptagonal  hyperbolic  plane  is  linked  to  the  number 168,  and  by
extension to the Klein Quadric, PSL (2,7), the Fano Plane and Octonions.

The Fano plane is the simple group of group order168 (Klein 1870)



Hexagrams along the diagonal of the table symbolise the three cube faces
whose intersection defines a corner of a cube. The pairing of each trigram
with  a  different  one  symbolises  an  association  between  the  three  faces
defining a corner of the central cube

The three faces of one of the cubes surrounding it that is contiguous with this



corner. Each corner of the cube at the centre of the 3×3×3 array of cubes is
the point of intersection of the corners of seven other cubes. 

Each corner of the grey cube (a) at the centre of a 3×3×3 array of cubes
touches three cubes (coloured blue, indigo & violet in (b)) at the same level as
itself and four cubes (red, orange, yellow & green) that are either above or
below it.

These (the violet, indigo and blue cubes) are at the same height as the cube
and the remaining four (the green, yellow, orange and red ones) are above or
below it.

Let us express the pattern of eight cubes centred on any corner of the central
cube as

8 = (1 + 3) + 4, (1)

where  ‘1’  always  denotes  the  central  cube,  ‘3’  denotes  the  three  cubes
contiguous with  it  at  the same height  and ‘4’ denotes the four  contiguous
cubes above or below it. As we jump from corner to corner in the top face of
the central cube, the L-shaped pattern

of three coloured cubes in the same plane rotates (Fig. 3), as do the four
cubes above them. Likewise, as we go from corner to corner in the bottom
face of the central cube, the three cubes in the same plane change, as do the
four cubes below them. Movement Figure 3. Three cubes on the same level
are contiguous with each corner of the central (grey) cube.

through all eight corners of the central cube involves every one of the 26 ^1
cubes in the 3×3×3 array because they are all contiguous with its corners. 

Each  corner  of  the  central  cube  is  the  point  of  intersection  of  the  three
orthogonal faces of each of the seven cubes that are contiguous with it. The
number of such faces generating the corners of the central cube is 8×3×7 =
168.



Counting these corners in the same way as the pattern of cubes,  that  is,
differentiating any corner from the three corners at the same height and the
four corners below them, then

The  three  orthogonal  faces  consist  of  the  face  perpendicular  to  one
coordinate axis (for convenience, let us choose the X -axis) and the two faces
perpendicular to the two other axes. So
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signifies  the  three  faces  of  cubes  that  are  orthogonal  to  the  X-axis  and
associated with the three corners at the same height as the corner labeled ‘1’
(and similarly for the Y - and Z-axes), and 4X (≡4×1X) denotes the four faces
orthogonal to the X-axis associated with the four corners below corner ‘1’ (and
similarly for 4Y and 4Z).

Therefore, substituting Equation 6 in Equation 3,

The 168 faces of the 26 cubes surrounding the central cube that touch its
eight corners consist of seven sets of 24 faces. 

Each set consists of the three orthogonal faces of the cube corresponding to
corner ‘1’,  the seven faces perpendicular to the X-axis at  the seven other
corners, the seven faces perpendicular to the Y-axis at these corners and the
seven faces perpendicular to the Z -axis at these corners. 

Each group of seven faces comprises a face for each of the three corners of
the central cube at the same height as corner ‘1’ and a face for each of the
four corners below it. The 24 faces naturally divide into two groups of twelve:

Courtesy SM Philipps
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The figure above is the Sierspinski Triangle. 



Wikipedia on the Sierspinski Triangle

The Sierpinski triangle (also with the original orthography Sierpiński), also 
called the Sierpinski gasket or theSierpinski Sieve, is 
a fractal and attractive fixed set named after 
the Polish mathematician Wacław Sierpiński who described it in 1915. 

However, similar patterns appear already in the 13th-
century Cosmati mosaics in the cathedral ofAnagni, Italy,[1] and other places, 
such as in the nave of the Roman Basilica of Santa Maria in Cosmedin.[2]

Originally constructed as a curve, this is one of the basic examples of self-
similar sets, i.e. it is a mathematically generated pattern that can be 
reproducible at any magnification or reduction.

Comparing the Sierpinski triangle or the Sierpinski carpet to equivalent 
repetitive tiling arrangements, it is evident that similar structures can be built 
into any rep-tile arrangements.

Sierpinski  triangle  in  logic:  The  first  16 conjunctions of
lexicographically ordered  arguments  The  columns  interpreted  as  binary
numbers give 1, 3, 5, 15, 17, 51... (sequence A001317 in OEIS)
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Magic Triangle 
This shape formed by the Exceptional Lie Algebras fits neatly into the white
spaces in the logic diagram above. A point of further research for the author is
to explore the relationships between the Exceptional Lie Algebras, Sierspinski
Triangle and Clifford Algebras (see below). The author of this diagram felt that
the triangle should be further extended, but this may show the natural limit. 

An algorithm for obtaining arbitrarily close approximations to the Sierpinski 
triangle is as follows:

Note: each removed triangle (a trema) is topologically an open set.[3]

1. Start with any triangle in a plane (any closed, bounded region 
in the plane will actually work). The canonical Sierpinski triangle 

http://en.wikipedia.org/wiki/Open_set
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uses an equilateral triangle with a base parallel to the horizontal 
axis (first image).
2. Shrink the triangle to ½ height and ½ width, make three 
copies, and position the three shrunken triangles so that each 
triangle touches the two other triangles at a corner (image 2). Note 
the emergence of the central hole - because the three shrunken 
triangles can between them cover only 3/4 of the area of the 
original. (Holes are an important feature of Sierpinski's triangle.)
3. Repeat step 2 with each of the smaller triangles (image 3 and 
so on).

This process of recursively removing triangles is an example of a finite 
subdivision rule.

Note that this infinite process is not dependent upon the starting shape 
being a triangle—it is just clearer that way. The first few steps starting, for 
example, from a square also tend towards a Sierpinski triangle. Michael 
Barnsley used an image of a fish to illustrate this in his paper "V-variable 
fractals and superfractals."[4]

The actual fractal is what would be obtained after an infinite number of 
iterations. More formally, one describes it in terms of functions on closed sets 
of points. If we let  note the dilation by a factor of ½ about a point a, then 
the Sierpinski triangle with corners a, b, and c is the fixed set of the 
transformation  U  U .

This is an attractive fixed set, so that when the operation is applied to any 
other set repeatedly, the images converge on the Sierpinski triangle. This is 
what is happening with the triangle above, but any other set would suffice.

If one takes a point and applies each of the transformations , , and  to 
it randomly, the resulting points will be dense in the Sierpinski triangle, so the 
following algorithm will again generate arbitrarily close approximations to it:

Start by labeling p1, p2 and p3 as the corners of the Sierpinski triangle, and a 
random point v1. Set vn+1 = ½ ( vn + prn ), where rn is a random number 1, 2 or 
3. Draw the points v1 to v∞. If the first point v1 was a point on the Sierpiński 
triangle, then all the points vn lie on the Sierpinski triangle. 

If the first point v1 to lie within the perimeter of the triangle is not a point on the
Sierpinski triangle, none of the points vn will lie on the Sierpinski triangle, 
however they will converge on the triangle. If v1 is outside the triangle, the 
only way vn will land on the actual triangle, is if vn is on what would be part of 
the triangle, if the triangle was infinitely large.
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Or more simply:

1. Take 3 points in a plane to form a triangle, you need not draw it.
2. Randomly select any point inside the triangle and consider that 
your current position.
3. Randomly select any one of the 3 vertex points.
4. Move half the distance from your current position to the selected 
vertex.
5. Plot the current position.
6. Repeat from step 3.

Note: This method is also called the Chaos game. You can start from any 
point outside or inside the triangle, and it would eventually form the Sierpinski 
Gasket with a few leftover points. It is interesting to do this with pencil and 
paper. A brief outline is formed after placing approximately one hundred 
points, and detail begins to appear after a few hundred.

Sierpinski triangle using IFS

Or using an Iterated function system

An alternative way of computing the Sierpinski triangle uses an Iterated 
function system and starts by a point at the origin (x0 = 0, y0 = 0). The new 
points are iteratively computed by randomly applying (with equal probability) 
one of the following three coordinate transformations (using the so-
called chaos game):
xn+1 = 0.5 xn

yn+1 = 0.5 yn; a half-size copy
This coordinate transformation is drawn in yellow in the figure.
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xn+1 = 0.5 xn + 0.25

yn+1 = 0.5 yn + 0.5 ; a half-size copy shifted right and up
This coordinate transformation is drawn using red color in the figure.

xn+1 = 0.5 xn + 0.5
yn+1 = 0.5 yn; a half-size copy doubled shifted to the right
When this coordinate transformation is used, the triangle is drawn in blue.

Or using an L-system — The Sierpinski triangle drawn using an L-system.

bitwise AND - The 2D AND function, z=AND(x,y) can also produce a white on
black right angled Sierpinski triangle if all pixels of which z=0 are white, and all
other values of z are black.

bitwise XOR - The values of the discrete, 2D XOR function, z=XOR(x,y) also 
exhibit structures related to the Sierpinski triangle. 

For example, one could generate the Sierpinski triangle by setting up a 2 
dimensional matrix, [rows][columns] placing the uppermost point on [1][n/2], 
then cycling through the remaining cells row by row the value of the cell being 
XOR([i-1][j-1],[i-1][j+1])

Other means — The Sierpinski triangle also appears in certain cellular 
automata (such as Rule 90), including those relating to Conway's Game of 
Life. The automaton "12/1" when applied to a single cell will generate four 
approximations of the Sierpinski triangle.

If one takes Pascal's triangle with 2n rows and colors the even numbers white,
and the odd numbers black, the result is an approximation to the Sierpinski 
triangle. More precisely, the limit as n approaches infinity of this parity-colored
2n-row Pascal triangle is the Sierpinski triangle.

Properties[edit source]

For integer number of dimensions d, when doubling a side of an 
object, 2 d copies of it are created, i.e. 2 copies for 1 dimensional object, 4 
copies for 2 dimensional object and 8 copies for 3 dimensional object. 

For Sierpinski triangle doubling its side creates 3 copies of itself. Thus 
Sierpinski triangle has Hausdorff dimension log(3)/log(2) ≈ 1.585, which 
follows from solving 2 d = 3 for d. [5]

The area of a Sierpinski triangle is zero (in Lebesgue measure). The area 
remaining after each iteration is clearly 3/4 of the area from the previous 
iteration, and an infinite number of iterations results in zero. 

Intuitively one can see this applies to any geometrical construction with an 
infinite number of iterations, each of which decreases the size by an amount 
proportional to a previous iteration.[citation needed]
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Higher - Dimension Analogues 

The tetrix is the three-dimensional analogue of the Sierpinski triangle, formed 
by repeatedly shrinking a regular tetrahedron to one half its original height, 
putting together four copies of this tetrahedron with corners touching, and 
then repeating the process. 

This can also be done with a square pyramid and five copies instead. A tetrix 
constructed from an initial tetrahedron of side-length L has the property that 
the total surface area remains constant with each iteration.

The initial surface area of the (iteration-0) tetrahedron of side-length L 

is . At the next iteration, the side-length is halved

and there are 4 such smaller tetrahedra. Therefore, the total surface area 
after the first iteration is:

This remains the case after each iteration. Though the surface area of 
each subsequent tetrahedron is 1/4 that of the tetrahedron in the 
previous iteration, there are 4 times as many—thus maintaining a 
constant total surface area.

The total enclosed volume, however, is geometrically decreasing 
(factor of 0.5) with each iteration and asymptotically approaches 0 as 
the number of iterations increases. In fact, it can be shown that, while 
having fixed area, it has no 3-dimensional character. 

The Hausdorff dimension of such a construction is  which 
agrees with the finite area of the figure. (A Hausdorff dimension strictly 
between 2 and 3 would indicate 0 volume and infinite area.)
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Clifford Algebra Classification
All told there are three properties which determine the class of the 
algebra Cℓp,q(R):

 signature mod 2: n is even/odd: central simple or not
 signature mod 4: ω2 = ±1: if not central simple, center is R⊕R or C
 signature mod 8: the Brauer class of the algebra (n even) or even 
subalgebra (n odd) is R or H

Each of these properties depends only on the signature p − q modulo 8. The 
complete classification table is given below. The size of the matrices is 
determined by the requirement that Cℓp,q(R) have dimension 2p+q.

p−q mod 8 ω2 Cℓp,q(R)
(n = p+q)

p−q mod 8 ω2 Cℓp,q(R)
(n = p+q)

0 + R(2n/2) 1 + R(2(n−1)/2)⊕R(2(n−1)/2)

2 − R(2n/2) 3 − C(2(n−1)/2)

4 + H(2(n−2)/2) 5 + H(2(n−3)/2)⊕H(2(n−3)/2)

6 − H(2(n−2)/2) 7 − C(2(n−1)/2)

It may be seen that of all matrix ring types mentioned, there is only one type 
shared between both complex and real algebras: the type C(2m). 

For example,Cℓ2(C) and Cℓ3,0(R) are both determined to be C(2). It is important
to note that there is a difference in the classifying isomorphisms used. 

Since theCℓ2(C) is algebra isomorphic via a C-linear map (which is 
necessarily R-linear), and Cℓ3,0(R) is algebra isomorphic via an R-linear 
map, Cℓ2(C) andCℓ3,0(R) are R-algebra isomorphic.

A table of this classification for p + q ≤ 8 follows. Here p + q runs vertically 
and p − q runs horizontally (e.g. the algebra Cℓ1,3(R) ≅ H(2) is found in row 4, 
column −2).

http://en.wikipedia.org/wiki/Modular_arithmetic
http://en.wikipedia.org/wiki/Brauer_group


8 7 6 5 4 3 2 1 0 −1 −2 −3 −4 −5 −6 −7 −8

0 R

1 R2 C

2 R(2) R(2) H

3 C(2) R2(2) C(2) H2

4 H(2) R(4) R(4) H(2) H(2)

5 H2(2) C(4) R2(4) C(4) H2(2) C(4)

6 H(4) H(4) R(8) R(8) H(4) H(4) R(8)

7 C(8) H2(4) C(8) R2(8) C(8) H2(4) C(8) R2(8)

8 R(16) H(8) H(8) R(16) R(16) H(8) H(8) R(16) R(16)

 

ω2 + − − + + − − + + − − + + − − + +

Symmetries
There is a tangled web of symmetries and relationships in the above table. 
Write A[n] := A ⊗ Mn(R) for n×n matrices with coefficients in A, 
andCℓ(p+1,q+1) for the real Clifford algebra.

(Going over 4 spots in any row yields an identical algebra.)

From these Bott Periodicity follows:

If the signature satisfies p − q ≡ 1 (mod 4) then

(The table is symmetric about columns with signature 1, 5, −3, 
−7, and so forth.) Thus if the signature satisfies p − q ≡ 1 (mod 
4),



Klein Quartic / Wikipedia 

In hyperbolic geometry, the Klein quartic, named after Felix Klein, is 
a compact Riemann surface of genus 3 with the highest possible 
order automorphism group for this genus, namely order 168 orientation-
preserving automorphisms, and 336 automorphisms if orientation may be 
reversed. 

As such, the Klein quartic is the Hurwitz surface of lowest possible genus; 
see Hurwitz's automorphisms theorem. Its (orientation-preserving) 
automorphism group is isomorphic to PSL(2,7), the second-smallest non-
abelian simple group. The quartic was first described in (Klein 1878b).

Klein's quartic occurs in many branches of mathematics, in contexts 
including representation theory, homology theory,octonion 
multiplication, Fermat's last theorem, and the Stark-Heegner 
theorem on imaginary quadratic number fields ofclass number one; see (Levy 
1999) for a survey of properties.

Originally, the "Klein quartic" referred specifically to the subset of the complex 
projective plane CP2 defined by the equation given in the As an algebraic 
curve section. This has a specific Riemannian metric (that makes it a minimal
surface in CP2), under which its Gaussian curvature is not constant. 

But more commonly (as in this article) it is now thought of as any Riemann 
surface that is conformally equivalent to this algebraic curve, and especially 
the one that is a quotient of the hyperbolic plane H2 by a 
certain cocompact group G that acts freely on H2 by isometries. 

This gives the Klein quartic a Riemannian metric of constant negative 
curvature = −1 that it inherits from H2. This set of conformally equivalent 
Riemannian surfaces is precisely the same as all compact Riemannian 
surfaces of genus 3 whose conformal automorphism group is isomorphic to 
the unique simple group of order 168. 

This group is known as PSL(2,Z/7Z), and also as the isomorphic 
group PSL(3, Z/2Z). By covering space theory, the group G mentioned above 
is isomorphic to the fundamental group of the compact surface of genus 3.

The Klein quartic is related to various other surfaces.

Geometrically, it is the smallest Hurwitz surface (lowest genus); the next is 
the Macbeath surface (genus 7), and the following is the First Hurwitz triplet (3
surfaces of genus 14). More generally, it is the most symmetric surface of a 
given genus (being a Hurwitz surface); in this class, the Bolza surface is the 
most symmetric genus 2 surface, while Bring's surface is a highly symmetric 
genus 4 surface – see isometries of Riemann surfaces for further discussion.

Algebraically, the (affine) Klein quartic is the modular curve X(7) and the 
projective Klein quartic is its compactification, just as the dodecahedron (with 
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a cusp in the center of each face) is the modular curve X(5); this explains the 
relevance for number theory.

More subtly, the (projective) Klein quartic is a Shimura curve (as are the 
Hurwitz surface of genus 7 and 14), and as such parametrizes principally 
polarized abelian varieties of dimension 6.[11]

There are also other quartic surfaces of interest – see special quartic 
surfaces.

More exceptionally, the Klein quartic forms part of a "trinity" in the sense 
of Vladimir Arnold, which can also be described as a McKay correspondence. 
In this collection, the projective special linear groups PSL(2,5), PSL(2,7), and 
PSL(2,11) (orders 60, 168, 660) are analogous, corresponding to icosahedral 
symmetry (genus 0), the symmetries of the Klein quartic (genus 3), and 
the buckyball surface (genus 70).[12] These are further connected to many 
other exceptional phenomena, which is elaborated at "trinities".

The  Klein  Configuration  of  the  168  elements  of  the  group  PSL(2,7)  of
transformations of the Klein Quartic.
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Octonion Power Series 

The Octonion Power Series is essential in combinatorial Vedic Physics, and
the exponents can be converted into logarithms. 



MoolaKaprithi in Vedic Physics

The red cube is the Moolakaprithi .

It  is  shown  as  the  red  cube  in  the  diagram and  displays  the  cubic  form
maintained  by  the  8  vibrating  larger  blue  cubes.  That  red  cube  can  be
described  in  terms  of  interactive  counts  of  vibrations  in  a  cyclic-period,
assuming that all the eight blue cubes interact in the same location. The size
of the red cube has a specific numerical relationship to the larger cube, which
can be numerically related in powers of 2 or 

The larger blue cube can be considered as just the combination of the smaller
- sized red cubes. The collection of red cubes act as a blue cube by vibrating
together  as  a  coherent,  synchronous,  group  displaying  Thaamasic
simultaneous activity. 

If  the  coherent  and  synchronised  state  of  interacting  (vibrating  together
simultaneously) is disrupted, then that position produces the effect of the red
cube. It then becomes a cube vibrating out of step or synchrony. It becomes a
cube that does not remain in the same state or location as the rest and which
displays a different condition. 
This  is  the  fundamental  condition  of  commencement  of  activity  called
Moolaprakrithi. Moolaprakrarithi - the red cube is not a cube - but a state of a



cube in an active state or a state different from the rest.

It is a vibrating form that exists only because other vibrating cubes exist, and
is a holographic form. The meeting point of three axes shares a single point,
which in reality is cubic point. It is the fundamental concept of a unit of charge
in Physics called a Purusha. An important change of condition takes place at
this interactive interface. The impact between two cubes can result in 3 states
of interactive reactions as defined in the Guna Theorems.

There follows instantaneous separation on impact, as an inelastic reaction of
the Sathwa state. Or it may elastically vibrate and remain in a resonant Raja
state.

Finally,  the  states  may  combine  together  to  attain  a  uniform,  singular,
synchronous and coherent state of activity, as one larger cube in the Thaama
state as shown in the diagram. The Sathwa state shows the radiation of a set
of Moolaprakrithis as Vrithis (coherent particle states)) on sudden or inelastic
collision. 

The Raja state shows the resonant harmony of two sets of Moolaprakrithis
interacting simultaneously at the same rate as a bound state. The Thaama
state shows the absorption of two sets of Moolaprakrithis in a higher state of
activity as superposing, compressing, or denser states.

If the red cube Moolaprakrithi is considered the elemental unitary state, then
larger cubes can be created as multiples of the elemental unitary state, as
vibrant but coherent and unitary states. 

The Moolaprakrithi  is  a  cube of  space in  a  vibratory state  and the  non -
vibratory state of this same unit of space cannot remain in that size because
of  the  axiomatic  nature  of  Guna  interactions.  Hence  the  elemental
components in space combine, agglomerate, or join together as a larger, self-
limiting unit  of  space, which can remain static,  coherent,  passive or non -
manifest etc.

There is a single Guna law that acts in identical ways at every agglomerate
level of phenomena. At each level there exist the same proportionate limits of
maximum and minimum interactive counts, but the form and size may vary to
attain balance at each level.

Saying it another way, perpetual self - similar oscillatory activity comes to a
stop naturally only at the Purusha level. For this reason it is called the Andha -
thaamshra or dark and dense state of Super - posed vibrations in space. The
Guna principles explain why and how this has to be. When the oscillatory
state  becomes  undetectable  by  super  -  positioning  of  counts,  then
communication with that state is cut off and the state enters into an isolated,
black hole state.

The ability to discriminate the interval between interactive counts disappears,
and  it  superposes  on  the  previous  count.  This  is  the  black  hole  state  in



Physics. Therefore every unit of quiescent, apparently static, barely resonant
and non -  manifest  unit  of  space is  a  Purusha -  a  massive black hole,  a
potential state of dormant, internal, stress and trans - migrational activity of
elemental components in space. Conceptually, the black hole state behaves
exactly like deep - sea components.

The natural drift of active states towards lower or reduced activity levels is
purely due to the action and reaction counts not being cyclically equal. As an
example: if a 20 interactions per cycle (ipc) unit inter - acta with a 10 ipc unit,
the 20 ipc will move in towards the 10 ipc unit, because for every 2 counts,
there is only one reacting count, to attain a balance of counts. 

This is the fundamental cause of transmigration of counts between any two
different count rate states. It  is the only reason that all  identified forces in
Physics,  like  gravity,  electromagnetic,  weak  and  strong  accelerate  from a
higher interactive count rate to a lower one. 

At the basic elemental level, this drift of Moolaprakrithy counts towards the
Purusha  coherent  states  is  observed  as  a  gravitating  phenomenon.  At
intermediate levels, this type of migration of counts display the Linga/Bhaava
and  Abiman/Ahankar  changes  in  the  Thaama-Raja-Sathwa  Guna
characteristics,  which  represent  the  strong,  weak  and  electro  -  magnetic
interactive spectrum.



With each count, there may occur one rotation, giving a series of ten counts
and ten rotations as shown above in the diagram by SM Philipps. 



Conclusion 
 

Philipps showed the relationship between the 3 x 3 x 3 Cube of the I Ching
Trigrams,  the  Klein  Quartic  and  the  Sierspinski  Triangle,  which  relates  to
Pascal’s Triangle (Zhang Hui Triangle or Mount Meru in Vedic Physics) and
combinatorial math.

Many additional connections prove possible here, especially with the Magic
Triangle  of  Exceptional  Lie  Algebras,  and  the  Pascal  Triangle  -  like
organization of Clifford Algebras. As John Baez points out, Clifford Algebras
are based on the (n +1) equation. 

Pascal’s  Triangle  and  the  Octonions  via  the  Fano  Plane  enjoy  direct
connections to the Fibonacci Numbers and to the Golden Ratio, and this is not
accidental. The author hypothesizes this is presence as the border between
two states of matter, either Thaamas, Raja or Satvic. The Golden Ratio has
the function of modulating between states which vibrate at different ratios. 

The binary qualities of the I Ching Trigrams immediately form an association
with the binary qualities of the Octonions, the multiplication table for which is
the Fano Plane, an equilateral triangle such as those that form the Sierspinski
Triangle. Thus we begin to see a rich complex of inter - relationships between
these different mathematical concepts, which focus around the 3 x 3 x 3 cube.

The author surmise that these relationships are not accidental by any means,
and  that  the  3  x  3  x  3  cube,  a  product  heretofore  of  a  westerner’s
manipulation of an ancient Chinese concept, is in fact the Moolaprakrithy, the
ancient Vedic concept and the very heart of Vedic Nuclear Physics. These
relationships and identities indicate the importance of linking contemporary
physics  with  sacred and religious constructs  for  the  purpose of  giving  full
articulation to Vedic Physics in terms of contemporary mathematical physics. 
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Contact
The author may be contacted at jaq 2013 at outlook dot com connect the
spaces 

Some men see things as they are and say why?
 I dream things that never were and say why not?

Let's dedicate ourselves to what the Greeks wrote so many years ago: to
tame the savageness of man and make gentle the life of this world.

Robert Francis Kennedy
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