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Abstract: We demonstrate how the application ofgdidield theory to spin % fermions in a
manner analogous to its application to spin O scalkanables fermion masses to be constructed
entirely from a self-energy arising from gaugedgebnd “revealed” in the Dirac Lagrangian in

a fully renormalizable manner with no “bare” aspec¥Vhen the observed fermions are taken to
be Higgs fields based on expansion about the vacituis found that the Dirac Lagrangian
naturally produces an “anomalous” aspect for theragnetic moments. This enables us to
deduce the gauge fields which underlie the selfegee for the three charged leptons on an
entirely empirical basis, and then use this dataptedict the impact of a time-dependent
magnetic field on the lepton g-factors. We prethet a time-dependent magnetic field impacts
the g-factor of the heaver mu and especially tatioles much more substantially than it does the
g-factor of the electron, and quantify how this @widobe detectable well within experimental
ranges. We also show how this construction ofifamrmasses out of gauge fields permits these
masses to remain invariant at all renormalizatiarales, wherein the variability of a fermion
mass under renormalization is entirely equivalemtdnd may be fully absorbed by, a gauge
transformation of the vector potentials from whtble fermion self-energies arise. Finally, the
time and space dependencies of the electric andhetizgfields in Maxwell’'s equations are
revealed to be embedded into Dirac’s equation assalt of Heisenberg commutations. This
develops multiple venues for further confirming ¢fid=ield Theory in the fermion sector, all of
which appear to be new.

PACS: 11.15.-q, 12.20.-m, 14.60.-z, 14.80.-j
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1. Introduction, Novelty and Overview

The July 4, 2012 announcement from the Large Ha@Qullider of experimental results
consistent with the “long sought Higgs particle] farnered an unusual degree of attention not
only from the international physics community, ingtm the mainstream press and the general
public as well. Yet, the full import of a validati of “Higgs mechanism” is, if anything, under-
reported and underappreciated, even by knowledggablsicists. This is signaled by the fact
that the original work by Anderson [2], Englert aBcbut [3], Higgs [4], Guralnik, Hagen and
Kibble [5] is still often referred to as a “mechsm’ rather than as a fundamental breakthrough
in understanding the nature of the particles aglddithat we actually observe in our laboratories
and in our daily experience.

Of course, it is critically important that the Hgyggmechanism” provides a way to
introduce non-zero masses for the vector bosorss gduge theory without having to do so by
hand, thus preserving renormalizability. And itsneamajor step forward when those features of
the Higgs mechanism enabled Weinberg [6], Salanaifit] Glashow to develop an electroweak
theory which correctly predicted the observed masdgethe W and Z bosons which mediate
weak interactions and to place them into a quadtuggt with the massless photon following
spontaneous symmetry breaking all while keepingraommalizable theory. But more than
anything, all of this theoretical work which bedale name of “Higgs mechanism” involves
expanding elementary fields about a non-zero vac¢aund teaches that these vacuum-expanded
fields, andnot the original fielddn our Lagrangian or Hamiltonian, are the parscéend fields
we actually observe. Let us be specific and cdacre

Postulate a scalar fielgb(x). Write down a Klein Gordon Lagrangian density foat
scalar field given bye=(a, )(6”¢)—m2(p2. Or, postulate a fermion fielgy(x) and write

down its £=tZ(ia—m)t/l. We do not observe, cannot observe, and never biemve these
postulated fieldsp and ¢. But a) when we require that these Lagrangiansamenmvariant
under the local gauge transformatign- ¢ :eig(x)go (or non-Abelian Yang-Mills extensions
with @=1'¢ where A', i=1,2,3..N? - 7 are the generator matrices of a gauge group SU(N))

and thus naturally introduce gauge field4 (or their non-Abelian extensior&* = A'G*), and
b) after we introduce a vacuum vev v, find the waouminimum, and expand about this

minimum via ¢(x) = v+ h( x) for scalar fields wheréh(x) is a scalar Higgs field, and as we
shall show hereg(x)=v, +h, (¥ for fermions wherey, is a suitable vacuum for fermion

expansion and Wherhw(x) is a fermion Higgs field, then c) the Lagrangiaithwwhich we

starteddoes and willdescribe the physics of the particles and fielésoliserve in natureBut
the observed fields are not tigfx) and ¢ (x) with which we started, but rather, titg x) and

h, (x) with which we ended after the expansion aboutv#oeium.

So the lesson of Higgs et al., is that (at leds#)dcalar particles we observe in nature are
not ¢(x)=v+h( X, but rather aréh(x) =¢(x) - v. They are the fields over and above a non-
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trivial, non-zero vacuum. Metaphorically, they &he visible portion of a boat above the
waterline, with the portion underwater remainingisible. Along the way of course, and very
significantly, we uncover masses for gauge bosartk aso uncover a mass (albeit with an
unknown couplingd ) for the Higgs field, all in a renormalizable mann Insofar as all of this is
achieved, the Higgs approach provides a very inaporimechanism.” But the upshot of Higgs
theory is that a “seed” fielgp which isnot observed is expanded about the vacuum to yield a
Higgs fieldh whichis observed. Therefore, this work by Higgs et aha$ only a mechanism
for generating masses and keeping renormalizapidity isa field theory about the fundamental
character of the particles and fields that we obsein nature The import of the 2012 work at
CERN was its direct validation of this broader vmint, because what appears to have been
detected at CERN was the Higgs fieldnd not the seed scalar

To date, these teachings of Higgs et al. have bedirdeveloped for the scalar fields of a
Klein-Gordon £ = (60 )(6”(0) -m’¢’. But they have not yet been satisfactorily exézhtb the

elementary fermions we observe in nature, namepgofes and quarks which have been
thoroughly observed with hordes of detailed attaehdiata in contrast to the comparatively
paltry experimental data we have about the elemghimgs scalars, the latter of which was the
subject of the July 2012 announcement from CERNe purpose of this paper is to show in
detail how these teachings may be extended to gpglyas fully to fermions as they apply to

scalar fields, i.e., that the fermions we obsemenature are not thes(x)=v, +h, (X in

2=y (id-m)y, but areh, (x)=¢/(x) -y, expanded about a suitablg vacuum, just as in
scalar Higgs theory.

The development of “Higgs fermions” in this maneaables us to reveal fermion masses
in renormalizable fashion, yields additional inggyinto the magnetic moments of the fermions,
and to the degree that these results can be exg@aity validated as will be reviewed in section
13, strengthens the view that what Higgs and hideagues invented is not merely a
“mechanism” for generating mass and keeping renkzatality, and is not just a finding about
spinless scalar fields, but rather, is a fundamer@a insight into the very nature of the particles
and fields that we observe in the physical workhd, as we shall show, this also deepens our
knowledge of Dirac’s equation which Dirac himsdifem said was “was more intelligent than its
author,” and intriguingly enough, of the Dirac etjoa’s relationship to Maxwell’s equations
and Heisenberg's canonical matrix mechanics. ése¢hand other ways, we develop a number of
new venues for further confirming Higgs theory wie thoroughly catalogued data for the
elementary fermions.

What renders this work novel is: 1) the abilityreveal fermion rest masses in the same
manner that the Higgs masses are revealed in ddajgs theory without putting those masses
into the theory by hand (see (6.16), (6.17)), 2) tkvelation of fermion rest masses which are
entirely self-energies (no “bare” mass) construaatirely out of the gauge potentials of the
fermion (also see (6.17)), 3) uncovering a deepneotion whereby the time and space
dependencies of the electric and magnetic fieldsdB as they appear in Maxwell’s equations
are revealed to be embedded into Dirac’s equasamnrasult of commutations of these fields and
the gauge fields with canonical momentum and withHamiltonian (see after (7.6) and (9.12)),
4) showing how the “anomalous” portion of the fesmimagnetic moments is already built into
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Dirac’s equation, when the observable fields akereo be fermion Higgs fieldg, (x) rather

than the ordinary seed fieldg(x) (see (12.5), (12.10) and (12.11)), 5) threemeric

predictionsquantifying how the g-factors of the three chardgutons are changed when the
magnetic field in the magnetic moment teaniB is a time-dependent magnetic field appearing
as oldB/adt (see (13.10)), 6) a relateghalitative predictionthat the time-dependent magnetic
field 0B/dt impacts the heavy lepton (especially the tau @ptwagnetic moments much more
substantially than it impacts those for the lighkeptons (especially the electron) (also see
(13.10)), and 7) showing via “Invariant Mass, Vate Gauge Renormalization” how the
fermion rest masses may be maintained as invamasses oveall renormalization scales, by
absorbing any mass variation that might otherwissupinto an ordinary gauge transformation
of the gauge fields from which the fermion self4gies are constructed (see section 14).

We now provide a brief overview of this paper: skction 2, as a prelude to studying
fermions using Higgs field theory, we shall carBfukview, step by step, the manner in which
Higgs field theory is used for scalar fields. Thgtsection 2 is a review of known Higgs field
theory for the Klein-Gordon equation and scalatdfe intended to establish a “prior art”
template for considering fermions. Thereafter, badance of the paper studies Higgs field
theory for the Dirac equation and fermion fields.

In the general context of a Dirac Lagrangian dgnsSit=T —V with both kinetic termd
and potential term&/, PART | of this paper focuses on the potentiamweV. Section 3
postulates a fermion mass parameterfully analogous to the mass parameter of the same

symbol in scalar Higgs theory, and develops theivacassociated with the potentidko as to
identify a stable minimum for expansion about trasuum. Section 4 focuses on Dirac spinors
and how they are expanded about this vacuum, imfooir- and two-component representations.
The former is mainly illustrative; the latter forntise basis for many subsequent calculations.
We see how Dirac’s equation requires a positiveggngacuum for fermions and a negative
energy vacuum for antifermions, and we begin toengvas a foundation for later development
how time and space dependencies arise only via cdations with canonical momentum and
not through the spacetime derivatives that firgtesp in a Lagrangian. In sum, and as developed
throughout, spacetime dependencies are “revealest’ gs are masses and observable fields.
Section 5 implements the Higgs vacuum expansiorhi@rterms in the Lagrangian potental

In section 6, in a very central result, equatidhd§) and (6.17) demonstrate how the rest mass
of the fermion is revealed strictly as a consegaenicthis Higgs expansion of the potential, in
exactly the same way that a scalar Higgs field n{ss one apparently found at CERN) is
revealed in scalar Higgs theory through the schkgrangian potential. This is central to
renormalizability, as is further developed in sectl4. Section 7 completes our exploration of
the Dirac potentiaV, by showing how a second-order magnetic momem #aises out of an
anticommutator term uncovered in section 6. Moneartant than this particular term, is that
this presages two important aspects of the devedopnio follow: first, how certain
anticommutator terms end up producing magnetic nmbsneand secondly, how canonical
commutators produce certain time and space depeledem the gauge potentials such that
Maxwell's equations end up becoming embedded inerastriking way right into the heart of
Dirac’s equation. The first appearance of thisigning development appears in (7.6), and it
permeates the later development as is seen maslydie (12.5) and (12.11).
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In PART Il we move over to the kinetiE terms in£ =T -V. Section 8 reviews and
carefully develops the Gordon decomposition of ¢cherent density for the “seed” fermiap .
Sections 9, 10 and 11 develop the magnetic momeespectively, of the seed fermions
themselves, of the self-interactions of the vacuang of the interaction between the vacuum
and the seed fermions. From these three piecdkseopuzzle, we are able in section 12 to
identify magnetic moment g-factors (and two addiéibg-type factors) for the Higgs fermions
h,. Because Higgs theory tells us that the obsefeadions are the Higgs fields following

expansion about a non-trivial, non-zero vacuum, identify this with the g-factor of the
observed fermions, and we find that the magnetianerd in Dirac’s equation with no

modification naturally has an “anomalous” portion (one whidifeds upwardly from the simple
Dirac form g/2=1) when it is taken in relation to the Higgs fieltg rather than the seed field

. In section 13, we use the experimental datalercharged lepton (electron, mu and tau)

masses and g-factors together with the low-enargging couplinga =1/137.03599074  and

the Fermi vevv =246.219650794137 Geto uniquely determine the low probe energy gauge
potentials for each of these charged leptons, aeladed numerical data. We show in (13.9) how
the fermion masses naturally arise as the selfggnewing to a difference between two related
gauge potentials and in (13.10) we use these ganigatials tqredicthow the g-factor for each
charged lepton is modified in the presence tifre-dependenmnagnetic field (which has earlier
been introduced because of the embedding of theMglix Ampere equatiorxE =—-0B /ot

in the Dirac equation following one of several apgions of canonical commutation to reveal a
time dependency which was not apparaintinitio). We find that a time-dependent magnetic
field impacts the g-factor of the heaver mu andeeslly tau lepton much more substantially
and detectably than it does the g-factor of thetede, precisely because of the larger masses of
heavier leptons. The same facilities which study establish g-factors far (B, should be able

to discern these effects far[dB/ot, as they are well within experimentally-detectaialeges.

In section 14 we directly demonstrate the renormatibn benefits of being able to reveal
fermion masses via a Higgs-type expansion abowdbeaum rather than introducing the masses
by hand as “bare” masses. In particular, we show h is possible to keep the rest masses
invariant at all renormalization scales, by insteabrmalizing the gauge fields from which the
fermion masses / self-energies arise in a manrarigmothing more or less than an ordinary
gauge transformatian In other words, we show how the variability ofeemion mass under
renormalization is entirely formally equivalent tand may be fully absorbed by, a gauge
transformation of the vector potentials from whttle fermion self-energies arise. We refer to
this as “Invariant Mass, Variable Gauge Renormabra’ Section 15 lays out how the orbital
angular momentum of these Higgs fermions may beeldped, and section 16 offers some
concluding observations.

2. A Step-by-Step Review of how Scalar and Vectord3on Masses are
Revealed in a U(1) Gauge Theory for a Complex Scal&ield

To start our development, we shall first carefudlyiew the manner in which a local U(1)
gauge symmetry is broken in the standard modeh®Klein-Gordon Lagrangian of a complex



scalar field qa(x), in order to reveal masses for both a gauge béistth Ah(x) and a scalar

Higgs field h(x). All of the development in this section is wetidwn. In this review, we

follow closely on sections 14.6 through 14.9 of #¢al and Martin’s [8], but with the purpose of
establishing a template for a similar developmdrdt twill reveal self-energy masses and

magnetic moments for a Dirac fermion fiew(x) and specifically for its related Higgs field

h, (x), in a fashion that is not yet known.

We begin our review with the relativistic energyat®n p, p’ - nf =0 where p, is a
canonical momentum anth is a rest mass. We postulate a scalar fig(x) such that
i0,¢=p,p, and use this to rewrite the energy relatior(@bsﬂ” + mz)qoz 0. This is of course
the Klein-Gordon (relativistic Schrodinger) equatifor the scalar fieldp. As is well-known
and easily-derived, its Lagrangian densit;&is%(ag )(a”ga)——;mzqaz. The massn, of course,

is classically interpreted as the mass of the sé@lal ¢. But this mass is introduced by hand,

and we know that theories with hand-added massesnatoriously not renormalizable.
Therefore, it is customary to rewrite the Klein-Gon Lagrangian density as

£=10,@9-1 ¢, where  is a masparameterwhich sits in the position of a mass in the
Lagrangian density. That way, we are not introdg@ny masses at all. We are simply using

as a “placeholder” for the mass term in the Klewrd®n equation, and we leave it to the
development of the theory to tell us how to underdtthis mass parameter, and specifically,
how this mass parameter might be relatedpgbysically-observedass.

Next, we further postulate that is a complex scalar fieldgp= %(QH@). By this
definition the conjugate fielg* E%(@—i@), and soqo*qo:%(gz +¢§). The 3 coefficient in
the Klein-Gordon £=4(d,, )(agw)——;mzqaz is then absorbed into this definition, and the
Lagrangian density is rewritten as:

©=(0,9*)(070)- 1’ 0. (2.1)

At this juncture we are ready to begin. The firshg we do is introduce gauge theory,
by requiring that (2.1) be invariant under the logauge transformatio — ¢ =€°“ @ where
4(x) is a local gauge (really, phase) parameter. Thscpiption for doing this, which was first
pioneered by Hermann Weyl [9], [10], [11] who mastelgauge theory on Einstein’s use [12] of
a spacetime-covariant derivativg A, - 0.,A =0,A -, A to account for the curvature of

Riemannian spacetime geometry, is to similarly aepld, with a gauge-covariant derivative
d, - D,=0,-ieA, to account for the “curvature” in a complex gaufghase space.
Consequently, using Weyl's gauge prescription ahd help of qo*qo:%(@%@?), (2.1)
becomes:



©=(D,9)*(D°0) - P 9=(0, +ieA, )¢ (07 -ieK )p- 19 ¢
(0,0%)(0°0) -0 0A K -1’0 @ - (2.2)
(0,0%)(0°0)-4(& +&*)e’A K - 1P @

We next note that?, . :l(ag )(6”¢)—%m2¢2 (KG denotes Klein-Gordon) generalizes

2
to the field equation for a gauge field, by replacingg - A, and properly adding spacetime
indexes. Indeed, this yields the source-free Madix{Md Lagrangian density:

S =3(0,0)(0°9) ~4m'P = 5, =4(0,A) (0 A)-4ni p A=4 E P-4 h AR (23)

where F7 =9 A" =97 A —0" A is the electromagnetic field strength tensor, amds the
Proca mass of the gauge bosafi. Contrasting-1m’A A above with—%(gq2 +¢22)e2A& K

in (2.2), for the first time we see a corresponéent - (¢12+¢22) €’ which tells us that the
simple application of gauge theory itself has résg@a boson mass’ = (qz +¢22) e” (which we

take to be >0), if we can now find some way to msese of the terr(yg’ +¢°).

Now we turn to the term°@* @ in (2.2). This is a placeholder for the Klein-Gon
mass term. It is now customary to interpret thos as the mass of the scalar figtd but as the

leading term in a potential energy/(qo). Specifically, working from the middle line of.@
we now write:

£=(0,¢%)(0°0) -0 A K -1 9-(# ¢) = ()~ V9). (2.4)
where we define the kinetid@) and potential\{) terms as:

T(9)=(0,¢°)(0°¢)- €9 0A K, (2.5)
V(9) = 1Pe* o+ A (¢ @), (2.6)

and where/ is a postulated but unknown coefficient for thectrarder term(g* qo)z. Given

that £ and thereforel andV all have a mass-dimensionality @ =+4 in mass-length-time
units of #=c=1, and thatg and A, each haveD =+1 , we see that/A is a dimensionless,
D =0 coefficient.



Now that we are interpreting’g* @ as the leading term i (@) and not as the mass of

the scalar field, we may use (2.6) to find out & feore important things. First, we may take
0V /0@ and set this to zero to find the min/max pointthm potential, that is, we now deduce:

g_v = 12" A (¢ @)@ =0 . (2.7)
@

This means that:

__K
* @) ==, 2.8
(¢ ¢)mln/max 2/] ( )

But we do not yet know if (2.8) is a minimum or aximum until we take another derivative
d0/d¢* from (2.7) and then evaluatqa((o*(p) ) that derivative at the min/max point (2.8).
This yields:

min/max

oV
og*dgp

|(¢*¢)min/max:'u2+4A (w*qo)min/max:’u2 _2'u2:_’u2' (29)

So, if we WantV((p) in (2.6) to be a real potential with a stable mmam, then the
second derivative (2.9) evaluated at the min/maxtp@.8) mustbe positive Therefore, it is
(2.9) which tells us that we must sgf <0. We now do so. Then (2.8) will define a non-zero

local minimum of a real potential so long as weoaieve A >0. We then return to (2.8) to
define the vacuum expectation value (veaccording to:

2

1 1
(7)., =5 (0 +07), , ==, = 5v*>0, (2.10)

With £* <0 and A >0, the vev establishes a real, positive numberd&fibes a local minimum

in the vacuum. Thus, the scalar fields may be eded around this ground state. The vacuum
itself is the square root of the above, and so thighmathematically permissibte values, is:

+v = ,/(q2+@2)mm =2(e*9) = i%. (2.11)

The next step is to define a scalar Higgs fie(k) and its imaginary counterpai(x),

and expand the scalar field about the vev. Nomgmalhe chooses to expand around. But it
will be important for illustration to make this dke, not right now, but at the very end. Thus,
for the moment, preserve both options (2.11) biyreet

o(x) E%(iv+ h( %)+ & ( x)) (2.12)

N



From this, the conjugate* (x) :%(iv+ h( %) - &( x)) and so:

2

9* p=1(V* £2vh+ P +£7). (2.13)
(¢* @) =1(v* £4Vh+6 VI avH+ H+2 E 4 §2 h 2 2 & ). (2.14)

We then substitute (2.12) and its conjugate anti3j2(2.14) into the Lagrangian density (2.4)
via its kinetic and potential terms (2.5) and (2.6pr what is nowl (h, E) , we find that:

T(hé&)=4(0,h)(a7h)+1(0,£)(0°¢) -1 é(x2vhr R+&%) A A-L( &) A% (2.15)
and forV (h,¢):

V(héE) =12 (Ve2vie B+E2)+2A( V24V 6V Re 4 vir B2 §% 482 h Z 2 B¢ 1.(2.16)
With the help ofz” =-Av? from (2.10) we may consolidate the two main teim@.16) into:
V(hE)==2AV+ AV AVvH+1) K2 A §2 B 3AE° R+2AE " (2.17)

Finally placing (2.15) and (2.17) into (2.4) we aibt

£

T(h¢)=v(he)
1(a,h)(a7n) +1(0,€)(076) -1 € (x2vhr R+&%) A A-1( &%) AR (2.18)
IV FAVR -2 F A h- 182 =248 - 4(20 V) 1P

At the end of the middle line, we have a tem%(ezvz) A K. Comparing that to the
term -im*A A in the Maxwell Lagrangian density (2.3) and alsing (2.10), we see that:

m, = ev= ieu/ﬁ. (2.19)

This is therevealed massef the gauge boson, and is the mass which we expebserve for the
physically-observable gauge field. Our willingngéessimply usex as a place holder for the
Klein-Gordon mass term and not regard this as tieah physical mass of the scalar particle

pays off by comparing—%(Z/lvz)h2 at the very end of (2.18) with the original KleBoerdon
©=1(0,0)(0°9)-1m’¢?. Here, we see that:

m, =~2AV =\-2u% = W2u. (2.20)
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So the original scalar fielgp has disappeared from the Lagrangian entirely, lza®h
replaced by the Higgs scalar The mass of this new scalar — which we takeeonbat is

physically observed — is related to the originassnparametey via m, = i\/E/J. But because
we found along the way that” <0, this is still a real mass value.

The final step we take is to actually break thensyetry of the new Lagrangian (2.18),
which we have not done yet. While often conflategether with an early choice aiv - +v,
this breaking of symmetry really entails two stegsrst, we go back to the original definition

before (2.1) of the scalar field as a complex fiei&%(gqﬂqzz) and relate this to the later
redefinition (2.12) of this field as an expansi@oat the vev, thus finding that:

¢s%(¢1+i¢5)zﬁ(iv+h+if). (2.21)

We know of course thazp*go:%(qz +¢22). So now we break symmetry lshioosingto make

this field entirely real, so thap =0 and £ =0, thus ¢* p=1¢g". So in the new Lagrangian
(2.18), we se¥ =0 throughout, and also use (2.19) and (2.20) toewrit

£=4(0,h)(97h) -t m?H -1 m* A A

o _ (2.22)
-1’ (x2vh+ ) A Az A V-3 B+dp ¢

We then restructure this slightly and use (2.19)1 §2.20) to show the masses,, m,
throughout. We now arrive at:

©=1(3,h)(0°h) -1 m*K-1m* A A

(g hYh 5 o 1 . hYh . 1m’m? (2.23)
(ﬂ”’zl/jvaA&N Z(il+4vjvna ﬁ+8 =

We also note thattzmr = € / ic where in electromagnetic theory=1/137.03599907 is the
electromagnetic coupling at low impact / proberfamnalization, so that the final term may be

put into the alternative forrm *m,*/32/mr .

Now with (2.23) we have broken symmetry so aseadrbthe real plane witkg, =0 and
and & =0, defined byg along the horizontal axis and potentia(¢) along the vertical axis.
The second symmetry breaking choice is to set timemmam of V(q) at eitherq,,, =+v or
@, =V, see (2.10). This yields two differently-appegrlragrangians based on the choice we

make. For the choiceg,,, =+v with some further term consolidation which will Behelpful
benchmark when we turn to fermions, the above besom
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£(+v) =%{(agh)(0”h)—(1+g+4l\;j m? ﬁ—(1+ 2;h+§j m> A A+ m“:m‘z}. (2.24)

For the other choicg,,, =V, (2.23) becomes:

£(-v) :%[(agh)(aah)—(l—h+h_22j m? ﬁ—(l— 2ﬂ+ﬁzj M A A+ mier;ﬁ} (2.25)

v 4dv v v

While waiting until the very end to make the findloice as betweerq, , =+v may

seem to be a minor point, it reappears much more gtadkén it comes to understanding the
vacuum for fermion interactions, and actually appeaiguolve the breaking of a particle and
antiparticle symmetry.

Comparing (2.23) to the original Lagrangian densi{&4) and (2.2), we see each top
line is identical in form to(agw*)(a"qo)—yzqo* qo—%(q%@z)ez,ébﬁ from the bottom line of
(2.2). But through the entire process of introducing gasygmmetry to get from (2.1) to (2.2),
then using-£¢* ¢ as the leading term ofV (@), then establishing a stable ground state for the
vacuum, then expanding about this vacuum, then brgadymmetry such that the scalar field
becomes real, and finally choosing betwegn, =xv, the original complex scalar fielg is
replaced by the real Higgs scalar figddthis new scalar fielth has ended up with a revealed
massm, which is not introduced by hand but emerges natuyratigd a gauge fieldy, which did
not existat all in (2.1) not only existshut also has its own revealed masg. And because

none of these masses were introduced by hand, theythemsed on (2.22) is fully
renormalizable.

The main point to be made from this review is thatte way back in (2.1), before we
even applied gauge theory much less did anythisg), @e started out by using a mass parameter

L in mass position in the Klein Gordon Lagrangian, imaide no pre-supposition whatsoever
about the this mass parameter. We left it to theldpueent of the theory to inform us as to the
nature of . We later found out in (2.8) that to give rise to @kt minimum in the vacuum,
L7 <0, which means thay itself is imaginary and that as written, (2.1) therefooatains the
wrong sign were we to regard as an actual particle mass. But in the end, wedng in

(2.19) uncovering a revealed masg = ev= ieu/\/j for the gauge boson as well as in (2.20)

uncoveringm, = i\/§,u for the Higgs scalar. Squ itself did not turn out to be the mass of

anything observable. It turned out to be an imagimumber which is related by (2.19) and
(2.20) to the real, observable masses of a gauge laosba Higgs scalar.

At the same time, we started out by positing assdald ¢ which we may think of as a
“seed” field. This field is a mathematical devicet Imot a physical observable. Through the
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course of development after expanding about thenmaim of vacuum, this seed fielg turned
into a Higgs scalar fielth which is regarded as an observable, complete with its oswealed
mass The heart of this Higgs process, thereforepistart with a seed field (above) and a
mass parameter (abovg, which are both not observables, and to have tges&urned into an

observable field (abovéy) with an observable mass (abovg,). In the process, as a bonus, we

also revealed a gauge fieWy, and its observable mass,, which is to say, we also revealed a
second observable field and also its mass.

One final point to be made is this: As can bengeest directly in (2.18) through (2.20),
the masam, of the Higgs fieldh, which is the field descended from the seed sé&lal ¢, arose

from the potential term —V(h,{) of the Lagrangian density. On the other hand,“Hunus
field” A, as well as its mass, , arose from the process of introducing gauge sgtrynand
emanated from thiéneticportion T (h,&).

All of this will be very critical to keep in minds we now embark on a parallel approach
for spin % fermions. For fermions, the fermion magll arise in a fashion analogous to how the
Higgs scalar mass was revealed in (2.20) above6sgg) infra. For gauge bosons, we will also
obtain a “bonus” result. Above, for scalar thedhg bonus was the mass of the gauge boson
revealed in (2.19). But for fermion fields, as walall establish throughout the course of the
subsequent development, the “bonus” is not the roasise gauge fieldA”, but the magnetic
moment of the fermion which is observed when tleainfon is placed into a magnetic field

B=B'=-1&%F* which is related to the gauge field in the usuahmer according to the field

strength relationF*” =9“A” —9" A, including “anomalous” portions of the fermionfagtor.

In other words, the bonus which in scalar Higg&dfigneory is the revelation of a gauge field
mass, in Higgs field theory for fermions becomesrivelation of a complete magnetic moment
for the fermion / magnetic field interaction, indlng anomalous portions. What is further
revealed in (13.10) infra, is the effect whictirme-dependemntnagnetic fielddB /0t has on the
g-factors of the three charged leptons, and thpaegmtly-new result may well provide a basis
for experimental validation.
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PART I: REVEALING FERMION MASSES - LAGRANGIAN
POTENTIAL

3. The Fermion Mass Parameter and the Minimum of I$ Related
Lagrangian Potential

In order to reveal a fermion mass out of gaugemsgtry and spontaneous symmetry
breaking in a similar manner to what was just rerei@, we once again start with the relativistic

energy relationp, p” - nf =0. If we write this in flat spacetime ag” p, p, = nf and then
apply n :%(y"y’ + y’y") :—;{y",y’} wheren“ is the contravariant Minkowski metric tensor
with diag(n‘”) =(1-1- 1+ 1, one obtains %(y"y’ +y’y") p,p.—nt=0. Then using the
Feynman slash notatiorp = ” p, this becomespp= nf. Separating the two square roots and
using the resulting expression to operate fromefieon a Dirac spinou yields ( p- m) u=0 in
which the massn represents eigenvalues of the slashed momentunxnyat Upon promoting
the spinor to a wavefunctiont - ¢ simultaneously with substitutingp — i@, the new
wavefunction equation becom(ei@ —m)w =0, which is Dirac’s equation. In essence, thides t
path Dirac followed to derive his equation in [1B]4], which included uncovering a specific

(Dirac) representation for thg” matrices. Just as we posited a scalar “seed! fiein section

2 with an unobservable mass parameteand turned it into an observable Higgs fiblavith a
revealed massn, and obtained a gauge bosé¥i and its massn, as a bonus, here we shall
posit a “seed” fermion fieldy with an unobservable mass parameter also denmtadd try to
turn it into an observable fermion Higgs fighd with its own observable fermion massand in
the process see what other “bonuses” also emerge.

As already noted following (2.1), when moving fran‘flat” gauge space (no particle
interaction with gauge fields) to a “curved” gaiggace (where the particles to interact via gauge

fields), one makes the substitutiod, - D, =0, -ieA,, or multiplying through byi,
i0, -iD,=i0,+eA,. When we work with gauge theory in momentum spadeere
i0,¢ - p,@ for whatever generalized field = ¢,¢, etc. one is considering at a given moment,

then the canonical momentu), goes over into a kinetic momentup), - 77, = p, + eA. At
the same time, the energy relation becomes.

m=pg - nf=mn=(p+ eg)( B+ e"A). (3.1)

In component formp* E(E, B. B, pz) =( Ep) and A“ :((o, AL A, A) =(@,A), so the kinetic

momentunrr = p”+eA(’:( E+ @ p+ eA p+ eA q)x:( € gp+ Ap.  (Important
Note: from here on, we us@= A’ to denote the time component of the vector paaem
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which physically is a voltage, and not the scalkldfg of the Klein-Gordon equation which was
reviewed in section 2. Occasional references Wackhe scalar fieldg should be easily
distinguishable by context.) If we separate thacspfrom the time components and raise
indexes with7*", then (3.1) becomes:

m =g =(E+epp+ A)( B ¢p- R)=( E @ -(p+ 49" (3.2)

Becauserr” is proportional to the four-velocity of the massin the rest frame of the mass, we
havep+A =0 andm’ = (E+ erp)z.

Now let us turn to Dirac’s equatio(m—m)w =0 and its associate® :E(i@—m)w.

Although normally written with a masn, let us instead write this with a mass parameten
the form:

S=y(io-u)y. (3.3)

This is just like what was done in (2.1). As wiitle breaking of symmetry reviewed in section 2,
we make no presuppositions about how this parametezlates to the actual observed mass

of a fermion such as an electron. We shall ledineelopment of the theory advise us about that.
However, to set the stage, we siddfine by postulatéhe mass parameterby forming a four-

vector defined as p* E(,u,O,O,O)—e((pA A ,Aé), such that in flat spacetime with
diag(nw) =(1~ 1~ 1~ )} we have:

=p,0=(u-ep-eA)(u- e+ d)=(u- @) - R*=p*-2u @+ @~ R 2 (3.4)

Contrasting this to the relativistic energy relaghip m* = p, = E -p?, we see the parallel
structural correspondences < 4, E=(m+W) = (¢- @) andp - —eA.

There are many reasons for definipg as in (3.4) which will become apparent as we
proceed through the development. But one of thaymmaasons for making the definition in
(3.4) is that after subtracting® from each side, (3.4) embeds a quadratic

0=€’¢f — 2uap— A%, (3.5)

It is (3.5) which is really the definition gf . Equation (3.4) shows the definition (3.5) in anfio
that allows ready comparison to equation (3.2)tf@ observed magssg, and that allowsy to

enter into the Dirac Lagrangian (3.3) as a Lorentariant scalar. In (3.2)nis understood to
be entirely independerdf @, A, e. But in (3.5), the mass parametgris defined entirely in

terms of @, A, e, and nothing else. So, if we can convgrtinto a revealed fermion mass in the
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same way that its cousip is converted into a revealed scalar mass in (ZX@&03calar Higgs
theory, this reveled mass (which we find in (6.ihf)a) will have been constructed solely out of
the gauge fieldA” :(go, A, A, A) = (go,A) and the charge strengéghand nothing else, and so

can be interpreted simply as a fermion self-enemging from the gauge fields and the charge
strength of the fermion, with no “bare” aspecthe tnass. This has substantial benefits in many
ways, including renormalization as will be reviewedection 14.

Working from the definition (3.5), we may solveetuadratic forep to obtain:

(1,2 2A 2 2N 2
eg0=2’Ui 4u° + deA =yt 1+62A2//12:,U(1i 1+e,62\ } (3.6)
V" u

2
We may also solve (3.5) directly far, to obtain:
u=t - A1 d g A @7)
2 & ) 2 @ '

We shall for the moment remain agnostic as to wiidhe appropriate quadratic choice in (3.6).
Later, at equation (13.6) infra, we shall finally im a position to choose the correct sign in (3.6)
but this will be based on empirical data rathenthaman predisposition. Finally, at the end of
section 14, we will have developed enough new kedgeé based on (3.5) that it will become
possible to appreciate the many reasons undertfi@glefinition (3.5), and how this connects
together a whole range of issues including rendmatbn and the fact that even in a fermion’s
own rest frame, there is a kinetic aspect thategen removed from a fermion because the
circulating energy flow of the fermion’s spin newsases [15].

Moving on, we now introduce a gauge field into J3/& Weyl's gauge prescription, also
using (3.7) and so write:

e=y(id-u)y=2=y(id+eA-p)y :a(ia +eA—%( - ezeA; Dw . (3.8)

Separating mass terms in a more familiar form flaggegisy the above becomes:

: 1 A?\— — 2
e=y(ia+er)y - e[qo—;]ww—m (o) = T(w)- Vw) (3.9)
where just as in (2.4) to (2.6), we nalefinekinetic (T) and potential\{) Lagrangian portions

— 2
which include a newly-introduced first higher-order tevip(ww) and associated fermion

coupling A, analogous to th@ first postulated in (2.6) for scalar Higgs theory, thus:
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T(¢)=y(id+eNy (3.10)
V(@)= g+ A, () =§e(¢—%jaw+af ()

2

(3.11)

Lo and behold, contrasting with the usual Dirac raagian density€ = gidy —myy , we now
have a term which takes the appearance of a fermass. Because the mass dimensionality

— 2
D =+6 for (gl/gl/) , this means thaD = -2 for this new A, , so it is analogous to, but not the

same as, the dimensionlessfrom (2.6) of the scalar theory.

Now, we must develop the vacuum based on the patdBt11). First, let us find the
min/max point of this potential, which is calculadt® be:

v 1 A% \— — \—
w:§e£¢—7jw+2/]f (l/’é[/)l/’ =0 (3.12)

Analogously to (2.8), this tells us, also using’}3that:

— 1 A? U

wp) =——e(¢——J=—— (3.13)
( ) @ 24

Comparing, we see exactly the same expression(@s8j) but with rather thary/’ .

To distinguish minimum from maximum, we take thexnderivatived/dy of (3.12)
and evaluate|(¢* 9) ) at (3.13). Now we find, contrast (2.9), that:

min/max

| (— =1 p-A w)=1d -2 |- dp-2
Wl(‘/"”)mmm'ze@ ¢j+4/]f(w) 26@ ¢’j {¢ 4") (3.14)

This too is just like (2.9), but withy rather thanu/’.

For this to be a local minimum (not maximum) of theuum and therefore energetically
stable, the above expression must be posiwech now imposes the requirements:

oV

) =-te A=
3000 W) ™ 2e(¢ J >0 319

@

or more directly:
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1 [ A?
<0; ~e|l—-@|>0 3.16
ueo 24 2| @16
So if we also definel, >0, then from (3.13) we may define the vacuum vena:

) =LAl H
("’”"’”)mm‘% e((o ¢j 3 V>0 (3.17)

This is analogous to (2.10) with which we uncovetteel vev for a scalar fielgp. Based on
(3.16) andA, >0 this v’ >0 which means that

1 (A?
Vv=3——¢ ——-@|>0 3.18
#Mf (¢ ¢j (318)

But because (2.10) contained the scalar cons(rqatto)mm with mass-dimensiorD = +2 the

vev uncovered there wds v, while in (3.17), because the fermion constr@w) has mass

min
dimensionD = +3, the vev number here must bev®. This is solely a function of the fact that
now we are dealing with fermion sourcgswhich have a mass dimensidah=+1.5 whereas

earlier we were dealing with scalar sources witmass dimensiorD =+1. This is a first
important point of departure from scalar Higgs tlyeo

But the next step, which is to expand the fernmaoomund the vacuum using a Higgs field,
reveals an even more pronounced difference. Segaltyf in (2.11), we took the square robt

of the ((p* ¢)min :%VZ found in (2.10) and expanded about this vacuumtha form
qo(x)zﬁ(iw h( %) + i{(x)). Here, the different finding of aubed v® in (3.17) raises the
qguestion of how we expand the fermion about thisuuan. This question actually has three
parts: First, do we expand arou&/@ =Vv"° or around%/F =v? Second, if we expand around

\/? =Vv"® (which does appear to be the right answer formiten with D = +1.5), then what is
the nature of thes'*? Is it too a scalar number liké? Or, does this vacuum, like a fermion,
have a four-component Dirac structure? Third, bsea” >0 from (3.17) versusy* >0 in
(2.10), this means that>0 per (3.18) because this is novc@ed rootnot a square root of a
positive number as in section 2. So the freedom that we found in (2.11) and finally broke
(2.24) and (2.25) does not appear for fermionkast on the surface, and we appear ttobzed

into choosing a positive energy vacuum. So thisesathe third question: does tiig freedom
reappearfor fermions in some other guise? The answehi®third question will emerge in the
next section as we develop the answers to the dinst second questions, and it reveals a
breaking of symmetry between particles and aniigiast
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As to the first and second questions, it appdaatdtructurally, the only sensible answer
is that we expand around®, and that althougk® is itself the scalar numbes(Azlqo— qo)/4/lf

per (3.17), it needs to be constructed out ofadefinedaccording to:

V= V15V15_V15'j/c\/15_4j {%_¢j>0 (3.19)

That is, we need to find &° which, like a Dirac spinor, is a four-componenjea which
includes complex components, which hasdjoint vacuumv*® = v-®y ¢ and which reproduces
(3.19). To be clear: (3.19) is thefinition of this v spinor which we shall seek to explicitly
find in the next section. Then, givei®, we will definea Higgs field h, (x) which is aHiggs
fermion fieldwhich itself has a four-component Dirac structamed which itself is complex and
has an adjoint Higgs fieldh, = h**"y°, which is itself defined by an expansion about ¥h&
vacuum spinor according to:

(%, (3.20)

Vl
VEHR (Y. (3.21)

+h
+h
Analogously to scalar Higgs theory, we shall regdmel Higgs fermion fieldh, (x) to be the

physically-observed fermion figldshich acquires a revealed observable mass egtaht of the
observed fermions. In section@- h where ¢ is the seed scalar ahds the observed scalar.

Here,¢ - h, wherey is the seed fermion arfg is the observed fermion.

So now the next question becomes simply mathealajicestion: How do we deduce a
v which has the structure of a fermion and satigfiesdefinition (3.19)? Then, we can make
use of thisv'® to carry out the expansions (3.20) and (3.21) asckrtain the masses of the
fermions via the terms of the forn%mﬁhf in whatever Lagrangian density emerges to

correspond to (2.24).

4. Dirac Spinors and their Expansion Vacuum

The customary way to derive a Dirac spinor (esggction (5.3) of [8]) is to start with
Dirac’s equation in the forn(iy"ay—m)z//:O, posit a free fermion//:u( p”)e'ip"x” thus
i0,4/=p,4, and then cast Dirac’s equation into the spinamfo(ip, -m)u=0. With
y* :(yo,yoal,yoaz,yoa 3) this is then recast intd—luz(a'i p +,uy°)u: Eu, where E = p’

represents the eigenvalues of Hamiltontthn The spinors are then derived as four independent
solutions to this Dirac equation in Hamiltonianrfor These spinors are well known, see, e.g.,
[16]. Importantly, each component of the spinonasv time and spadedependentthat is, the
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spinors areu(p”), not u(p”,x"). Any space dependence is segregated into thee plan

wavefunction e in w:u(p")e“pﬂxg, which is simply a “canonical Fourier kernel”
containing the canonical momentup) .

One simple way to deduce"® (the “vacud™) is to contrast the relativistic energy
relationshipm® = p, = E —p? with the Lorentz-scalar definitiop = (,u—e¢)2 - eA? of the
u parameter in (3.4). From the correspondenoe- x, E=(m+W) = (u- @) and
p--A, we simply start with the usual canonical Diracinseps derived from
(a‘ p +,uV°)u: Eu in the Dirac representation (again, e.g., [16f)}d anake the corresponding

substitutions to find the four distinct Dirac spisavhich can be made to yield (3.19). These
correspond to particle and antiparticle, each wim up and spin down. In this way we find two
particle vacu&®

1 0
0 1
2 3 2 1_:p2
Ve _1 |eA PA VR _1 & (D(A IA ) (4.1)
2 Afw A2 2 Af¢ AZ
oA +in) ~pN
A? A?
and two antiparticle vactia
N _w( A - |A2)_
A2 A2
2 1 HY V4 2
oot B )| 1 5] o

which are both designedich that they reproduce (3.19) by definitiaa we now show:

Starting with the particle vacua, using® as an example, we formd® = V5" ® with
diag(yo) =(1,1- 1~ } in the Dirac representation to find that:
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V _V15V15—V153/Q/ B 1eA2 1 0 _¢A3 _(D(Al—iAz) ¢A3
42,9 A’ A’
(4.3)

_leA? 1_¢2A2 _1A’(AA-gA®|_1 e(A’-¢’ 1eA_2_¢ >0
T4 AAT) 4xpl ARZ a9 ) m e
As we can see, this faithfully reproduces (3.19hwj® >0 as in (3.17), and therefore,>0 as

in (3.18). A like-calculation using the spin-dowsi®in (4.1) will do the same.

Now let's look at the antiparticle spinors, for whiwe usev,'® of (4.2) as an example
with v,'® yielding a like result. The some calculation neads us to:

3 _ 15 152y, 15 31%1%2{@5\3 ¢(A1_iA2) 1 O] (0(A1+iA2)
40| A® AT

(4.4)

_leA’( @A’ 12}90\2 gA*-AA?) 1 e(@F-A")_ 1eA—2—¢) <0
42,0\ AA arel ARE ) arl @ SN
Contrasting with (3.17), we see that hex@ <0, which implies that thentiparticle vacuum

v, <0. This now answers the third question as to whethe+v freedom which we reviewed

in section 2 for scalars, appears for fermionsoime other guise. The answer: this twofaid
does reappear for fermionsyt it is not a freedom that we can freely choo¥ée are not free to
choose to expand abotit/ for fermions. Rather, positive energy fermionsfarcedto expand
about the+v vacuum and negative energy fermions (antipartisflesn Feynman- Stiickelberg is
applied) areforced to expand about thev vacuum. In both (4.3) and (4.4) we maintain the

requirement%e(Azl(p—qa)>0 of (3.15), (3.16) so we are always expanding - thdrefor
particles or antiparticles — about@nimumof the potential and thus have a stable vacuum for
expansion. But the choice ofi#v expansion that we have for scalars is no longdraace for

fermions. Particle fermions always expand ab#utand antiparticle fermions always expand
about-v.

This is also retrospectively suggestive as willelipanded upon momentarily that (2.24)
is the symmetry breaking choice that leads to aysigralaparticle, while (2.25) is the one that
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leads to a Higgs scalantiparticle This is why we took some pains to show the inmpédthe
@, =V choices in the two differently appearing Lagrangikensities (2.24) and (2.25): what

we see in (4.3) and (4.4) is the first sign of amfien analogue to the,,, =+Vv choice in the
scalar Higgs theory reviewed in section 2.

Specifically, and fundamentally, in (4.3) and {4we see that this sign flips of the
negative energy vacuum entirely originate d'rag(yo):(l,l,— 1- ) which is at the core of

particle and antiparticle eigenstates in Dirac thiedSo here we see Dirac theory at work once
again creating a symmetry between particles anghatitles — this time, between the patrticle
and antiparticle vacua! This means that we mugstagpk to (3.18) and amend this as follows:

1 (A? o 1 [A? . .
v=3——¢ ——¢|>0 for fermions; v=-3— @ ——¢|< 0 for antifermior (4.5)
44, @ 44, @

To highlight how the Dirag” is at the root of this, which is seen by contrag(@4.3) and (4.4),
if we write diag(yo) :(1,—]) in two-component form, the sign difference in {4i% directly

traceable todiag(yo):(l,—]). This is the fermion counterpart to they vacua that we

reviewed in section 2 for the scalar fields. Sis ttorrespondence between the scalar and the
fermion Higgs theories as regards the vacuum may bammarized by

W2 =4y o diag(yo) =(1~13, and is laid right at the doorstep of Dirag/8.

Mathematically, we can attribute this in part bhe tfact that the scalarg reviewed in

section 2 have a mass dimensior=+1 and so yielded a in (2.10), while the fermions
presently under review have a mass dimengon+1.5 and so yielded & in (3.16). Taking a

square root of a positive numbgrv? =+v always presents a choice of sign and this carried
over to the very final Lagrangians (2.24), (2.25But for fermions withD =+1.5 we are
endemically forced to the cubic level, not the sgquiavel. Here, taking the cubed root of a

positive number\/ﬁ:+v always yields a positive number and while takimé—_v:*:—v
alwaysyields a negative number. So ttleoiceof v that we earlier had in (2.11) is absent
when dealing with fermions, and instead it reemeigealifferent guise via (4.3) and (4.3). Now,
we find thatv,v, >0 and Vv,,V, <0, which replaces thetv choice in (2.11). Dirac fields

remove this choice and assigrnvee O to fermions and as<0 to antifermions without giving a
choice. This all originates in (3.14) and (3.16) where wm@sured that the vacuum has an
energetically-stable minimum point for expansiol.we require a stable minimum for both
fermions and antifermions, then fermions and amtifens must have oppositely-signed vacua,
with a positive minimum for fermions and a negatin@imum for antifermions.

Physically, this also suggests that one way to \tlevchoice of (2.24), (2.25) is to view

(2.24) as the Lagrangian for an observable Higgdasmarticle, and (2.25) as that for an
observable Higgs scalantiparticle The hidden, broken symmetry as between (2.2435f is
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then seen as a broken symmetry between partickksaaiiparticles. As we shall soon see in
(5.9) and (5.10) infra, (4.3) and (4.3) similarlsebk the particle and antiparticle symmetry for
fermions. Further, if we keep in mind Feynman-&éliserg [17] whereby a past-oriented
negative energy particle is reinterpreted as aréutwiented positive energy antiparticle, then
(4.3) forces a positive energy vacuum for posigwvergy fermions travelling forward in time,
and (4.4) forces a negative energy vacuum for neganergy fermions travelling backwards in
time. In this light, (4.4) and (4.3) are yet arestexample of the matter / antimatter symmetries
which are endemic to Dirac’s equation.

Although less visible on the surface than theseigbar/ antiparticle results, the other
point which needs to be made about the vacuum sp{ddl) and (4.2) is that these spinors — just

like the usual spinors derived fro(tvi p +,uy°) u= Eu — must be function91'5( p") only of the
energy-momentum, anabt \/1'5( P, %‘) of spacetime. Because (4.1) and (4.2) also aorie

gauge fieldsA*, an interesting paradox appears to emerge. Galde of course are functions
A"(p”,x”) of space and time. But as they appear in (4.4) (@®R) they are not. So the

guestion now arises: how do these gauge fie@ds:((p, AL A, A3) acquire their spacetime
dependency if they are not spacetime-dependedtin &and (4.2)?

The answer, which we shall develop gradually inghlesequent discussion at the suitable
junctures, is that once the gauge fields make thay into a spinor as in (4.1) and (4.2), they
must be regarded as Hermitian linear operator ebbes in the “Heisenberg picture” senset
with no explicit, inherent space or time dependehdsing X andP to represent the Heisenberg
space and momentum matrices which are Hermitian wahith follow the canonical

commutation[ P, X| = - =i, these gauge fields continue to be regarded/geP, X) in the

sense of matrix mechanics, but nM(p”, x") with p* as a classical momentum amd as

classical spacetime coordinates. Then, in ordeedgain a classical spatial dependency, these
A“(P, X) operators must undergo a commutatjd, A |=~id' A with a three-momentum.

And in order to regain a time-dependency, they raagquire a time evolution via a commutation
[H,A“] =-id°A* with the Hamiltonian via the Heisenberg equatibmotion. This is a subtle

but very important point that will play a role tlughout the subsequent development and which
will end up revealing a very profound connectionoaign Dirac’s equation, the Heisenberg
commutation relationships (both canonical with matoen and for motion with the
Hamiltonian), and Maxwell’s equations for which tivee and space dependenciesE , [1XE,
O, OxB, oE/dt andoB/adt are essential defining features. Again, we sé¢keamoment
simply to draw attention to this. But its importdasweep is best developed not abstractly, but
incrementally along the way in specific circums&sas we uncover various commutators which
will be converted over into spacetime dependencies.

Now we turn to explicitly represent the Dirac spinvavefunctions for each of the four
Higgs fermion stated, () in the expansion (3.20). But before we can deveowill need to

also specifyy, because according to (3.20) the general fornhfc(rx) is thedifference
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hy =g -\, (4.6)

Thesey should be the usual spinors of Dirac theory, bitlh wvo differences: First, because
the Lagrangian (3.8) which we are developinggis ¢ (i - u)¢ - (1d +eA- p)y with the
mass parameter and not the usuat = ¢ (id +eA- m)¢ with a hand-added fermion masga
fundamental goal of this paper isr@vealsuch a mass rather than add it by hand), we may us
the usual Dirac spinors but withreplaced throughout by. Second, becaus%:tﬁ(iD —/,1)1,0
these spinors will contain the kinetic momentym — 7z, = p, + €A rather than the canonical
momentum alone. Thus, in the Dirac representgagain, see e.g., [16]) and employing the
kinetic momentump, - 77, = p, + €A to properly place the gauge fields into the sEndor
fermions with plane wavefunctions we may write:

1 ] - 0 ]
0 1
— p3 +eA Simx . — pl +eA - |p2 —ie/A’ S,x?
= uJE L o = E " (4.7
W= uJE+u+ep Er it op e W= U Bt @ e+ it o & .(4.7)
p' +eA +ip® +ieA’? -p°—eA’
E+u+ep | | E+u+ep |

Likewise, for antifermions:

p’ +eln ] ptreA —ip? —ieA? ]
E+tutep E+ut+ep
_ pr+eA +ip’+ieA’ | 0. a -p-el i
= U JE+u+ o = U B+ u+ A a".(4.8)
Yy=u HTep E+ i+ ep € s WU HT @ E+u+ep
1 0
- O . L 1 .

Two other things should be noted above. First,ane employing the normalization

UL E+ i+ ep rather than the usuaE+m+e. Aside from them — y replacement just

discussed, this is because we wish to ensure tlatDt=+1.5 dimensionality of these
wavefunctions is explicitly represented, becausemiiebe using these in a Lagrangian density
£which must have an overall mass dimensibgi 4 in four-dimensional spacetime.

Second, rather than use the canonical Fourier keftfe” , we employ &inetic kernel
e containing p, - 7T, = p,+eA. We do this mindful of the geometric view of gaug
theory discussed following (2.1) wherein the gaogeariant derivatived, — D, =0 —ieA,
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represents curvature in gauge space justdg#, - d.,A =d,A -’ A in represents
curvature in spacetime. Free fermions are thosehwbllow geodesic paths the gauge space
so when the Dirac’s equation ié@—,u)gl/:O the geodesically-free fermion spinors are

solutions based omy(x)=u( p) €** but when Dirac’s equation i§id — 1)@ =0 the free
fermion spinors are solutions based gifx) = u() €. However, because we are using a
kinetic rather thancanonical kernel, we haveid ¢ =m not i0 4 =p, , and for these
derivatives to work properly, the gauge fiedg in 77, = p, + eA , must not have an explicit time

or space dependenckee., it must be a function of (P, X) whereP andX are the Heisenberg

matrix operators and not ordinary momenta or omgirgpace coordinates. Just Higgs theory
teaches that as the observed particles and fieltheiphysical universe are not those that appear
as seed particles in a Lagrangian or Hamiltoniarrétiher are those Higgs fields which arise via
expansion about the vacuum, so too we shall soerttsthe space and time dependencies
which we observe in the physical universe are hos¢ which appear in a Lagrangian such as

£:4Z(ia9 +eA—,u)(// but rather are those space and time dependendias drise out of

guantum mechanical Heisenberg commutationihat is, just like observed particle masses,
observedspace and time dependencies are also hidden, eyeahenomena, not ab initio

phenomena. We will start to see specific examples of thissaction 7 and through the later

development here.

Now, via (4.1), (4.2), (4.7) and (4.8) we can il represent each of the four Higgs

fermions, by subtracting the vacuum spinor fromsked spinor with the kinetic kernel”™*’
used as the overall coefficient, as such:

1 1
0 0
. *+enN 1 [eA? A -
h - _Vl.SellTox - E+ + p +e et ¢ eIITgX ] 49
n=¢—v My E+pu+eap E+pu+op 2\ 4o A2 (4.9)
pt+eA +ip? +ieA? ¢(Al+iA2)
E+tut+tep | L A%
_ 0 i _ 0 -
1 1
o, "+eA-ip-ieA | 1 [eA?| p( AL -iA?) || linxe
h,, =, -v}5d™ =| yuJE+u+gp| PRI -= 4”( : e (4.10
to =W, =V, M HT & E+u+tep 5 /]fan ( )
_p3_eA3 _¢A3
L E+u+tep L A? |
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B p3+eA3 ] B ¢A3
E+u+ep A?
e PreA+ip?iek | 1 [eA?| g A+IAY) || e
h = _Vl.5eI7TgX = E+ + p +e _ = elﬂ”x . 411
13 =WV, My E+pi+ ap E+tep ol AT (4.11)
1 1
[ pt+eA —ip?—ieA?] _qo(Al—iAz)_
e —p’-eR 1 [eA?|  —ga° || ine
h,, =g, -V €™ =| uJE+u+ b —¢€ -= @ e (4.12
ta =W,V H HT & E+u+ep 210 re ( )
0 0
i 1 l 1]

Note one other change in (4.9) through (4.12) wisamotivated by needing to properly subtract
the spinors in (4.1) and (4.2) from those in (&) (4.8) to yield the spinors in (4.9) to (4.12):
We have now modified the Higgs expansions for fermaifrom the presumed form (3.20) and
(3.21), into a form which is motivated by the exflspinors, namely:

z//(x) — ue™ = P 4+ h ( X) - ( Vo + lA) &g (4.13)
a(x) = e =\’ +H( )9 - (_5+u_h) g (4.14)

g - —_— JE—

with h, (x) =y, () €%, h, (x)=y,(7)e”™" defining Higgs Dirac spinorsy, (77), u,(7)
such that:

u(m)=ve+y (), (4.15)

u()=v+*+y, (7). (4.16)
This is the fully-developed fermion counterparthe scalar expansion about the vacuum

of (2.12), namely,p(x) =L (£v+h( X+ &(x). We shall, however, prefer to work with the

full wavefunctionsy (x) andh, () and not only the spinors as much as possible givaut the
development. Noting that Fourier kernels generedigcel out from terms in a Lagrangian, e.g.,
@ =uu, as a notational convenience we defiffe (x) = Vo= andﬁ(x) = V%% to be
“vacua-prime” which absorb Fourier kernels intoithgefinition. Then,v%v%= viyi5= '
give another example of how the kernels cancehénliagrangian. The only place these vacua-
prime will appear in the Lagrangian will be in texof the formﬁhf andh_f\/l's, to maintain a
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proper balance and thus cancellation of the keringt®th v'** and h, . This notation allows us
to rewrite (4.13) and (4.14) as:

w(x)=v=*(x+h (X, (4.17)

w(x)=v*(+h (X (4.18)
This will be our preferred form to represent fermidiggs field expansion about the vacuum.

At this point, we turn back to the developmentla fermion Lagrangian density (3.9)
and its T(¢) and V(y) of (3.10) and (3.11) using the expansions (4.1#)18). Although

these four-component™® of (4.1), (4.2),¢ of (4.7), (4.8) and observable Higgs fermidnof

(4.9) through (4.12) are good for explicitly illusting the development here, they are unwieldy
for doing reasonably-tractable calculation. Fas fhurpose, it will be preferable to consolidate
(4.1), (4.2) and (4.7), (4.8) from four-componentwh to two-component Dirac form. We now

denote byv,'*=v'°=\,"*>0 the positive energy vacuum used for expansion asfitive

energy (particle) fermions and bw'® = v,**= \,*°< 0 the negative energy vacuum with pairs up

with negative energy (antiparticle) fermions. Tefere, (4.1) and (4.2) respectively consolidate
in two-component form to:

(s) i Al
A s
v 15 1 |eA? iXi . 15_ 1 [eA? w—z)(() 419
+ T A wA o | V_ —_2 F A ( )
2 /]fgo T}( i@ X(s)

where, in the usual way, “up” and “down” spin stasge respectively represented by:

w_(1). _o_(0
X "(o]’ X —[J (4.20)

For the positive and negative energy “seed fersiidimemselves, and also consolidating
via the kinetic momentumz, = p, +eA , (4.7) and (4.8) consolidate to:

e o
w=ue™ =y’ +u| g © e ¢=ve™ = u/n"+u| +/,1X d%’ (4.21)
7° + U X(S)

For notational distinction, we now uge to denote the wavefunction for a seed antifernaiod
v for its associated spinor. The above are thedsmponent spinors solutions which emerge

from Dirac’s equation with gauge fields and a kineternel €. Upon application of
Feynman-Stiickelberg one further substitutgs — -7z, and -E - |E| as applicable. We shall
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not do this here, however, because the calculasiammpler if we retain this original form of
negative energy fermions. One continues to keepiiml that the gauge field8” such as they
appear in the vacuum spinors (4.19) and mia= p” +eX' in (4.21) are to be regarded as

neither time-dependent nor space-dependent, bihietdegree to which they are later found (as
they will be) to commute with a Hamiltonid# to yield a time dependency, or with a three-

momentump* to yield a space dependency. That is, these Bjyaors are spinors in the sense

of the Heisenberg picture, wherein the fields aretime or space-dependeti initio, but only
become so because of their commutation with theild@man and /or with a three- momentum.

Therefore, the observable Higgs fermions spinorsesponding to (4.9), (4.10) which
we denote by, , - h, consolidate in two-component form to:

(s) (s)
hy =@ -V =| i o rferrl A e (4.22)
) x| 2\ A PR |
+ U A

while the Higgs antifermions corresponding to (3,1%.12) which we denote b, - h,
consolidate to:

o 2| oA A
hy =g v =| | et =T (S A N e (4.23)
X(S) 2 Af¢ X(S)

Before concluding this section, it is instructit@ show the calculation (4.3) for the
fermion vacuum using the two-component spingr’ of (4.19). Making use of the Hermitian
conjugacy relationo’" =g' as well asy®" y® =1, and o' Ao’ A = A?, the two-component
form of the calculation (4.3) is:

_ i Al X(s)
3_,15,15_ ., 15% 15_EeA2 9 _ L @A o
v =V =y Yy Sanell N A A
A2
LA (gt (9 _ (T g A gl A\ _1eA?( © _ o1 PA® 9 (4.24)
4/1fqu XX A?  A? 4)|¢X XX 2A2X '

2 2 2 _
_1leA quA L (AT _,|= L dA AN
4/]fqa AZA*? 4/] @ 44, @

Later, we shall find it necessary to do a numbeanofe complicated calculations built out of this
basic form, which is why we show this now.
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5. Fermion Field Expansion of the Lagrangian Poteril

With all of this, we are now ready to use the eMgians (4.17) and (4.18) about the vacua
(4.1), (4.2) in the fermion Lagrangian density §3vfa its kinetic ) and potential\{) terms in

(3.10) and (3.11). From (3.10), the kinetic partib(¢) of the Lagrangian density witid — p
andr=p+eAis:

T((//):(Z(i@+eA)(//:[Z(,p+ eI,C)w:(ZW -
=hoath, +VSIrh + RS+ Vv '

For the potential portior\/(w) we must account for the findings in (4.3) and 44
summarized in (4.5) that >0 for fermions andv<0 for antifermions. For fermions with
v,® =v® =\, starting with (3.11), and using2A,v,* :%e(qo—A2 /qo) from (4.24), we have:

V(@) =%e[<o—A—;jww+Af () ==22,v g+ 2, () = A, (—2v+347w+(47w)2). (5.2)

For antifermions withv_® =v,° = v,* we also start with (3.11), but us®l,v_® :%e(ga—Azlqa)

from (4.4) ((4.24) with reversed sigrv,® - +2v_° for antiparticles) to find a slightly different:

2

v(y) =%e[¢—%jw+/lf (o) =212+, (@) =2,

2 (w)). 63

Now we expand about the vacuum. First, via (44t (4.18), it helps to form (again,
v (x) = v andv*®(x) = v+ to balance kernels):

g =hh + VIS 4 VO VRV (5.4)
and then use (5.4) above to form:

+hhhh+hh ¢Sh+ hh h¥+ hh¥ ¥

| R+ VR VR Ph h VS Vo h ¥
wpp=| 0t PR T (5.5)
+hf \/1.5hr h + h \1/1.5 \1/1.5 h + h \/1.5 h IV1.5+ fh!V1.5 \%5 \}.5

+VEV1'5H h + 7.5\/1.5\7 1.5|ﬂ + _V'Bvl.SH\/ 15, Fsvl.kvl.svl.s
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This contains sixteen (16) products of a scalamimer h_hf, ﬁhf, hv*® or
V- = v with another like scalar number

. Any one of thesalars may be commuted with
any other, so we can immediately consolidate sdntieecterms in (5.5) as such

__ (+mn T+ pe T T
= T R N _:

v
+2/°h b by + 20 ¥h h+ 2 K

Vo+
- . (5.6)
p+2 QS 2 Y VS R 2 T

Then we use (5.4) and (5.6) in (5.2) for fermionthwh, - h,, o
V(@)= (-2 g )
~2°h,h, ~2¢° Y Ph -2y ¥
= R BR ETh Ep
#2 R+ 25 V' b

v,® to obtain:

(5.7)
PRV W
+ ypp+2j1\}*rvlﬁﬂ+2\/3\ilh+2\49yf‘

and in (5.3) for antifermions with, - h,, v/* - v'* to obtain

V(g) =, (v + gy )
+2v°h,h, +2v. 3FQ + 2% v+ 2v° .9
=2 R+ VR G p VTRV
+2\/15r10n0@+2g v h+r2viphh+2 NS 2 Wt h, + 2%, v

We have shown this expansion explicitly to highlighe impact of the negative and positive
vacua for fermions and antifermions. Now consdiidg (5.7) and (5.8) respectively become

V(@)= A, (-4 g+ gugy)

- [stm BT YT pe2 -%mz_wh:ﬂmh?m%]"ag)

V(9) =4, (+2F gy gy

+3v © +4v3\/15k},+4v h¢\/15+4/ hm,

y {W,lshﬂlsa B ¢+ 2 p VYIS he 2 Vi ho 2 HY MWJ(“O)
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In the above we clearly see an inherent broken sstmynbetween fermions and antifermions.
All of the terms in top line of the final expressiin (5.9) and (5.10) are the same, but in the
bottom lines, they are not. This should be cotgrho the analogous result (2.24) and (2.25) for
scalars. This is where the Dirac version of th® symmetry breaking based on

diag(yo):(+ 1,—]) manifests most directly, because as we see, tieiakb (or, hides) the
symmetry between the particle and antiparticle micdats which is not hidden in the original

“seed” potentiaV (¢) :%e({p—AZ/{p)Et// +A, (@/I)Z of (5.2).

Before proceeding to develop these further, iseful to do one final consolidation of
some terms in (5.9) and (5.10) above, includingevsmalar commutation, into the form:

V(@)= A, (-2 iy

o [ (W G e e Vo pe e iy | G40

+

V(g) =, (+2" vy + gy
+(vEn vt (v p e+ Vo pv a e R (512)
R —_— N J—
+3V_6+4V_3(\/_1.5}.,b + [}\215)_’_ 4\/_3 Qhﬂ
Finally we return to the Lagrangian density (3Mich we now recognize will have two

separate appearances for fermions versus antifesmi®Ve use (5.1) and (5.11) to write the
fermion (particle) Lagrangian density as:

o() =g (0 +eR)y~— g+ e%jiw—/lf (o) = Tw)- M)

:Em +Fﬁbj +E”\Zl'5+F5”¥l'5 .
R AU (T A A T ARG P

+

and (5.1) and (5.12) to write for antiparticles:
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2(¢) =g (0+er)y - ey +- eA—wa A () = 1)~ M)

_ ¢ﬂh¢+\/15ﬂh’ Q v+ Vi \_/15 (5.14)
R e P
Ay (\/_ hvt ) 4v°ip b

Now we have enough information to reveal a fermiest mass. Comparing to the
canonical Dirac Lagrangian® = idy —-myy = € = z//p(// muy, we seek to identify the

coefficients of (5.13) and (5.14) against the teatel® = hf m, - m h h for the Higgs fields
fermions h, = h, in (5.13) and antifermions; = h, in (5.14). That is, we specifically look for

coefficients of termsh, h, which are second order in the Higgs field.

6. Revealing Fermion Rest Mass

From here we focus on the positive energy Higgsii@n particles. The fermion mass
term we are seeking must have the forsm; h h. One of the terms in (5.13) is

_— J— 2
A (\/+1-5hp + @\41-5) which is of the desired second order in the Hifigkl but with v.**

interspersed in a way that is not trivially comntuteAnother term is-24, (Fm +E\}+1-5)H h

which does have the desirédh, but is of third order in the Higgs fields. To eent these into
the form of —mfﬁh we will need to do some explicit calculations @jahe lines of (4.24),
using thev,"* spinor in (4.19) and thg, spinors in (4.22).

First we calculateﬁm +h,v**and usev,* :%e(A2/¢—(p)//1f >0 from (4.24).
Using a photon momenturg” E(p’— p)” and keeping in mind thatr” = p# + eX’, we shall
regard p* as the four-momentum di,(p) = h, (77) and p* = p* + ¢ as the four-momentum
of h,(p)=h,( p+ 9= () where7 = p*+ei' = '+ d + eA. Thus, we associate”
with the gauge field (e.g., photon) momentum veofa transition currend” = ( p)r“y( p),
see for example, [18] pages 343-345.

In a more complicated variant of the calculatior243, with h, (rr) we may obtain:
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’ 2\ A A?
f n0+
2 g @A o ) 1eA? A g A
_1 /77°+,u)l )(()TCLZ2 - (9 |t (s)T¢U'2 Wz ¢ (6.2)
. + U 4 A9 A A
A’® 1 u e o | ©
=SSN+ - X9 @' Aol ) ) -v
A9 2n0+pu\ A A ( (o'
Similarly with h, (') we may obtain:
hw\/15 LT+ | ST =T arn 1 eA’ PGV Cy go' A 1 A’ J-X(:)
7°+u| 2\ @ A* |2\ A e M)(@
A2
1 eA’® an' g'N 1 eA? go' A go' A
_1 /ro X°r Ol all F Ve hadEaIRVE (6.2)
2 ( oy Az X ] 4Af¢£ XYoar A

_1 0 eAz_l- H € (9T [ i inl) v _y 3
=S+ U //W ZJ#OW,/AWAZX (o'7") (@' A ) X -,

Adding (6.2) and (6.4) we obtain (pay close attamto thesr versuss ):

v, +E\il'5=%u‘/j/\; (Vs e+ ) -
f

. (6.3)
1 € 1 S, [l [N S 1 S] i Al [ S,
2* /lfquZ[«/n'H,uX()T(aﬂl)(WIAJ)X()Jr /nﬂ+,uX()T(wA)(UJ”J)X()

In the g* - 0, thus 77# — 7* limit, with {an‘ w‘AJ}E(a‘ﬂ‘)( ) (gm‘ A)(d nj),
this reduces to:

S =+ -= O o' ol Alp 9 -2vF,  (64)
= TW‘//WAZX {7 g0 N} x

We see that the dominant distinction between (& (6.2) wheng” — 0 boils down to the
reversed order of terms in the anticommutz{w‘rn",w" Aj} . This anticommutator and similar

expressions will become very important in the lakevelopment, because it contains the fermion
magnetic moment. But for the moment, we are fodwsethe fermion mass.
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Given that we have employegt’ — 0 to arrive at (6.4) from (6.3), we should note that
with S. designating the fermion propagator which at theelt order isS. ™ = p- n for a “bare

mass”m, the Ward identity forS.™ — S at any order is given bgS.™/dp,=T*( pO, P

where with T*(p,q, p+ g =y*+A“( p g p+ q is thetotal vertexof the transition current
I =g (p)r“¢(p). We also note thag,I*(p.g p+ g=$( B d- S( ) which is the
Ward-Takahashi identity, reduces to the Ward idgnti the g“ — O limit. In this context,
going back to£(¢/) in (5.13), by takingg” — 0 hencerr* - " in (6.4), we are really first in

(6.3) calculating a termﬁhﬂ +h, V. in S(w(p),q,a( p+ q)) =¢&(pg p+ g, then in (6.4)
taking £(p,g, p+ 9 - £( p0, §. Viewed in this light, and by adopting the natati

£(p, g, pt+ q) - £( po, ;:) we align our parameterization of the vacuum-expdnidagrangian

(5.13) (and (5.14) for antiparticles) with how otemes to parameterize the Ward and Ward-
Takahashi identities which are at the heart of mmadization theory. We also note that the

Ward identity atall ordersis A*(p,0,p)=-0%/dp, with Z(p) denoting the fermion self-
energy, for whichg” - 0 is an “essential condition” (see [18], final fydaragraph on page
267). Thus we see that by going frof{p, g, p+ ) - £( p0, P between (6.3) and (6.4), we
are examining the behavior of the Lagrangian dgnsitder the essential conditiogf — O
through which that Ward identity works at all orsleluring renormalization. In the subsequent
development, rather than calculate analogs to (6r3)(p, g, p+ ¢ and then take thg” - 0
limit to arrive at£( p, 0, p) analogs to (6.4), we shall go straight to (6.4lags by calculating
the £(p,0, p) Lagrangian density, thus aligning the Lagrangiamsity with the operative
essential condition of the Ward identity as usechigh order renormalization. This will pay off
in section 14, when we show how to renormalize gvilaintaining an invariant rest mass by
absorbing any variation in mass at different reradization scales into a gauge transformation.
For further background, the reader is referred @apig to sections 7.4 and 9.6 of [18].

Next, with this in mind, let us calcula@h//( PO, p), ie., Em(q‘ :O). Here we use

(4.22) andE =h,"y’ (andm’ =c'o’ ) intheg” - O limit to obtain:
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] X : g
P _ 2 )T (sm I an 1eA (9T (97 WA
+p A2
o /\/(S) o )((S)

1 eA’ on go' A 7
-=u 770+,U Rl |:/Y(S)T X(S)T :| A +|:X(S)T _X(S)T :| ol

I Arp) A o A7 || 9T
= 1 (70 + )| 1= x O an on o), 1eA(; yorEL g A go' A PR s (65)

P+un+u 4 )¢ A?  A?

7 gl A WA ot
“ P+ u X2 © X ®)
e [ e AT X ] [ A e D
72°+,u) - eA? 1 o o
= 2(—_ P+y |— += H e OLN FNARVORRYE:
i Syl /g//w > e hne” {07 .o N} x© +v,

Before proceeding further, let’'s simplify the fowhboth (6.4) and (6.5) by defining the
anticommutator termA with mass dimensio =+3 in #=c=1 units as:

e
2 ﬂD+ f(”Az

A(p,0,p)= x{o'n gt A} x©. (6.6)

Then (6.4) and (6.5) simplify fofp,0, p) to

T 6.7)
f

_ 7+ u) -1 eA?

hw*b:ﬂz%—ﬂ\/n”w,/HOMWﬁ (6.8)

From the combination of (6.7) and (6.8) we then segfting p,0, p):

° s
V’“’m h,\i15+2v =pN T+ [ - A=+v, _mhﬂ’ﬂ( ;ﬂzﬂ : (6.9)
or more directly:
h 115 “h (L5 2(n"+,u)2—n2 3
hh (PO, Pp=-V"*h - h ¢ *+u -v.°, (6.10)
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This gives us what we need to go back to the f@mnhiagrangian (5.13) and recast the
- _ 2 JR— _ N J—
terms (\Al'sm + @\41-5) and -2/, (v’f% + h”\lf““’) h b into an h,h, term. First, all in the

(p,0, p) parameterization, squaring (6.7):

(th +E\Zr1.5)2

2 2 2 .
=i (104 ) e e 2ma e T e [ A
f f f

On the other hand, multiplying (6.8) by the scalamber4v,®, we find that:

_ P+u) - 2
av,’hyh, :4V+3ﬂ2—( nnﬂ) =0+ %+4Av+3+4v+ g
H @

=+

Combining (6.11) and (6.12) now yields witp, 0, p) :

2
=4V, N1 + /iA +4AV°+4y°
1%

= (v, ) () 2 o /T(,,

3, 3,,2 ﬂD+ﬂ2—ﬂ2
=4y, hwm—4v+y %

More directly, from the second and third lines:

(v, +Bu (no. g

=ahh, -4 [ es) -

Moreover, from (6.9) multiplied through 8h, b, , still with (p,0, p):

eA’ Az
A A ) —— - 2AUN T+ g | —— + AF
7+ u # ( IU) A o a Ap

(770+,U)2—712_

2V, + ) =-2T) -2 P + 20

T+ u

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

Then, using (6.14) and (6.15) in the fermion Lagran (5.13) and reducing yields:
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£(h)=2(p.0.p)=T(h)- v h)
=y 7ty + oty + R+ vy , (6.16)
7+

uf -
2w, =Ry g2t T i

—V6—4V3/,12(no+'u)2_n2+/,[2(ﬂ0+/,1)i2—2/,[ ,770'*'/,1 @\2
' : '+ A Ap

_Af
A+ A?

This has been our goal. Now we have found a tengvam which has the form of
(nD +,u)2 —ITZ)/(ITO+,U)EH// in the

above that also contaidghp. So how do we pinpoint the mass? Contrasting (dt18) from

a “revealed” fermion mass. But there is a ter¥, 1/

scalar field theory, this latter term is analogooighe term—%e2(12vh+ H+{2) A A which
has bothh® and A A7, yet isnot used to determine the mass. Rather, in (2.18utir (2.20),
we identify the boson mass from,” :(e\)2 and the Higgs mass from? =2AV*. In both

cases, we identify the mass framly a vacuum vew and a coupling which ie for m, and A
for m,. To repeatthe mass is constructed only from a vacuum anduglew, and nothing else.

The same applies here, so compar'mg&fvf@m to the expected formrmhh for a fermion
mass term, that is, contrastham_hh@ —2/1fv+SEI;}, and also combining with (4.3) and (3.7),

we see that the coupling i& and the vacuum ig,®. So the mass (rest energy) of the fermion
with c=1 restored is revealed to be:

_oavi=Ld AL {ATe
mc2—2/1fv+—2e£¢ {p} 2{ ” ] 1 é>0 (6.17)

This fundamental result has been the goal of theeedevelopment thus far. It is the
direct analog of (2.20) in which the mass of thalacHiggs field — which is what is believed to
have been detected at CERN in 2012 — is revealestatar Higgs theory. But this is now a
fermionmass and may be taken to correspond to the oluserasses of the observed fermions.
And, as we see, this mass is constructed entirety the energy of the gauge potenti&s$ and
so is in the nature of self-energy> = mc® which should be very helpful for renormalization.
But, because this mass is specified in terms ofthuge potentials, the question now arises: How
do we interpret this result? Keep in mind thatauge potential by itself has no physical
meaning. All that is measurable is a “voltage drog. a differencebetween two potential
energies at two different points in space.
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While neitherg nor A? has a physical meaning by itself, the electronsdmessess an
“intrinsic” spin which Ohanian explains [15] as antirely classical circular energy flow in the
electron (fermion) wave field. Further, we are mehed by the Gordon decomposition
2mI* = 2nyyty = i(zZa”z//—(a”zZ)z//)mv (zﬁa"“z/;) for a free electron that this spin results in a
circulating flow of chargeven for an electron at resiWe see this from the space components
2m] = i(@ékw—(a'ﬂ)z/x)+av (Ea"”t/l), which show that the spin current density

2, (Eak”t//)/ 2m is non-zerceven in the electron rest fragnand even if the convection / orbital

angular momentum current dens@kt/l—(ak@)w=0. So because of its spin, an electron “at

rest” is not really, fully “at rest.” There is awys an inherent, kinetic, circulating flow of engrg
and charge.

Therefore, if consider thaA? in (6.17) fundamentally captures tkiaetic aspects of the
energies brought about by the electron spin, tlygrattoon (6.17) is fundamentally a mirror of the
Gordon decomposition at the fermion mass levelelld us that the fermion mass is no more and

no less than thdifferencebetween the two intrinsic potentiags and A? of the electron which
always has a spin and thus kinetic activetyen at restand that the specific measure of this
difference in potential is given by a “voltage diopeA® / ¢—1 ep between a potentidjeA” / ¢
which reflects self-energies arising from the kiog@roperties of a circulating (spinning) charge,
and a non-kinetic scalar voltaggy attributable solely to the charge without any seilated
motion. So the electron mass arises from its olwat®magnetic self-energies as thterence
between a potentia}eAzlqo arising from the circulating flow of its chargedaa potential; ep
arising from the charge itself absent any kinetics.

Now the question emerges which we shall study ragttein section 14: at what event
point or points in spacetime is thiseA? / -1 ep difference in potential taken, and does the

mass in (6.17) vary when these potentials are takdifferentevent points? We do not at the
moment have enough information developed to anivese questions, but will return to answer
them in section 14. There we shall see that tiffisrdnce is takemt a single point in spac®r

in renormalization language, that this differercéakenat a single, given renormalization scale
And, of fundamental importance, as we shall alsiseection 14this rest mass can be made to
remain _invariant over all renormalization scalegdause any variation in mass from one scale
to the next can be gauged away by a simple gaugesfisrmation of the gauge fields” from
which the mass in (6.17) is constructed@his is what we refer to as “Invariant Mass, ‘date
Gauge Renormalization,” and it will be detailedsattion 14.

Given (6.17), we may go back to all the other éigna developed thus far and substitute
a rest mass wherever any of the other expressions in (6.174) appear. This includes setting
U4 - —m wherever the former appears. First, of course,nvag go back to the Lagrangian

(6.16) and use (6.17) as well a88=E +ep and 7* = (p +eA)2 to write:
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e(h,)=2(p.0,p)=T(h)- M b)
=yt + Vo, + Ryt iyt

mih + 1 mmm o(E+ep-m)’—(p+er)” hh,

mh, hh- Ty =3 . (6.18)

N2 2 2 2
R S Y TS

E+eap—-m

We have in the above eliminated all appearancek aind ¢ in favor ofm andv,*® except for
the A, still remaining in the final term involving the aammutator termA as defined in (6.6),

which will cancel out in the end becausés defined so as to includeld, [, .

As to the remaining terms, keep in mind that thevabdescribes® in any frame of
motion relativistic or not. To get a better handle liege terms, we now reduce (6.18) to the
fermion’s own rest frame, in which the only remaupikinetic activity arises from spin. To do

this we sep=0 thusE =m via m’ = p, ', and we also reapply2m= e(¢2 —Az)lw of (6.17)
in two places. This reduces (6.18) at rest to:

s(m)=£(pﬂp,p= 9=T(h)-Mb)

=hy i, + Vot + e vy ® (6.19)
_[ ;h\zhﬂ ﬁ}mm@_'__ 15 15 —am?* (m A2+\/74

+

It is especially informative to now contrast theoad term formEQ, with the analogous term
for m?K in the scalar Lagrangian density (2.24), thatds;ontrast:

(1—%?&’ 2—] hﬂh# (1+:+h—2Jn]]h2 (6.20)

We see that in each case, the mass terfws)’h? and -mh, b, also have further non-linear

interactions, withh/v and (h/ v)2 in the case of scalars and W@hp /v,® and with its own
mass-to-vev ratiom®/ v,® in the case of fermions. The remaining term irl9p, in the rest

2
frame, is—(e A%+ /A, A) , Which contains a magnetic moment term that wél slexelop

further in the next section.

39



Put into context, in the scalar Higgs theory resd in section 2, we revealed both a
scalar Higgs mass from the potential portion of ktlagrangian density and a “bonus” gauge
boson mass from the kinetic portion. Above, weehewvealed a fermion Higgs mass from the

potential portion-V (m) of the Lagrangian density and not yet touched uperkinetic portion
T(h,). We should expect a similar “bonus” to emergeeheNe know from Dirac theory that

the kinetic termsT(t//)=itZy"aﬂw+etZy"wA, already contain the four-current density

J¥=ayy“y, and that this is precisely the term that may bedGn-decomposed into a

convection (orbital angular momentum) and a spimeru density which includes the magnetic
moment and the gyromagnetic ratio. So as we skallstarting in section 8, the “bonus” that we
obtain in fermion Higgs theory isot the gauge boson and its mass. We already havédna

the scalar Higgs theory. Rather, we shall obtaw mformation about how this gauge field
interacts with the spinning electron via the physié the intrinsic magnetic moment, and in
particular, shall show how the so-called “anoméligs the magnetic g-factor are revealed
directly from Dirac’s equation itselfvhen one considers the Higgs fermidmsrather than the

seed fermiong/ to be theobservabldermions.

Before concluding this section, it has alreadynbeeted that (6.17) may now be used to
place the revealed fermion masghroughout the earlier relationships developechia paper.
Let us now explicitly do this for four particularlyoteworthy cases. First, we return to (3.4) in
which we first defined mass parameper With 4 — —m may rewrite this as:

mw=ppf=(-m-g-&)(-m g+ A)=(- m @2— Aé= ’m2 e ‘pé- Aé.(6.21)

This may now be used to write down an “apples-tplegd relationship to the relativistic
mass/energy relationship (3.2), namely:

m*=(E+ &) -(p+ &) = M+2 me+ - A2 (6.22)

Expanding the latter two expressions then reducintdp some parenthetical emphasis of
corresponding terms leaves us with the relativigtiationship:

(E*-p?)+2(Eap-p &)= ni+2( mg). (6.23)

In the rest frameE=m, p=0 this reduces to the identityn? +2mep= mM+2 m@, with
E’>-p® — n? and Ep-pA — myp. This displays how the momentum four-vectof = (E,p)

and the potential four vecto®” = ((p,A) both Lorentz transform in a proper manner.

Second, we return to (3.6) which in light gf—. -m from (6.17) now becomes:
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ep= ”{1«/“ A’ —1] (6.24)
m

We continue to defer making a choice of sign fréw quadratic solution until we can do so with
experimental data comparisons. But in light oR4§.a negative sign will necessarily yield a
@<0 in all cases while a positive sign will produge 0 so long a®\ is real and not imaginary.

Third, we can now rewrite (6.17) as:
€A% =2mep+ éyp°, (6.25)
which is the quadratic ieg for which (6.24) is the solution. This is also5Bwith g — —m.

Finally, we return to the seed fermions (4.21) ase i/ — —m to rewrite those as:

X(S) a-inl ©
p=-mir-m sp e p=-mA-mAmt | e, (6.26)
7 -m X

Now we turn to the magnetic moments.

7. Development of the Magnetic Moment Term in the &ential Portion V
of the Lagrangian Density, and the Emergence of th®laxwell Equation Field
Terms

It was mentioned in the last section that thecamtimutator tern which was defined in
(6.6) contains a magnetic moment, which t&ranters the at rest Lagrangian density (6.19) as

2
part of the term—(m A? +\/IA) . Specifically, in (6.6) which is forS(p,O, IO), we

uncovered an anticommutator term:
(o7, g A} =(d7) (e A)+(g0 A)d7)=cd (7)(ph)+od (9A)(n). (D)

We now develop this. This discussion is of intefasits own right, but it will illustrate two
broader aspects of fermion Higgs theory which dreven more consequence than the term in
(7.1): first, how terms such as the magnetic monagiges out of a variety of commutation
relationships and second, closely related, how ame space dependenciesolservedohysics
are revealed nab initio, but via Heisenberg-type commutations. We sHatl aee where non-
Abelian Yang-Mills theory such as that of strongl aveak interactions comes into play.

We first observe that? = p' +eA < iD =iJ +eA containsp' =p - id' =il which is
the gradient operator. Thus, we must pay clossnidin to how this operator is commuted.
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And, when we “multiply” something else with this evptor, for example, when we take
p' (goAj), we do not just multiply as if it is an ordinarymber, but rather, we apply it via a

product rule just as we would fod'. Therefore, p (goAj): BeA +@pp A, and not

p' (goAi): peA. The latter would only be a correct equality pf was an ordinary vector
without the character of a gradient. Similarlynfr the right,(goA‘) pl=pAp+ep A and not
(¢A‘) p=pApg. As a result, the careful, precise and correcy wa develop (7.1) via

7T =p +eA is to write:

(0t g W) =(d 1t )(go A )+(@ AN 7)=60 (ir)(oh)+b 6 (gA)(ir)
=o'o! (pi +eA)(¢A)+dd (qu)( b+ e‘A)

o o . . (7.2)
=g'0’ (p'quJ +pp A+ @AA)+&0‘ (¢'A'p+¢)1p'Ar ®' AA)
=0'al (pp A +pA R + ppA+p b 'A+2 @ A
Now we make use of the mathematical identity (sag, [18] page 54):
oo =0 +id* o (7.3)

where £* is the totally-antisymmetric Levi-Civita tensorare'*® =1 basis, to advance (7.2) to:

{J‘#,ijj} :(5” +iéjk0*)((p|d A+pAp+ ppA+pp'A+2 ¢‘AJA)
—gp A+pA P+ ppA+p p A+2 @'A Aric™ o (goi PAg Ap' @ Ag' b A2 ge jA)l-(7-4)
=@A+AD +p A +gp B +2eA * +ic" 0" (pp A +@A P+ pp A+ p A+ 2epA A )

The term we now focus upon is the one with theiteadactoris™c*. This has three

parts. It is easily shown that“c* A N =g [[AxA)=0 by identity,but only if we assume that
the gauge fields commute according[tA”, AV] =0. If they are non-commuting which is the
hallmark of non-Abelian Yang-Mills theory, i.e., EfA”, AV] 0, thene™o*A A 20, and this

is where one would embark upon the Yang-Mills varsof all that is being developed here. To

keep things relatively simple, we shall s8tg*A' Al =0 here and so remain focused on Abelian
gauge theories such as electrodynamics. Bu,mportant to be aware that non-Abelian gauge
theory naturally emerges from this development el \m this way.

Abelian or non-Abelian, the other two parts of |7ade not zero, and are of great interest.
Consolidated witf p', A |= p' A - A g and| p',¢|= pg-gp, itis readily shown that:
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is”"ak((pp‘Aj +pAp+ ppA+pp A+2 @ ‘A’A)
([ 0°.0] %[ ) o] 7. K)o 5. &)
vic? ([0 B[ 0] o] 0, A]-o] 6, A])
vic?([00) X[ 0] Ae el K]0 7, A)

(7.5)

We now have two fieldg(x) and A“(x) commuting with the canonical momentuph.
Thus, we may employ the commutator relationships ¢|=~-id'¢ and[ p', A' |=-id' A, see,
e.g., [18] just after (2.164) to reduce (7.5) to:

iei”‘a"(¢pi A+pAp+ ppA+pp A+2 qyiAjA)
= 0" (0%pA° - 0°pA* + g(0°A" - 0°A%))
+0? (0%pA - 0'ph° + p(0°A'-0"AY) 70
+0° (0'pn? - 0%pA + p0'AT- 02 A
=o' (-OgxA) +go' (-OxA) =d' %0l pA + o' &40 K =d %' pA +1qd & P
=e%d0'pA - o' B =0 [[-OpxA)-goB =g [[E +0A / 0t) - o B

In the above, we have made use @%DgaXA)i =gl pA¥, (—[]><A)i =c*g' A, and
1e™Fk =g%g' A where F* =9*A” 0" A is the electromagnetic field strength tensor and
B=B =-1&"F* is the magnetic field vector, afi=E' = F'°=9' A°-0°A =-0Ogp-0A /0t
whereE is the electric field vector. (Keep in mind thdy =(9,,0,,0,,0,) :(6t 0, ,6y,63) is
defined in covariant (lower index) form so thaft :(00,01,62,63) :(at,—ax ,—ay,—aZ), which

accounts for the minus sign i via raising Withdiag(/y‘”) = (1,— 1- 17 ).)

Now we see a specific instance (the first of wiglt be several) of what we introduced
in the discussion leading to (4.6) and again ptwoi(4.9) when we said that space and time
dependencies which we observe in the physical usgvare not those which appear in a
Lagrangian such as :(//(ié) +eA- ,u)z// but rather are those space and time dependehaes t
arise out of quantum mechanical Heisenberg comiuatat Keep in mind the progression of
development: in (4.7) and (4.8) we began to usenatik Fourier kernele ™’ containing
p, - 7T, = p,+eA to solve Dirac’'s equation and obtain the free episolutions along
geodesics in the curved gauge space(fdr— )¢ =0 in which 0, - D, =0, —ieA,. But to

do so, the gauge fieldd,, had to “check at the door” any explicit time degency which they
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may have had. So as thefgappear in (4.19), and (4.21) to (4.23), thegehave no explicit
time or space dependency except insofar as theytnmagquire such dependency via a
commutation such gsp',¢| = ~id'g or [ p', A |=~id' A with a canonical momentum.

Now, in (7.6), that is exactly what has happenedlrhe field strength tensor
F# =0“A” —0" A contains both the time and space dependency ofjdbge field, and was
“revealed” in (7.6) because of the commutation tr@heships which presented themselves in
(7.5). So while the gauge fields had “checkedhatdoor” their time and space dependencies
when they entered the spinors of sectiothdy now retrieve these time and space dependencies
on the way back out the door because of a canogmamutation And not only are these time
and space dependencies retrieved at the doohdyshow up in the form of @B term which
is a magnetic moment term which contains a magfietet B = 0 x A which involves the curl (a
spatial dependency) of the gauge field vector g@keA. And they further show up in the form
of a -O@p=E+0dA/dt which is the gradient of the scalar potential ardch is equal to the

electric field plus dime-dependencgf the gauge field\.

So not only does the anticommuta{m‘ﬁ,wj Aj} found in (9.6) contain a magnetic

moment term, which we now see is of the forgo (B, but it also implicitly embeds both the
electric and magnetic fields because of the commautaelationships that it produces. In the
subsequent development of the kinetic terms inLdmgrangian density, staring in section 9, we
will uncover not only electric and magnetic fiellem the time and space-dependencies of the
gauge fields, but will further uncover the time aspace dependencies of the electric and
magnetic fields themselves in the explicit forlms§E, [0xE and OxB as they appear in three
of the four Maxwell equations, and in the form lo¢ tmagnetic moment terar (B in lieu of the
fourth Maxwell equation’1[B =0. And this fourth equation]l[B =0 only because we chose
not to pursue Yang-Mills theory by settimf'c* A Al =0 at (7.3). As is well known and as the
author has developed in several other papers [29], [21], [22], OB #0 in Yang-Mills
theory, magnetic monopoles do exist, and these Xéitlg monopole can be used to understand
not only QCD, but the very existence of baryonduding protons and neutrons, and to explain
the proton and neutron masses and nuclear bindegies.

For the moment, however, let us continue on, ugmg) in (7.4) to yield the complete
anticommutator:

{a‘ﬁ,wiAi} :(5“ +iéjkak)(¢);i A+pAp+ ppA+pp'A+2 ¢‘NA)
—pp' A+pA P+ ppA+g pA +2epAA+d %0'pA—go B _ (7.7)
=@A+AP+p A +¢ A +2eA *+0[{-O¢pxA ) -0 B
=gpRA+PADP+pgA +@ B +2eA *+0lE +A /0t)-oB

We then insert (7.7) into the anticommutator t&rdefined in (6.6) along withy - —m from
(6.17), and applyy®" x*® =1 where possible to obtain:
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1 m e i A ( h ot v i N
A(p,0, p):_E\/nO //1 P (pp A+pAp+ ppA+tpp A2 @ AA
-m f
_%\/ﬂom — |5 ;AzX(S)T (gijkaiaj¢Ak_wiBi)X(s)
- V f

Using 1° =E+ep , in the rest fram@=0 thus E=m thus 77° -m= ap, this becomes greatly
simplified down to:

(7.8)

A(p,0,pp=0= S a/A? - 1 (S)T( *g'olg A-go' @)(‘S’ (7.9)

B P gl
Next we use this in the rest frame Lagrangian dgn.19). Two terms cancel

identically via meJ/A? - m&/A? , and A, drops out via the /A, /,/A, =1. We factor out the
lead coefficient, an overall negative sign washgsmthe square, and we then obtain:

e(h,)=2(p.0,pp=0=T(h)-Vb)
=h, 7, + o, + Ry vyt
_[ 1h’php Z_Jmh//h//"' mvls 15_ Am?*- (7.10)

2v V,

+

oo

A second order magnetic moment tefaf B )2 :(JEB)2 has explicitly entered through

the potential termS/(m), as well as the electric field vid'p=-0O@=E +0A /dt. Depending
on circumstance, we can recast (7.10) using thvalgat formulations:

g (g”kajgaAk -¢B ) =o[{-OpxA)-poB =c{E+0A/dt)-goB . (7.11)

The discussion so far has been centered in trenpailt sectoV (3.11) of the Lagrangian
(3.9). Now, we move over to focus on the kinegctserT (3.10), and with it, an exploration of
magnetic moments.
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PART II: REVEALING FERMION MAGNETIC MOMENTS, AND THE
RENORMALIZATION OF FERMION MASSES - LAGRANGIAN
KINETICS

8. Gordon Decomposition of the “Seed Fermion” Elecic Current Density

It is well-known that Dirac’s equation predicts grgmagnetic g-factorg =2 unless

supplemented by the work of Schwinger [23] and itheho have calculated the one-loop and
higher anomalous corrections to this magnetic mam®&y calculating higher-order loops, one
finds an explanation for theeviationof the observed g-factay = 2.002319304361% [24] from

Dirac’s g =2. However, it will also be recognized in the pragssontext that the Dirac equation
for a seed fermiony in the form of(iD) —m)w =0 is the equation from which one obtains the
result g =2. If, however,¢ is notan observed fermion, and if the observed fermian isct
the Higgs fieldh, which expandgy about the vacuum (just &sbut not ¢ is observed in the

Higgs theory of scalars), then one might also smppht the loop approach by also
understanding the observegl=2.002319304361¢ to be the g-factofor the observed Higgs

field h,, with g =2 being the g-factor of the unobserved seed field

To begin a detailed exploration of the magnetic raotof the Higgs fermiong,, it will
be helpful to review the Gordon decomposition. tHa same way that the Lagrangian density
term —-myy guided us in section 6 to look for terms withh,, we will use the Gordon

decomposition to provide guidance as to how to ltwkthe g-factor of the Higgs fermions.
Mathematically, the heart of the Gordon decompasits the identityy”y” =n* —icg*” which

is easily obtained by combining the definitiong“2= y*y" + )" y* and — 20*" = y*y’ -y’ y*.

As to the space components of this identity’ =n*" —ig*’, it is easily shown in the Dirac
representation of they’ that )y’ =-d'c’. Therefore, given that the group structure
relationship for the Pauli matrices g{a‘,aj ] =ig*g* with &% =+1, it is also easily shown
that —-ig’ =-ig*g*. And of coursep’ =-0" with diag(n’”) =(1- 1~ 17 }. Therefore, the
spacetime identityy”)y” =n*" —ic* leads directly to the (negative of) the space-adntity

oo =0 +id“d*. This of course, is (7.3) which we already usediévelop the magnetic
moment terms in the last section, so in fact weehalveady done a Gordon decomposition to
reveal the magnetic moment tergo (B which first appeared in (7.6) along with othemer

for the time-dependency of the gauge field.
With this background, let us approach the Gordarod®osition using
2

£ =igy o +epy 'y A, - pp = A () (8.1)
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which is our original (3.8) to which we appendee@ thi, (E{/l)z term in (3.9). The mass

parametery was first defined in (3.4) and later developecd)im:%e(A2/¢—¢) =-=u>0in
(6.17). The Dirac equation corresponding to thestfithree terms in (8.1) is
iy 0 4 +ey A, - =0, and the related adjoint equation i, yy* +ewy” A, + up =0.
We then take this pair of equations and rewritentiier a free field @, =0 ) as:

z_i’(i%/ﬂa_”w) =%¢/_. 8.2)
(0,0 ) =1

We then use the identity”)y” =n*" —ic* just discussed while multiplying the first equatio
from the left byw)’ and the second equation from the righty§y to obtain:

oy vou) =0 (n” -io")og) =50y -0 op =0y

‘ : (8.3)
% (-i0,0y"v'w) :%(—Ia (" =i ) = =50 Y = 30,40 = Sy Y
Then, combining, we arrive at the Gordon decompsit
wyw ——(wa w-0"y)- ——a (e y). (8.4)

2 2u ¥

where we have also insertegl/ 2=1 in the appropriate position, knowing that with th@n
defined as3*” =10*7, the coefficients of1/24)d, (zﬂa”” ) 2(1/2u)0 (17/8””(,0) represent
g/ 2 andg, respectively, see [18], eq. [9.138]. We now tise to replace the current density
J¥ = ayy*y in (8.1) and so write:

=iy o+ i(@aﬂw—a#@p)m +_g—2flag (0o w)A, - gy -2, (o) =T-v, (85)

As noted just before (8.1)¢g" =£%0*, so in three space dimensions the spin matrix is
10" =9 =10 =& . There are now three main kinetic terms in thgraagian density.

First is it?/y“aﬂt// for the translational motion of the electron. Siill generally go to zero at

rest. Second is (e/2y)(47/6”w—6”1ﬁa) which is the convection current and contains any

orbital angular momentum associated with the edectrThird is(e/ Zy)ag(lza”"t//) A, which
is for the magnetic moment.
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The fact thatg/2 =1 in (8.5) is what leads us to state that Dirac’'sapn predicts a g-
factor g =2. The fact that the observed g-factors are someWwioath” of 2 by a small amount

was first thought to be an “anomaly,” but was tlexplained by Schwinger [23] followed by
others as resulting from loop diagrams at variaaers. But (8.5) is for “seed” fermions. If the
observed fermions are Higgs fields expanded abbmutvacuum as developed for the mass terms
in Part 1, then the observed g-factor should bendoin the coefficient — not of a term

ag(lZU””l/l) which contains the seed fields as in (8.5) — Hu& dike-term that contains the

Higgs fermionsh,. One may also anticipate that such a term foHiggs fields will reveal the

“anomaly” to actually be an inherent feature ofdais equation, which then maps over to the
usual high-loop approaches in an orderly mannemaag help at the same time to gain a better
handle on renormalization issues.

The next few steps from (8.5) are relatively babig they need to be done carefully so
we take them step by step. First, focusing orkthetic termsT while applying the result (6.17)
to sety =-m, we write:

=y o, i (00, -0, w ) A =270, (pay) A, (8.6)

Keepingg/2=1 as a “placeholder,” we first separate the spadetiare components as such:

=Y 0y + iy o =i (W0 - dp ) A -1 = (0, ~ 0,y ) A"
m (8.7)
9 g

0 k
52— (400” w)A,, —22— (l//Uﬂ l//) A,
Next we convert (8.7) into momentum space vvqbtbp) and tZ( p') where as earlier at the start
of section 6,p'* = p* + . For the moment, therefore, we will conside{p, g p+ ¢. This
means that we use apply the product rule and teemyy = p 4, iaﬂzZ = —p;ﬁ and then raise

all indexes Withdiag(/y‘”) =(1~ 1~ 1 } to arrive at:

T(papr d=gy Bp-oy By -0 by+ Bow) A" (0 tw+ Bow) A .

LISl P P e P e

Finally, we fully separatey* A, into its time and space component and the raisénitiex on
the components oA, . In the process we lose two terms becausg®©ft0. We now obtain:
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T(p.a pr Q=g Bu-gy* by - (v B+ Blw) A= (0 w+ Buy) A
+%2—?n(ip'oﬁai°t//)Aj ——gz—fn(tZaj °ip°t//)Aj .(8.9)

82 (i) 20~ (i ) W LS (o) A+ 2o i) A

Now, in the bottom line of (8.8), using the Feymnsash notationA= y“A),, we have
terms of the general fornw*’ A, :%i[y",y’]Aﬂ :—éi[A,V’]. The point is thato*’is an
“anchor” which holds the commutation position Af. At the same time we have terms of the
form p“c* whereby p’ enters to the left ob*” and thus to the left oA, and of 0™ p”
whereby p enters to the right oo*” and thus to the right of,. Carefully maintaining this
ordering amongp, p' and A, we “pin” the A“ immediately to the right o&* and keep the

p, p' intheir order relative ta*”, to restructure (8.9) into:

T(p.a pr Q=g fu-wy bw-"uw( B+ Blw A+ w( B+ b A 610
H2{u[p°a N o N ply g ot K=ot Ry -y Fok A-a* A by}

Note in the above that we write;/_J( p'“ + p”)z/J with p'“+ p” between the fermion
wavefunctions recognizing that'¥ operates on (and is to the right ¢f) and p* operates on
(and is to the left of}y. This is pertinent to being able to identify trbital angular momentum
via commutator relationshipH,L] =~i(axp), which we review in section 15. Finally, we are
ready to take thep=p and q=0 limit to obtain theT (p,0, p) which aligns with the Ward

identity. We also now move the”’ to the left of each expression in which it appears
emphasize the commutator pf' and A“. This turns (8.10) into:

T(p.0.0)=0y’ Py -y By-—u( B R~ B AJy
(8.11)

g e[ . - — — - '
w0 {wo [ o0 A Jy o [ o Klw-go [ B, Ay
Had we not been concerned to take special cateeabrdering ofp# and A¥, which is to say if
one treated the commutat@rp”,A”] as if it was zero, then the entire bottom line(®f11)

would go to zero by virtue of taking’'— p=0. But with the commutators, we still have a non-
zero expression, and this is the place from whighrhagnetic moment arises together with the
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time-dependencies of the electric and magnetidgiéb reveal Maxwell's equations amidst the
Dirac equation.

Specifically, with A° =, we once again applyp',p|=-id'p and| p', A |=-id' A
which we used to arrive at (7.6). Further, wii =E and Hy =Ey whereH is the
Hamiltonian operator, we apply the Heisenberg pécequation of motiod®Al =i H, Al | for

an Al which as noted following (4.21) has ab initio time dependency but acquires a time
dependency exclusively from its commutation witd Bamiltonian. With some index renaming
this turns (8.11) into:

T(p.0.0) =0y Bu-uy By -—u( F A= § Ay 612
+o 2w " A+ yd g+ ot 4o A )
2m 2

We now have a first appearance of various tedfi8’ which are of course related to the
electromagnetic field strengthF* =9#A” -0"A“, and they contain time and space

dependencies of the gauge fieldé which are revealed simply from the commutatorsntbu
through a careful dissection of Dirac’s equation.

Now let's work with *¥. From o* =1i (y”y" —y"y”) as well as the SU(2) group

structure relation[aj,ai]:2i‘£j"‘0k it is straightforward to use the Dirag” in the Dirac
representation in customary manner to deduce that:

aOi:i[O ”'jsiai; d‘:éik[aok ijfé"kf- (8.13)

g 0 o

We then may use these to write (8.12) as:

T(p.0.0) =0y Bu-py bw-"w( B A= by 614
+5 o (way (9p-0° R )+ & yziyo A

Now we may explicitly show the components of thecic and magnetic fields. Specifically,
one uses the space componentsF4f =0#A” 0" A* as well as-B* =1&£™F' to show that

g*g' AN =1 F =-B*. Additionally, revertingg - A°, we haveF'® =9'A°-3°A = E . So
with this (8.14) becomes:

T(p.0.0) =0y’ Pu-uy bw-_"¢( 8 A= b W+ > (@ B-y2By). (8.15)
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The magnetic moment term thus shows up explicitlyhie form—(g/2)(e/2myz By . In
2x2 Dirac component form using (8.13), this becames

T(p.0.0)=0y" Pu-gy bw-—uw( 0 R- pRy+  Zy(d E-18 )y
(8.16)

— TP — i i — O A0 g e— -0'B' id'E '
=gy Y-y By -—u (P A= p A+ 2 [iaiEi —aiB‘}//

So -(g/2)(e/2m)yz B*w =-(1)( e/ 2my=z By is yet another way of saying that in Dirac
theory for a seed fielgy, the g-factorg = 2.

Now we are ready to expand this about the fermiruum viay (x) = v*®+ h, ( x) and
@ (x)=V*+h (%) of (4.17) and (4.18) to obtain the observed Hifsgmions h, particularly
the like termE(iai E->B ) h, rather thartﬁ(icr‘Ei ->'B )41/, and to see what then happens to
the g-factor. Via (4.17) and (4.18), we may “dt¢he desired tem@(ia’i E-3B ) h, into:

h, (ia'E -5'B')h, =(4Z_—F)(i0” e -7 8)(y-v")

" .(8.17)
:Z(iaiEi —5i Bi)w+v+1.5(ia,iEi —5 Bi)\/+l.5_\/+1.5(iai E -5 B‘)z/l—a(ia‘ =iy B)\Z}.s

There are very similar in form to the tern@hp +E\i+1'5 studied in section 6 and to
VIS 1=\ 18 152y ¢ developed in section 4, but for the sandwi(:hemtéjlcriEi -3 B‘). In
section 9 we develo@(ia"Ei ->B )z//. In section 10 we develoﬁ(iafi E->B )\/+1'5. In
section 11 we developﬁ(iO/‘Ei -3 B‘)(/IﬂZ(ia‘E‘ -3 I3‘)\/+1'5. In section 12 we put

everything together to identify the g-factor (thare really three different g-factors) associated
with E(ia‘ E-3B ) h, . In section 13 we use these results for empigeadictions.

9. Magnetic Moments of Seed Fermions

To develop(,Z(ia"Ei ->B )z// we first make use of the fermion particle (positanergy)

wavefunctiong from (6.26) and its adjoir@ ="y under the( p, 0, p) condition of the Ward
identity. For the magnetic moment term in (8.1Bis gives us:
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g €

— i i o'B' ig'E!
+E?n¢/(|aE -I8B )y = +__¢/[ }

ic'E! -o'B’

SN—

] - - ©
=+ 3N —m)| 7O -y an M‘U’BJ 'U'Ejj A
2

k
2 i m-m|ic'E' -0'B _U”k)(@) ! ®1)
— T(S)a-jBiX(S)+XT($ ainl Bl =——— o'n )((S)
=+ 98N 0 _m) - 7'~m
2 2

Y (S)a-JElnDk—ﬂkX(S) iy 7;'77' gIE Y
-m

Now let's develop this expression. Using standa&atnangement, being careful not to alter the
position of 77 = p +eA which contains a momenturp', and segregating the' out front
following some index renaming while carefully maiming their indexed ordering, we obtain:

g€~/ i <o o'B' ig'E!
+E%w(laE ZB)‘/I Jr__"ll(la’EJ -0’ B! v

ge X' (—(ﬂo—m)za'DB)((s) +0.i0.1'0-kn.iBjn.k))( .(9.2)
T(s) e T ARYC)
> 2 P +ixy"¥do (E Vi n‘EJ))(

Now we turn once again to the identityo’ =" +ig* ¢ which is a corollary of
Vv =n* -ic* as summarized prior to (8.1). This means thangisi = p +eA,

X' Ox9 =1 and[Ei A ] =0 thus e*g* (E A -AFE ) =0, the latter term in (9.2) becomes:

O (E -7 ) ¢ =i(ER -7 )~ YO o (Eni - B )y
=i(E'p - PE +EeA- ehE)- Y O (E p- PE + E oA &A)x®
=—i[pi,E'] Y Oekg k[p EJ]X(S)

:_ai Ei _/\/T(S)Igljk ka E]/Y(s)

(9.3)

Above, we have now used the commuta{tqn‘ EJ] -i0' E', which actually starts to unfold

terms from the electric and magnetiarrent densitiesof Maxwell’'s equations. This is yet
another example of a space-dependency — this tmibé electric fielde — remerging through a
Heisenberg-type commutation relationship with cacmlnmomentum. Specifically, starting

with J*=9,F* , we have p=J°=9,F°=90E =-0' E =0[E. Additionally, with
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0=0,=-0 hence £*9'E' =(-OxE)", the ie*c*d'E' term evaluates out to
ie*g“o'E! =io* (—DxE)k. Thus, we consolidate (9.3) into:
iXT(s)daj(Eiﬂj—#Ej)X(s) =0E+iyYalUxE) ¥ = p-ix"Sic{oB/a) x*?, (9.4)

explicitly applying two of four Maxwell equationsamely Gauss’ lawd [E = p and Faraday’'s
law OxE=-0B/0dt. So this now reveals a time-dependedBy dt for the magnetic field.

Next let's turn to the termy"®c'o’g*r'B7* ¥'¥ in (9.2). This contains the product
golo* of three spin matrices which we now must deconstruct. Heeeuse the identity
oo =0 +id* " in succession as well &'&™ =& = 5% 5™ -5 * to obtain (this can
also be validated by explicit use of the):

ool =(5i +id' d )O'k =J o“+id 00" =8 o +ik (P5 +HE 8§ )
=0gk+id" I - Mo =5 o +id & —(dv'k " -J o )0‘“ : (9.5)
=0g"+0%d - +ig*

We then use (9.5) to write:

x'Ooda“ mBinxy? =™ (5”ak+ g -0 +ie" )#Bjnk,\/(s’

(9.6)
=X (oA +onB R -d Bt +iek B 7t )

We may write 0B 7t +0' 7B it =(mB)(oUr)+(o)(Bn) for the first two terms
becauses' are constants and can be commuted except with athe But 7=p+eA and the
magnetic fieldB =[x A , so with identityA EQD ><A) for anyvectorA, we have the reduction:

B =aB=(p+eA)[OxA)=p{OxA)+A{OxA)=p {OxA)=pB =p'B'. (9.7)
Similarly for B'77 . Therefore:

onBr+onBr =pBdr+on B p=(pB)(ch)+(cn)(BH). (9.8)
In the rest frame, this term thus becomes zero.

As to the term—o'77'B' 77 , we leave this exactly as is, noting that with=p +eA , in

the rest frame-c'm'B'77 - —-o'eN BeA =—-€&A%r B, and so this term is part of the fermion
magnetic moment.
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Now we return to (9.6) to develog™ 77B'7*, using 77 = p“+eA’. In Abelian field

theory the term withs™ A B! A =0 by identity. As noted earlier after (7.4), if on@anted to
develop this for a Yang-Mills theory such as theer strong interaction, then one woulot
set this term to zero. But here we stick to Abeliatheory so terms

AB A - AB A= B[ A A|=0 drop out. Also, we are able to commyteB' A = A P B.
We also use the commutatidrp',B' |=d' B as well as0 =0, =—9' and (-0xB) =*a/B",
and at the end apply Ampere’s lawxB =J+0E/0dt. The result is:

ie*n B =ie*pgB g+ eAB b+ pB eai & EAB'eA

=ip’B'p’-ip’B p+i pBp-i pBpH FBp PB

vip'BleM—i FBeA+ pBeAi DBEA DBEA p’BeA

+ieAB pF-ieABp+i eAB Ppi e\ p'+ieXBp-ieAB

:(ale—azBl) p3+(6 2g3_j 3Bz) p1+(a JoSp 1B) p? . (9.9)
A([p%87]-[ % B']) em+ {[ 7. B]-[ 7. B]) eA ({ AB]-[piBTen
=(0'8*-0°B") 7 +(9°B°-0 °B) ' +(0 °B- 9" B) °

=-(0xB)Or=~(J +0E/ot) T

This reveals the space dependeiityB for the magnetic field, and becausgB for Abelian

gauge theory this term is zero. But as just nafégt (9.8), we have a related tewriB for the
magnetic moment.

Having developed these two terms, we now reve@.8) and insert (9.8) and (9.9), thus:

x'Oo'ala m'Bin yd = y™9 (0’ nBir+d B -o B ))((S’ +id*n Bt
=x"O((pB) (o) +(om)(Bp)-0o' 7B 7 ) ¥ ~(0xB)Ir : (9.10)
=)(T‘S)((p B) (o) +(on)(Bp)-o'm'B'w )X<S> ~(J+0E/ot)r

We next return to (9.2) and insert (9.4) and (94d®) usex'® x'¥ =1as appropriate to write:
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+=—yl(laE -2 B =+—=— o o
2 me( )l/’ 2 me(ia’E' -0'B’ d

o X' ((p B) (o) +(oUr)(Bp) - (7" —m)zaEB—aiﬂj B ))((S) -(OxB)tr
o o (9.12)
+OE+ixy Yo dOxE) x*°

N @

X' ((p B) (o) +(oUr)(Bp) - (7" —m)zaEB—a*'nj Bni))(“’ ~(3+0E/at)
7 -m

N @
N|C3°

+p-ix"9afoB/at) y*

Atrest,/’-m=E+ - nF @ andp=0thus77 =eA ando'7'B'7 =€A’cB. So
this reduces over common denominators which aterfed out, in the fermion rest frame, to:

(iaE -= B‘)(//=+—g—ez//(

+

]l

ic'E! -g'B!

2 2m jw

XT(s)(_(ez¢2+ eZAZ)O'[B +i WEGDXE)))((S) +e¢[J|:E—(DXB)@A) . (9.12)

N @ Nlllm: N @
NEENEREIE

—_———

NG (—(e2(02+ eZAZ)a[B —i W[@@B/@t)))((s) +e(pp-J B\)—(OE/Gt)DﬁA)

It is intriguing to find that the magnetic momeatrh (e/2m)zZ( o' E-% B)(// in the fermion

Lagrangian density embeds three of the four Maxwgliations in this way, and presumably
becauseJ[B =0 (because we have chosen to stick to Abelian thedrgs no explicit
appearance of al[B, but rather, shows & [B. It is also worth noting that the Lagrangian

density termJ? A = pp—-J[A has reconstructed itself the final line above.dAas we have

been pointing out throughout the development, wividestarted out with gauge field®‘ which
were stripped of any space or time dependency \lenentered the spinors in section 4, these
gauge fields have now regained their space and tleendency strictly via Heisenberg
commutation, and furthermore, the particular spautime dependencies revealed are precisely
the spacetime field dependencies that appear &oeligctric and magnetic fields in Maxwell’s
equations! This reveals an extremely fundamerttalcwiral interrelationship among Dirac’s
equation (note — the result (9.12) makes no usefyeliggs fields), Heisenberg commutation,
and Maxwell's equations. If one of the thrustsG#ometrodynamics is “mass without mass,”
then here we have revealed “spacetime dependertbhgwispacetime dependency,” with of all
things, Heisenberg’'s matrix mechanics sitting right the middle of this fundamentally
geometrodynamic result.
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The final developmental step is to note the cosdfit in (9.12) of the magnetic moment
term (e2¢2+e2A 2)JEIB. Making use of our earlier fermion mass resultl{§ written as

e’A%=2map+ ép’, and separating terms somewhat differently noudgie

g e — i i Qi o'B’ iUiEj

EZ_w(IaE ZB)(// +__w[laJE‘ -0'B! v

:%{ T(sm.DBX(S)_l_ (I)(WS)O'EQDXE ($+Dm5) n‘(DXB J . (9.13)
-9

(mze(1+ j S)UEB)(9+7(—|)(T(SJEQGB/6t))(S)+p)—e7;1(eJ+6E/6t)D\j

This the a first appearance bt ep/ m factor which will be central to revealing the “analous”

magnetic moment for the Higgs fermion fields, artuoh at the Schwinger [23] one loop level
will connectep/ m to the running coupling number/ 277.

10. Dissection of Higgs Field Contributions to theMagnetic Moment:
Vacuum Self-Interaction

As noted in (8.17), Of course, the expression3Prhay be “dissected” via (4.17) and
(4.18) into:

.(10.1)

N @ NI«:

z_en‘z('aiEi 2B )y
e
v

(iwE -8 ), + V(i B -3 B ), +h (id B -3 B)'*+v (' E -7 B )"

/8

15

In this section we shall obtailﬁ(iai E-IB )v+ In the next section we shall obtain

F(iafi E -3 Bi)m +E(ia’ E -8B )v’+1'5. Then taking a difference from (9.13) via (10.1),

we will arrive at our target expression qu;(ia‘ E ->B ) h, .

Analogously to (9.1) we start out by using theifpos energy vacuum of (4.19) to form:
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. iBi i JEJ
+g—el//(|alEl ZI Bl)l// +_g_V15 -0 1o V+1.5
2 2m

22m " |idg'E! -o'B
2 w A Bl igiE! X©
—49 el e o A [-0'B o
"o maaglr “A? |iglE! -0'B M)((S) : (10.2)
- A
.. A @A
—TOFiRiyd 4 T(S)¢UI i gl (s)
R A A A Ca e
2 2rn4A ) k Ak i Al o
9 iy OgIE] ¢12A X(s)_i)(m(fizA GIEI YO

Then corresponding to (9.2)

—(-0B! id'E!
+ 9 C\5(igE -y )y o=+ 9 8y 0B I0F ]
22m "

2 2m ic'E! -o0'B’
S (10.3)
TO(-A%A%g B +0'c' o \pA'B pA") ¥ S (
_,9 € | X ( - mES )X +ix Yoo’ (E'AJ—A'E‘))((S)
2 81,¢m A

As in (9.3) we now use the identity'c’ =" +ie* o for E'Al - AE’ term. Here,
[E',A |=0 because these do commute, an‘Ha"(E‘Ai —A‘Ej):O as noted for (9.3).
Consequently this entire term becomes zero, that is

iy 9o (EiAj—AiEj)X(S) :W(Ei A - AF )—XT(S)@de‘ (E Al - AEj))(S) =0, (10.4)

and (10.3) simplifies to an expression with onlygmetic and no electric fields:

—_— — (0B id'E
+1'5(ia" E_5 B')V+1'5:+—g—v+l B o .E |y
2 ic'E! -o'B!
(10.5)
-,9_€ X'O(-AA’gB+0'0 o pA B A ) X
2 81, gmA?
Now, as in (9.6) we apply the identity (9.5) ahd allowable commutatio[nA‘, B’ J =0.

We also recall from before (9.9) that fAbelian gauge theory which is what we choose to
develop hereg™ AB A =0. And, as in (9.7), we recogniz[A =(0xA)A =0. Therefore:
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)(T(S)a‘a‘akquingaAk)((s) :)(T(s(é”a'% od -da +idk )qui B qaﬁf)((s)
:¢2XT<S>(aiAiBiA+a—iAB A-c' ABRA+ie*AB A)x*) . (10.6)
=gy ( (cA)(BMA)-A 2a[HS))((S) =—¢gA 2y OgBy'?
This should be contrasted to its counterpart (9.10)

We finally insert (10.6) into (10.5) to obtain:

o _ (_Sipl igiEl '
+3 V(0B -2B )y =+ Syt “oB IgE
22m” 2 2m ic’'E! -o'B
(20.7)
-_9 2 T ) )
=—= +e°A o B
2% (€@ +A%) Y Yoy

This should be contrasted to (9.12) and partic;alar(le2¢2+ €A 2)0[8 . As we did for (9.13)

we use our earlier fermion mass result (6.17) emitise’A° = 2mep+ ép” to rewrite (10.7) as:

_ —-0'B' ig'E!
+giv+1.5(la| E—5 B')V+1'5=+—g—e\/+1' o Sy
22m 22m ic'E! -o'B!

(10.8)

__ g1 a1y (9 — 9V+3( @J 3 (3
=—=__11+= eo (B === |1+-L & (B
2 44, ( mj/\/ X 2 2n m X X

where we have also included the vacuum result f(6ri7) written asl/4A, =v,*/2m to
eliminate the couplingl, . This, finally, should be contrasted to (9.13)d also to (4.24) which

shows the calculation fov,® = v.**v,** as opposed th(ia'i E-2B )v+1'5 above where the

two vacua are sandwichirig'E' -Z'B'. In fact, making this contrast explicit, we shatt

+v+1'5(ia'i E-3B ) v =y (1+e—¢j)(T(S)a[B)(‘S’ = —v15v15(1+ipj)(T(5)aEB)((s) . (10.9)
m m

That is, the termia'E' -2'B' - —(1+ep/m) x'®cBx® as a result of being sandwiched

5

betweenv, v,*® and v,'®, i.e., as a result of its interactions with thegouacuum. Put differently,

if we wish to take thev,"* at the right of+F(ia'i E-YB ) ®> and commute it all the way

over to the left to get it right next t8,*®in the form v,*5, 5=\ %, then as a result of this

commutation, one will automatically generate a nedign moment term of the form
~(1+ep/ m x"PaBx9. This will eventually turn into the lead term tfe Higgs fermion
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magnetic moment, and will thus be directly relai@the leading one loop terms in the magnetic
moment “anomaly.”

11. Dissection of Higgs Field Contributions to theMagnetic Moment:
Fermion-Vacuum Interaction

In this section we similarly develoF(iO/i E -3 B‘)h,, +E(ia’ E -8B )\/+1'5 in the
(10.1) Higgs field dissection. It is importantwmrk with these two terms in tandem, because
the symmetric left-right positioning of,*® « h, relative to one another is responsible for
unveiling some critical commutation relationshipsalving various fields to reveal further time
and space dependencies. This is analogous talbdation ofﬁhﬂ +E\l+1'5 in section 6, but

with ia'E' =3 B' sandwiched between the spinors.

Noting that from (4.17) and (4.18) théy, =¢/—V,** and h, =¢ - V% the specific
calculation we wish to develop here is

v¥(id'E -2'B)h,+h,(id E -3 B)**

- 11.1
=v"(id'E -2'B )y +y(idE -2 BV -2v,**(id E -% B)v* (44

We just foundﬁ(iai E-3B ) ®in (10.8) so that calculation need not be repeaW@ thus
developF(iafi E -3 Bi)l// +4l/(ia‘ E-YB )\/+1'5. Using (4.19) forv,*® with v*® = v*%™

and using (6.26) foyy, as well as suitable adjoint wavefunctions, angbamallel to (9.1) and
(10.2) this calculation sets up as follows:

+%2_‘:n(ﬁ(iaiEi -3B )y +g(ia B -3 B )V

(s)

2 AT —in] i X
N e B
m

11.2
A2 iclE! -0'B’ o (11.2)

(S)

ic'E! -o'B x®

(s

5 L ini i X

_9el /o m i{XT(s) YT on }[ o'B’ 'UJ.EJ_J A
AZ

Corresponding to (9.1) and (10.2), this first beesm
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+§_6(F(iaigi -3B )y +y(ia'E -3 Bj)\/+1'5)

22m
T(s) (s m(pa‘ ol o X0
- o[B + B
XoTX A? 72"—

2
__9el Jro-m&

22m2 Ao

(11.3)
3 W
2

k
+|X (S)O']E]noﬂk X(S)_i)( a-J'Ei)(HS

T(s) (9, 3 O o JWAk ©)

S| - oBxy"”+y B —X
_%2_?]‘1% ﬂo_m ;6\ kAk nD_m |ﬂJA
P iy 9giE {ﬂiz X(s)_iXT(an oIEl Y

This may then be consolidated in the manner of) @@ (10.3) to:

+gz_?n(F(IaIEJ —Zj Bi)w.,_@(iai Ej _zj Bj)\/+1.5)

T(S) i e j -k inij i pi (s)
oy (S)O'[B)(($+@( ogoo (A B!7+ ' B! AK))(
A (7 -m) (11.4)

66\2
4 A@ +|X T gl g (Eiﬂj_ﬂiEj)X(S) _i@(T(S)aiai (A‘Ej —-FE AJ)X(s)
(n"—m) A’

In (10.4) (and (9.3) prior) we found thgy" Yg'c (E'A' - AE!) ¥ =0. This means that the
final term above drops out entirely. The ten’nﬂT(S)a‘aj(E‘ﬂj —n‘Ei),\/‘S) has also been
previously found in (9.3) and (9.4). With (9.4)daiy" @'’ (E A= AE') ¥ =0, (11.4)
reduces to:
+%2_$n(vil'5(iajE] _si Bl)w +£//(ia" E -5 B )\/+1.5)
Y Oa By +@(T(S)aiajak(AiBj”k+’fBj A)x®
Az(no_m) : (11.5)

=81 [

Ao JOE+iY ‘S)UEQDXE)

-m)

Now in (11.5) we have the termp(“s’a‘aja"(A‘B‘h“+77"Bj Ai‘))((s). We first use
identity (9.5) to expand to (contrast (9.6) and.§)0
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@\/T(S’J‘aiak(A‘Bjn“ +77 B N)X‘S)

o .(11.6)
@(“5)( (m'B'A+AB7 + ABrr +/r BA)-20 JA'B’I))(*‘)+i¢£”k('/B}‘T+)TB n)

Now, for reasons already stated via (9.8),B' =AB=A[{0xA)=0 and 7B' = p B, so
(11.6) may be reduced somewhat to (note the plrati€9.8)):
@(T(s)a"aiak(A‘Bjnk +71 B! AK))((S)
@(T(S)(p‘Bja‘A+dAB p-20° AB#))(“H@”"( A B+t J'B"A) . (11.7)
=g ((p[IB)(aD\)+(aB\)(B p)-20'A B ))((S) +ige™ (Ai B+ B'Ak)

As after (9.8), we note that at rest’ (AjB‘zf +77 B Al) ~ —2éA°c B, so leave this term
exactly as is.

Finally we have the terrie’™ (Ai B 7 +77B! A ) . Keeping in mind thatt* = p* + eA',

as noted before (9.9x™ A'B' A =0 by identity, but again, only for an Abelian gauge theory
with [A", A”} =0. Also noted at (9.9) is that we are allowed tonowite pB' A = A pB.

Finally, we make use of part of (9.9):
i¢:s”"(AJB"nk +71 B A):ig“"( AB p+ pB 50\)
:iqp(sz3A1+ pPEEA- B A gB A§
+igo(Bsp1A2+ pP’BPA- Bp K- ¢ E§A§
+ig(B' P’ A+ PBA- B AR-pBA) . (11.8)
(8-, 8) ui([ 9. 8] . &) Al o 8)-[ ie ) »
= p(0'8% -0°B") A’ + (0 °B%-0°B’) A' + (0 °B -0'B%) A°
=-p(0xB) A = -¢(J +0E / 0t) A

With this we revert to (11.7) and use (11.8) toteuri

o Oo'I o (ABI + B A)
=" ((pB)(cR)+(0A)(BD)-20'AB 7 ) ) -p(OxB)A . (11.9)
=" ((pB) (o) +(oA) (B p)-20' AB 7 ) ' ~J +0E /0t) (A

Now we use (11.9) in (11.5) which yields:
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+%%(\/15(|a1Ej Zij)(/l+(7/(iO’jEj —Zij)\Al.s)z_%l \/ﬂol m\/w

X" (¢(pB)(a ) +p(c)(BP)-2A%(7" ~m) o B-200' AB 77 ) ¥ ~ (D xB) A |-(11.10)
X A2
+OE+ix Yo OxE) y©

We certainly see many parallels to the correspandetationship (9.11). These are
brought to the forefront at rest, where agaih—m= E+ @—- nF @ and p =0 thus 77 =eA
and20'A'B 77 =2&€A%c B . Now we have:

+3 2 (v (ia'E -2 B )y +g(id B -3 B)V)

2 2m
__91 |A° —4y Y er By += (|)(T(90EQD><E) ($+D[E)—i(DXB)D\ . (11.11)
24\ A, @ AZ

__91 /A s s
=55 /]f(4)(()w[BX()+¢( |,YT‘9a[QaB/at))(‘9+p) (eJ+6E/6t) J

12. Formulation of g-Factors for the Charged Higgd.eptons

With (11.11), we now have all the ingredients neettepinpoint the coefficients of the
h, (ia'i E -8B ) h, term as laid out in (8.17) and (10.1). Becauseuhderlying premise of

Higgs theory is that thebservedphysical particles are vacuum-expanded Higgs fighda
scalar field theory andh, presently) andhot of the seed fields¢ in scalar field theory angy

presently), we shall now wish to combine the resintim (9.13), (11.11) and (10.8) respectively,
to directly express@(iai E ->B ) h,. Doing so in terms of thE andB fields (recognizing
that we can use Maxwell's equations at any timestexpress in terms of sourcgs J and time
derivativesoE / dt, 0B/ dt), we obtain:

h, (ia'E -£8')h, —(w \/15)(w E-38)(y-v*)

=%[_mz[1+e_n¢]7j)(T(s)m.[BX(s)+e ( T(sa.[quE) s)_,.D[E)_%"(DxB)U\]

(12.1)

491 |A° 4y Ve By + (|)(“0[QDXE) <$+D[E)-i(DxB)EA
24\ A, @ A?

g1 &) . 19 ()
-=__|1+= eo B
2 44, ( ij X
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Now we restructure this to segregate each of #ld fith its coefficients. In so doing, we make
use of1/A, =2v,°/ m from (6.17) to replace the coupling with a vacutmymass ratio. Thus:

h (i€ -3'B)h, =(p-v**)(id B -2 B) (- v*)

3 3
Aol e
2 2m m

em 19\/*\/7 } T(sa[quE)X(s)_,_D[E)

_%emle\/ﬁf }DXB

Next, let us fine tune (12.2). Becausg(ia'E' - B )h, is part of a Lagrangian density

in spacetime, it has a mass dimensidr +4 in 7 =c =1 units of mass, length and time. Often,
for example in [18] at (2.165) the B term appears as part of a Hamiltontdnwhich has a
mass dimensionalityp =+1. In a Hamiltonian, the term of interest whichatis” the g-factor

g/2 is =(e/2moB. And of course, the g-factor is a dimensionlessiber. But in a
Lagrangian formulation such as (12.2), we needitét pp an extra mass dimensionality of

D =+3, to go from aD =+1 Hamiltonian formulation to & =+4 Lagrangian formulation. So
the question presents: from whence do we pick updaled D = +3 mass dimension? And, of

course, we also need to pick up the custoner®m flag. Specifically, the termy" ®eg B x°

which hasD =+2 needs to acquire an additionBl=+2 to have a totalD =+4 and thus a
dimensionless coefficient which we can relate ® ghfactor.  Additionally, it needs to show

~(e/2m) o B to connect with the usual Hamiltonian form.

T

(12.2)

+
I\Jl(Q

We see that (12.2) has a ready-made answer, natheltermv,®/ 2m which multiplies
the latter occurrence of the terfintep/ m. It naturally contains the extr® =+2, and it
contains thel/ 2m denominator to go with thealready present iy"®eg B x'®. So we factor
v,®/2m out from the coefficient in thgy"®eo By line of (2.12) and adjust the balance of

the coefficient accordingly to show the desiree/ 2m) g B term as such:
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h, (ia'E -2 8)h, =(4Z—F")(id B -5 8)(y-v*)
i e

V+
Lg|em 16\/—/
2
geml > |2v® 1
-=|—+=eJA OxB)[A
2 2(p+4 V' 'm AZ}( *B)

Now let's progress tox" g [{0xE) ' + OE. This term hasD = +3, so we need to
pick up D =+1 to create a dimensionless coefficient. In ttﬂne,(D XB)D\ term hasD = +4
already, but needs to be reconfigured anyway. ifigety, as we did for y" 9o By let us

factor out v,/ 2m from these other coefficients as well. This witivershoot” the mass
dimensionality, but we will momentarily compensaW#e now have:

(12.3)
X" 9o [OxE) x9 +DIE)

E(iaiEi_ziBi)hp:(lz_Tl'S)(iajE—ZiBi)([/l—\z:w)
:—g{2@(1+e—¢j+29\/p 2—T+[1+gﬂv_+3XT(S)ea[BX(s)
2L v m v, m)|2m

+

+g{erﬁ
2

V3

12.4
1 (12.4)
32
et , 1
2 v3¢) 2

\2/1’2%:| V+ ( T(SU.EGDXE) (S)+|:|[E)

eJA_\/%Alz}2 (OxB)A

The next cue comes from comparing t{}‘AZ terms on all three lines, which we now
need to harmonize. At the same time we need lrmcsfeme(i)(T‘S’aEQD><E))(‘9 +0 [IE) term

by D =-1 and the(D xB) [A term by D =-2. That too is ready-made, for both of these object

are achieved by factoring olif @ and1/A? respectively, then adjusting accordingly. We also

explicitly associate the charge strengtlwith each pertinent field, to make clear all of the
dimensional and charge balancing that is embedded2.4). With this final tune up, and
creating dimensionally balanced ratios in theeits, (12.4) becomes:

+
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h, (ia'E - = B‘)h, :(Z—F)(ia’ E-28)(¢-v'

=__{ /Zrﬁ’ /(—f‘AZ 1+_ }; T g 2B Y3

2

grr?qp 1/2rﬁ/éA2 e » '
+3 2 ™ é¢2 o[{0xeE) 9 +DE) @
_g| [ n? Gi;oéA2 2m /eZA eB) oA

2_v m ¢’ ZméA2

The term common to all, is nO\(%2m3/v+3\/e2A2/m2 . It should be clear that (12.5) is precisely

the same as (12.1), but in a form that will be wesgful for carrying out calculations that can be
compared with experimental data. Now let’s tal@oge look at (12.5), starting with the[éB
term for the magnetic moment.

(12.5)

Aside from thev,® required to go fromD =+1 in a Hamiltonian toD =+4 in a
Lagrangian (and thg® as well), we see precisely tfe/2m)ogB =(6/2n)gB term for

which the coefficient is understood to lgg 2. Further, in the event thah, VA <<v,, the

dominant factor will bel+ep/ m which if we trace this back originated in the wvauto-
vacuum self-interactions developed in (10.9). Migts parenthetic term in fact be the g-factor
of the Higgs fermion fielch, ? And, if we only observe Higgs fields andtthe seed fields from

which these are expanded about the vacuuight this in reality be the expression for the g-
factor which we do observe experimentally

We have carriedg/2=1 in all of our equations as a placeholder everesiaguation

(8.4) for the Gordon decomposition. But this istjthat, a placeholder which is equal to 1. In

reality, the g-factor isvhatever dimensionless numbge end up finding as the coefficient of
~(e/2m)gB in a Hamiltonian formulation, or ofv,’x"®(e/2maBx'¥ in a Lagrangian

formulation. Thus, we now discard thg/ 2 =1 placeholder and identify (define) the g-factor
for the observed Higgs fermion to be:

2m [ éA7 2m
%s(1+%0j+2 | 2 \ o+ % (1+e—nﬂ. (12.6)

with a reordering of terms from most-to-least doaminfor m, \/E <<v,. So starting to now
think about physical particles, we expect the fiesin to be especially dominant for the electron
if it should happen thatv, =246.219650794137 Geis the same vacuum associated with
Fermi’s weak coupling constan®, =1.166378% 10 GeV[25] that is used elsewhere in
particle physics, most notably, to arrive at thecebweak vector boson masses and the strength
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of the weak interactions. And, we expect the otbens to come more into play for the mu and
especially tau leptons.

To work with (12.6) (and also (12.5)), let us wete/the fermion mass result (6.17) as
A’ =2mep+ ép” (see (6.25), or better yet’A%+ €@’ =2 me+2 &°. From there one
derives the useful identity:

1+ 16(6“2*@2] (12.7)
m 2m @

which may be rewritten also as (see yet anotherradtive in (6.25)):

e°A’? —Zmep( j éy’°. (12.8)

Using (12.8) in (12.6) then yields:

o T T )

which we re-factor into (again compare (6.25)):

3o ) e o) 4210

The benefit of this formulation, which is one oveel, alternatives, is that ti#eis removed and
everything is expressed as a function of the dimatess ratiosm/ v, or ep/ m. This is what

we shall now use for a variety of g-factor relatattulations.

Let us now use Maxwell’s equations to rewrite §)2n terms of sources rather than field
densities, as:

@(ia‘E‘-z‘B‘)rL:(gZ—F)(idE-z‘ B‘)(w—\z“’)
{ +2/2nrf /éAZ 1+
+ v o 2/ 1/ }2 é(p2 -ix"®eg @B /oty +e,o)erp
_ m epéA2 /ZA A
v m ey 2\] }Zmé 2 (€0 + @/ 0GR
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This formulation is very interesting from a randeviewpoints including the fact that all of these
spacetime dependencies was revealed following anteel Heisenberg commutation of a field
with the canonical momentum, but the one we slugii$ upon here is the fact that this reveals
an expressiorr[dB/dt for the magnetic moment of the electiona time-dependent magnetic
field. Specifically, analogously to (12.6) where we csfped g, let us define another
dimensionless ratio:

2
e 2

to be the coefficient of the(e/2m)a@B /0t term. Why is this of particular interest? Foe th

—(e/2m)a[B term for a stationary (time-independent) magn#éld, the dominant term for

m,vA? <<v, is 1+ep/ m, which is independent of the/ v, ratio. But for the time-dependent
term —(e/2m)aEd)B /0, this coefficient does not exist, and so the nmage m/ v, does come
into play in the leading order effects. This meatdle the electron and the mu and tau leptons
all respond more or less similarly testationaryB because of the dominance bf ep/ m, this

will not be the case for a time-varyird3 / ot . Here, we expect to see the mu and especially the
tau leptons responding with much more sensitidtg magnetic field that varies in time. In fact,
g' as defined above is best thought of as the gifdotathe response of a fermion in a time-

dependent magnetic field. This will provide thesisafor momentarily making quantitative
predictions which it should be possible to confoncontradict with experiments to measure and
compare the behaviors of all three charged leptoaggiven, time-dependent magnetic field.

Finally, for good measure, let also define a tliiensionless ratio:

%" %ﬂi / /é“ (12.13)

which is the dimensionless factor in front of teent containingdxB =J+0E/0dt. The second
term is identical to that in (2.12) but the firstrh differs by the raticA? / ¢7. This tells us about
the response of the electron in a time-dependentra field.

So, with the foregoing, as regards the chargetiese, i, 7, it should be possible to use
each of the known experimental g-fact@s, , and each of the known masseg, , in (12.10),

together with a vev which we shall presume \is=246.219650794137 Ge as it is for
electroweak and scalar Higgs theory, to derivenitefe “values” ¢, ¢, and ¢ for each lepton

and then, via (12.8), the magnituphky =|\VA?| for each ofe, i1,7. Because these numbers are

potentials, which presumably vary in space, it wibo be important to understand that they
actually mean when measured at various localeslation to the charged lepton, which as we
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shall see is closely related to charge screening &op diagram calculations and
renormalization, which will be the focus of sectibfq But this discussion will be easier to have
with specific numbers as a backdrop for explanation

Then, knowingg and|A| for each lepton, we can calculate (predict) thafious g'/ 2

factors which express their response to a time-utgr® magnetic field. Should it turn out that
the heavier leptons exhibit a more sensitive respan the predicted manner, this would be a
source of experimental validation.

We take note that (12.10), (2.12) and (2.13) ferttivee g-factors are, for Higgs fermion
theory, the “bonus” that emerges that is analogouke gauge boson mass (2.19) that emerges
from scalar Higgs field. Scalar Higgs theory rdgem mass for a scalar field and a “bonus”
gauge field along with its mass. Fermion Higgsotljereveals a mass for the fermion and a
“bonus” gauge field along with its magnetic momeiiitich represents how a particular spatial
dependencies of the gauge field, namely those diyam (B, OXE, [J[E andUxB in (12.5).

Let us now turn to experimental data.

13. Numerical Results Based on Empirical Data (and Prediction for the
Impact of a Time-Dependent Magnetic field on the Chrged Lepton g-
Factors)

Our starting point for experimental comparisond! vime equation (12.10). The
experimental data from [26], [27], [28] which weadifuse for the three charged leptons are their
massesn, =0.510998928 Me\, m, =105.6583715 Me\ and m =1776.82 MeV and their g-

factorsg,/2=1.0011596528 @, g,/2=1.0011692 0 andg, /2=1.0011721 0. We shall

also work on the supposition that = 246.219650794137 Ge, though this is a supposition that

can also be tested in the event that the data svalayut to review points toward there being a
different vev for Higgs fermions than for Higgs kga, for some reason. And of course, we
shall use the low-energy running coupling=1/137.0359990746 0.0072973%/0 [25],

which is related to the charge strength wéa +/4/m =0.3028222088%. This data set via
(12.10) will uniquelydetermine the potentiakg, ¢,and ¢ for each of these charged leptons.

In this section we shall simply do the numeric aldtions. In the next section we shall discuss
the meaning and interpretation of these results.

Now, the first inclination one has is to try tost#12.10) as a quadratic ep/ m. But

the term\/Z(e(p/ m)+( &/ n)2 makes this appear to not be possible, as thigitmbecomes

imaginary of the range-2<ep/ m<0. One could of course expand this square rootnas a
infinite series and use only @@/ m>0 domain to yield a real range, but that would érdai

approximation that is best not done given that veetgying to match up g-factor data which is
known with extremely high experimental precision.So instead we shall evaluate (12.10)
numerically, inserting various values fep/ m until (12.10) produces an exact match to all
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experimentally-known digits for each g-factor aratle mass to all known experimental digits.
The masses enter (12.10) via the three mass fatitise e, i, 7 leptons respectively, namely:

0.00000207541/ 481,839.85
M = 10.00042912241/ 2330.3373€. (13.1)
Ve 0.007216402% 1/138.573209

It is of interest to note that the tau ratio is tamt different froma =1/137.03599074 (which is
suggestive that the tau mass is in some way adiidgr screening effect from the vacuum itself,
but we shall not pursue this further right heréugBing all of this data into (12.10) enables us to
find that the mass and g-factor data is fittedlt&rmown decimal places (which are better known
by several decimal places for the electron thanttier mu and tau leptons) by the following
potentials which we represent with 2rr coefficient for reasons that will immediately be
apparent when also comparimg=1/137.03599074 |, namely:

0.007286306840= 1/137.243737081
27 =10.0073180696 1136.64807 . (13.2)
0.0068818625 1/145.30950

Writing (6.25) with|A| = ‘\/F

oAl /26_¢’+(E/’j ' (13.3)
m m m

we may also obtain the vector potential magnitudes:

as:

e|A 0.302680564688
ZHT =4 0.3033399428 . (13.4)
0.2941553923

The close comparison of the numbers above to/4m =0.3028222088%is understood by
writing an equatioranalogous tq13.3) multiplied by277, namely:

2 2
271\/£+ a 2\/4772£+ 4?9 =4 +a? De=am = 0.30282212 . (13.5)
T A T 4T

It is very telling (and closely related to Schwingeone-loop result [23]g/2=1+a |/ 27+ ..)
that 277(ep/ m) behaves roughly like a running couplimg= 277(ep/ m), and that27z(e|A|/ m)
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behaves roughly like the associated running changangthe = 2ﬂ(e|A|/ rr) We shall take a
closer look at this momentarily.

Next, we may directly find the energy magnitudésaxh of thep and|A| , hamely:

@ =0.0019568610 Me?
@, =0.4063805796 Me', (13.6)
@ =6.4266102 MeV

|A,|=0.0812899880 MeV
|A,| =16.8448073365 Me\, (13.7)
A,|=274.6962830 MeV

The experimentally-based finding in (13.6) that all three potaengtad O finally answers for us,

the question which arose originally at (3.6), then again at (6684} the appropriate sign choice
in the quadratic solution fop. With the empirical data telling us that the potenttsO are all

positive numbers, we now see that the sign choice must behai’ist that (6.24) is now finally
to be written as:

eﬁ:[ 14 EA° _ } (13.8)
m

nf

It is also instructive to return to the fermion mass result7(6and use (13.6) and (13.7)
to decompose the three lepton masses into their respective contishfution the scalar (voltage)
and vector potentialg andA. These turn out to be:

0.511295218 MeV¥ 0.000296290 Me¥V  0.5109989%2eV
@& =:105.7199020 MeV¥ 0.0615305 MeV=105.6583'Mé&V (13.9)
1777.79 Me\- 0.97 Me\¢r 1776.82 MeV

A2

m=-e—-

N
N

This brings us back to the point made after (6.17) that gantgatals alone are not measurable
numbers, and that physicalbpservableenergies are those which involveliéferencebetween
two potentials. Usually, measurable energies reflect a difference betwedgpe of potential

(often a voltagep=V) at two different spatial pointg, and x,. But in (13.9) we see that the
observed fermion masses are functions of a difference betweetlifferent types of potential V
at a single spatial pointx, namely, V,(x)=1eA’/¢ and V,(x)=iep, such that
m=V,(x)-V,(x). This still leaves the open question: what / whera?s This will be an

important part of the renormalization discussion in the nextosectiNotice also that we
deliberately dichot write the mass here E[B(X) but rather wrote the mass as a constanthich
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is invariant as a function of space (or time). This will a# bentral to and greatly expanded
upon in the next section as we study what the r€48l9) says about running couplings and
charge screening and renormalization. This adltesl to the fact thau in this development was

not introduced by hand, but was naturally reveated6.17) as the coefficient of the term

Lagrangian density termZ/lfvf’Eh// (6.17) for the Higgs fermiorh, which represented the
expansiony (x) =V + h( ) of the Dirac wavefunction about the vacuum. 3s thass is not a

typical “bare mass,” but rather is a renormalizedlf:energy” mass. that is built exclusively
and naturally out of the gauge potentigdsA .

We may also use (13.1), (13.2) and (13.4) in (IRtd2Zalculate the g-factor impact of a
time-dependennagnetic field terno[dB/dt in (12.11) to be:

o 1 [ el 1.018440324¢ 16
L P S 2 21 3.0346364402 10 (13.10)
v ) m 2\ v> m

0.000022 @ 2

g
2

Comparing with the well-known experimental g-fastorge/2:0.00115965[2 81076],

9,/2=1.00116%92 0] and g, /2=1.0011 721 0] which we write to enclose in brackets the

(known) digits at whichg’ comes into play (this isot an experimental error notation), we see
that a time-dependent magnetic field can produceftatt which can be seen well within the
experimental ranges of the g-factor for all thrarged leptons, and that tleeldB / dt effect is
most pronounced for the tauoihis prediction that the g-factor of the heaviesi tepton is
much more significantly impacted by a time-depehd&gnetic field than that of the electron or
muon, as well as the magnitude of the impact adigied in (13.10), would appear to be a
leading candidate for experimentally validating @yntradicting the results derived her&he
same facilities which study and establish g-facforso B, should be able to discern these
effects foro[dB/ ot, as they are well within experimentally-detectataleges.

Similarly, (12.13) for theA [dE / ot term of (12.11) is found to be:

i A 1 [BTE elA 1.0184405028 1t
9 M®A 2 [T 20 -1 30362168642107 - (13.11)
2 mg 2\ v

0.0000210458

Clearly the right-most term dominates so this eselto (13.10), but the ratio

A 1725.655664659
? =41718.170291356 (13.12)
1827.013030787
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does substantially enhance the less-dominant t&8mthere may be a discernible effect for the
mu lepton and there appears to be a definitelyedisiole effect for the tau lepton. However,
unlike g[B or gldB/odt, the AIJE /dt term contains the scalar product whhrather than a

product with the spin matrices and so theA [dE /0t g"-factor is unconnected to the spin of

the charged leptons.

Now let us discuss these various numeric results.

14. Invariant Mass, Variable Gauge Renormalization

What warrants immediate attention in the numeai@of the last section are the ratios in
(13.2) being very close to the low energy electrgnadic “fine structure” coupling
a =1/137.03599074 |, especially for the electron and the muon. lindependently known
that Schwinger [23], when considering the “one loogntribution to the magnetic moment, first
described the small deviation of the electrog,s 2=1.0011596528 @6 from the g/2=1 of

Dirac’s equation by finding that:
9 1+ 94 (14.1)
2 2T

Since Schwinger, painstaking calculations have ligsre for some higher-order loops, but the
basic result that the one-loop correction equal®77 remains valid to this day.

Because we shall be discussing loops and renaratialn in some detail here, let us use
the notation0,1 in subscripted form to denote a physical quarthiat is based on only 0- plus 1-
loop perturbative calculations. Let us also @se o to denote the sum total of all corrections
to a 0,1 quantity that occur as a result of all perturbatiwop calculations from 2 loops all the
way up to an infinite number of loops. A simpleat a subscript will denote the 1-loop
contribution only, absent the 0 loop or tBe- « loop contributions. Using this notation, we
may summarize what is being said in (13&)all three charged leptonsy writing:

e_a._ 1 (14.2)
m 2 2r[137.035999074

and

R 1,9 _q, 1 _ (14.3)
m 27T 2r(137.035999074

In other words, the one loop contribution to théepdial, ¢, when made dimensionless via the
combinationeg / m, is synonymous witlschwinger’s 1 loop-only correction. More geneyall

this means that that the potential at each order bears some very close relation éddbp
calculations at each order. We wish to exploreenatwsely the manner in which this is so.
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The origin of this concurrence is to be foundhe fact that the g-factor (12.10), in the
leading order where the mass to vacuum ratibv, — O which is especially pertinent to the

electron and muon but less so to the tau leptaluyces to:

%(m/m . o)=1+e—rf+..., (14.4)

and that comparison to Schwinger's (14.1) therefpreduces an immediate connection
al2m - epl m. Thus, without ang priori expectation that the voltage / scalar potentialidio

connect in some way to the running coupling we find that such a connection does exist
precisely because the Higgs fermions, in leadirdgioof low mass, produce the relationship

(14.4), while Schwinger gives us (14.1). If wectdack through the development here, we see
that the terml+e@/ m in the above originated in (10.8), which descrithes self-interaction of

the fermion vacuum viaIF(ia'i E-3B )v+1'5, as part of the Higgs expansion of fermion fields

via ¢ (x)=v*®+h (¥ of (4.17). So what we see is that although Dgaequation yields
g/2=1 when analyzed in the form of (8.4) or (8.16) itaten to “seed fermionsy , it
actually yields ag/2=1+ep/m+... when ¢ is dissected as in sections 10 and 11 into an

expansion of a Higgs field about the vacuum andnmte Higgs field rather than the seed
fermion is understood to be tlobservablefermion. Once we are able to use Dirac’s equation
via a Higgs field dissection to identify/2=1+ep/ m+... rather thang/2=1 as the leading-

order g-factor forh, (x) rather thang/(x), and given Schwinger, we are able to uncover the

very important 0,1 loop connections (14.2), (14b&tween the scalar potentigt and the
running couplinga .

With (14.2) and (14.3), we immediately may use tenplete expression (12.10) for
g/ 2 together with the specific numeric result (13@}dll us the value ofy,__, for each of these

three fermions, by simply subtracting off toefrom each ratio in (13.2). This result is:

1/137.24373708161/ 137.035999076  0.0000568%8= - 1/90,533.903:
27‘[%: 1/136.64807#1/137.0359990746 0.0000207164 1/48,270.95 .(14.5)
1/145.30956-1/ 13.0359990746 - 000415490% -1 2406.7964

To be clear: This is the total contribution to fhatential which is to bexpectedo arise from
the 2 - o loop diagrams, based on 1) theoretical relatigpssitil4.2), (14.3), 2) theoretical
relationship (12.10) forg/2 to which the mass ration/ v, also makes a contribution which

starts to noticeably impact these numbers for daviest tau lepton, and 3) the known empirical
data for the three lepton g-fact@sthe three lepton masses and the vew, which we take to

be 246.219650794137 Ge derived from the Fermi weak coupling constént.

Now, the results (14.2), (14.3) connecting thelascpotentials (voltagesy with the
running couplinga deliver us directly into a discussion of renormation, and especially, of
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mass renormalizatianWe start this discussion by picking up wherelefeoff following (13.9)
where we noted that the fermion rest masses aemley to be thdifferencem =\, (x) -V, (x)

between two potentialg, (x) =1 eA?/ ¢ andV, (x) =1 ep at the same point in spacand where

we regarded this massto be a constant which does not depend ontimet. Following up on
this, we now ask two sets of questions. Firstviat point in space? At=0, i.e., at the center
of the charged lepton? At=co all the way out to infinity? Or somewhere elsé® pose this
guestion because any time one talks about a pakeotie is talking about a field, i.e., a variable
function of space and time, and about a field whgmot observable except asddference
between one potential and another potential. Skcdin the rest mass is a function

m=V,(x)-V,(x) of a difference between two potentials taken aingle point in space, will
this mass be the same when this potential differentaken after we translate over tditerent
point in spacex — x'. That is, if m=V,(x)-V,(x) and m =\,(x')=V,(x'), will we have
m=mi, or will we havem# ni? Ism an invariant at all points in space (and events in
spacetime), or is it a functiom(x) of spatial position (and time)? We have reganceals an
invariant this far, but this supposition needseqgustified.

The critical ingredient needed to address thesstoqpns — and the reason we have not
been able to address them until this moment — cdroes finding in (14.2), which we rewrite

using 47mr = €* / hc in A =c=1 units, that:
m
m,e)=—; €. 14.6

In other words, the potentig, at the 1-loop levehssuming constant mass which is part of what
we are now opening up for discussioans in direct proportion to the running electrltarge
strength e(x =) =0.302822120, which is based ona(x=c)=1/137.03599074C via
4mr = ¢€”, and which are both expressions for the runninghafrge and coupling only for a
probe takerentirely outside the charge screeniafjthe electron, muon or tauon, i.e., at spatial

“infinity.” As we probe more deeply into the elemt at a probe energy / renormalization scale
u (this is not the samg/ which was introduced as a mass parameter back 3)),(we know

that these two numberg(x01/u) and a(xO1/4) wil grow larger because we have

penetrated past some of the charge screening Unapolarization which surrounds the “bare”
electron (and we shortly return to examine “baretf)eand thus modified thebservedcharge
strength. It is also worth noting thatnifis a constant, then (14.6) dasst generalize to higher

2 _ « loops, that is, thapp# (m/8ﬂ2) e in general. Why? Becauia‘e¢:(m/8ﬂ2) e were to

be generally true, then one could replage m - a /271 everywhere it appears in (12.10). But
if we do so, we would have:

g:(1+ij(1+2an+2 2 2i+(ij2. (24.7)
2 21T v,? Vvi N 2o 2
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Then, if we were to use =1/137.03599074 | and the knowm for each lepton, we would not
get the experimentally observed g-factors. That )l is not true, and is contradicted by
empirical data, is evidenced by the empiricallydshgesult (13.2) in which all of the numbers

would be1/137.035990740 if (14.7) were true. So we do know tha{m, €)in general takes

on a more complicated form in relation to the rmgnchargee than (14.6), and is only a first
loop relationship.

Still referring to (14.6), if the one loop potealtiy is the same as the electric charge
strengthe up to a factorm/ 877 which is a constant factdf we assume that m is constdttie
topic of detailed exploration in a moment), thethaligh the higher loop relatior@m(m, e)

must be more complicated relationships than (14t &,safe to reach thgualitative conclusion
that the overall potentiap runs as a function of 01/ in the same sort of fashion ase&and

a. So becaus@(x =w)=0.302822120 and a(x =) =1/137.03599074C are both valid

numeric relationshipsnly outside the charged lepton at a spatial pesttich we formally set to
X = oo, or in different words to say the same thing, e¢greormalization scalg/ — 0, we are able

to answer the first question: The potential§(x)=ieA?/p and V,(x)=iep in
m=V,(x)-V,(x) of (13.9), and more generally the potentials nica#ly characterized in

(13.2), are all potentials taken ak =, i.e., at a position formally identified with Spmt
infinity, or in equivalent terms, at a low probeeegy / renormalization scalg/ — 0.

Now we get to the second question as to whethier # «) = m(x =), wherex' is a

locale other than a formal spatial infinity, andp@rticular, is a locale at which the charge screen
of the lepton is deeply probed with a definitivatpservable difference. To explore this
qguestion, we start at spatial infinity, i.e., atemormalization scale / probe energy=0, and

regard each of, m, ¢ and|A| a to haveu =0 values ofe(0) =+/4mmr =0.3028222088: based
on a(0)=1/137.0359907 8, m,(0)=0.510998928eV, m,(0)=105.6583713MeV and

u

m, (0)=1776.82 MeV, ¢(0) given by (13.6) andA|(0) given by (13.7). The relationship

(13.3) is a generally-covariant relationship amepigy, A and ¢ which is independent of locale,
i.e., independent of renormalization scale. S it of this in mind, we may write (13.3) as:

[e(o)\A(o)\Tzze(o)co(o){ o)w(c»f
m(0) o ({9 )

Let us now transform over to a different renoretion scaley/ # 4 =0. Let us posit

that each and every one of the objects with valueppearing in (14.8) undergoes a change to a
different valueV , i.e., that at the new scajé, (14.8) becomes:

(14.8)
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(14.9)

[e'(u)\A'(m\I _LEW)ow) {é(ﬂ)cfi(ﬂ)]z
m (4) m(w) m(d) )

So in the above, even the rest masses are presorhade changed. But suppose we would like
to keep these masses invariant even under thiggeharrenormalization scale. That is, suppose
we wish to haven = m regardless of the change - 4. Can we do this? And if so, what are

the conditions which would allow us to do this?

To see, let us take (14.9) and changeback tom, and then transform to a different
d() - &), A(¢)-A"(¢) and €(4/) - €(1) such thatwe are allowed to have

m (4/)=m(x')= n(0). Take careful note: we are still at the sameesgal but we are setting

m (/) back tom(0) and then changing every other value in (14.9) aierthis happen, i.e., to
be able to make invariant. So now, still at/', (14.9) becomes:

A"(,L/)‘]z zze"(;r)qa'(u){é’(ﬂ)d(u)j (14.10)

m(4/) (i) ury

The two relationships (14.9) and (14.10) are tptatjuivalent relationships. They just involve
some shifting among, m, ¢ and |A|, and we keep in mind that and|A| are both gauge

potentials and so are not observable except a$eaetice between potentials. Because these are
equivalent, setting (14.9) to equal (14.10) yidhus followingsimultaneouselationships:

A (W) _ e(m)A (K)

¢ (k) _e()d(K). €(H)

= ; = . 14.11

) () (4) (K i
This is turn is easily rewritten as:

¢ (1)P (1) _€ WA (W) _ miw) (1412)

¢(u)g(u) €H)

A mi(y)’

which means the transformations we must use totaiaian invariantm(4/) = m( ) regardless
of renormalization scale are:

& () 4(1) ~ ()¢ (K) %)) ()9 (1)
, (14.13)
IR~ ) ) =) et ()




But ¢ and A=A are the components of the four-vectéy :(qo, A A, A3), and the
transformations in (14.13) are of identical formn &ach component. So we consolidate (14.13)

into a single transformation oA”, and because everything is taken at the same gtalee

remove that part of the notation and leave thaetstdod so that the form of the transformation
is highlighted without additional clutter. So hetscalg/ , the transformation we do to maintain

a constant, renormalization scale-invariant mass is
I 1/1 — m
eApA” o éA—H e K. (14.13)

Lo and behold, this looks like a gauge transforaratin a gauge field! Let us see.

Now, in (14.13), both the charge strength is tiamsed, € — € and the gauge field is

transformedA* - A" in order to returrm’ - m. But we saw in (14.6) that although and

e both run with the renormalization scale, and wiiiley are related by (14.6) at the one loop
level, for higher loops they do have some indepeoégor more to the point, there is a more
complicated relationship between them than (14.6And in general, we know that in
renormalization theory, mass renormalization is tha same as charge renormalization, i.e.,
mass and charge renormalize differently. Spedificathe mass get renormalized via
S - Z S where S is the bare ands. is the complete, total observed propagator, wihiée

charge strength / running coupling gets renormdliga ' (p,0, p) - (1/2)y* wherel* are

the complete vertex operators aptl are the bare vertex Dirac gamma operators, andewhe
Z, = Z, are infinite renormalization constants and areaétju one another because of the Ward
identity 0S.™/0p, =I“( pO, ). (See [18], section 7.4.) So whéén (14.13) has so far been
caught up in our effort to maintain a constant nasal scales, let us now cure that by leaweng
alone and letting the entire job of keeping thestant mass fall to the gauge field'. That is,
still at 4/, we now set€ (¢/)=€(4'). Then, writing what looks like a gauge transfotiorain

(14.13) to explicitly show that this is a gaugensfmrmation, the above becomes:
AY - K= TR S A 401, (14.14)

Being as explicit as can be, the above means that:

aﬂe:[g- jA’”!!! (14.15)

So, we can maintain an invariant fermions restsma®rall scales of renormalizatign
simply via a suitable gauge transformation tramsfog the gauge field A“!  With
A :(m/ rﬂ) Al informing us thatA'* scales up or down slightly in magnitude to keep th
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mass constant, this is truly a “gauge” transfororathe Weyl’s original sense of the word before
he changed the®* exponential transformation factor of his origitiaory [9], [10] into the later

€? phase factor of modern gauge (really, “phase-iané}) theory [11]. What is ordinarily a
rest mass that varies with renormalization scaeplnes an invariant massaditscales because
the gauge field becomes a proxy to absorb the dsang mass brought about by
renormalization, and we exploit the gauge freedorallow the gauge field to do this. What we
have just shown above, whereby we maintain a cohstgt mass at all renormalization scales

by using the gauge freedom @¥' to instead makeA” scale-dependent, we shall refer to as
“invariant mass, variable gauge renormalizatiomg title of this section, or more simply,
“Invariant Mass Renormalization.”

So now the question arises, what allows us tohig?t Ordinarily, the bare fermion
propagator inverses. ™ = y* p,— m, wherem is a so-called “bare mass,” while the complete,

observed propagator i§. ™ = p* p,—- M-Zx= S™*-3%, where T is the fermion “self-energy.”
But here there is no bare mass. The bare madsatsihows up in the Dirac Lagrangian density
e=y/(id-m)y, but here we started witlk =¢ (id - )¢ in (3.8) and a mass parametar
(here this is not the renormalization scale symbefjned in (3.4) and then saw in (6.16) and
(6.17) how this led to a mass=—y for the Higgs fermiorh, . But this mass (6.17) is defined

totally as a function of the gauge fiel’, with no “bareness” at all. The bare mass is,zand
the revealed, observed mass is (6.17). And becdis3) and (14.8) et al. are just variants of
(6.17), this is what led to the ability shown in2@) and (4.21) to maintain a renormalization
scale-invariant mass simply by a gauge transfoonatiSo we should really now write (6.17),

not as a “mass” in the sense of the bare maSS:iE(i@ —m)(//, but as a self-energy, that is, as:

z:mzie[Az_(”zJ:—y (14.16)
2 @

The mass, i.e., the self-energy bubble, is a patgeg field and charge / coupling bubble. The
mass no longer has an independent existence, easeptcreature of the gauge field and the

running coupling. So now, how do we distinguisk trare propagator inverse. ™ from the
complete inverseS.™*?  With Z=m, if we write SS7=87"-3= $'- n, but if
S =y p,— mas usual, ther§. ™ = ¥ p,-2m. That simply makes no sense. What really

happens is that the bare propagator is rw = y* p, with no mass at gll(i.e., this is the
propagator for a luminous fermion), but the complatopagator is:

St=pp-E=y 9:% {A fz], (14.17)

and the gauge fields bring about a subluminous,enatfermion. The Ward identity
0S:™/9p,=T*( p0, P then acts on the above expression. Renormaliztitien occurs via:
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S;{y”pﬂ‘é {A fﬂ A RE A (14.18)

So we have taken care of the propagators and #sses, but what about the charge /
coupling via the vertex operator renormalizatiofi( p,0, p) — (1/Z)y#? That is, how do we

now obtain the vertei”(p,o, p)? Here, we return to equation (8.5) which is tlagrangian

density containing the Gordon decomposition ofsbed fieldyy and it includes a “placeholder”
g/2. But now we knowg/2 for the Higgs fermion from any of the alternatieemulations
(12.6), (12.9), (12.10). So we insayt 2 from, say, (12.6) into (8.5) to obtain:

=T =V =igy“o -y - A,

252 _ . (14.19)
i (0o =0 A, 4 1 B2 z'ﬁﬂ/ a 2”? “"’ 23, (wo*y) A,
2u

On the second line, contrast [9.138] in [18], usffdL7) to sety - —m, we see the complete
vertex ' = y* + A¥ embedded in:

YrrwA, =gy + Ny A,

; . (14.20
=-I—(t//6”t// ) {“ +2/2n~7 /éA 2rﬁ1+ J %, (@) A, (14.20)

Now, the above does for the moment mix apples aadges, because it contains the seed field
¢ at the same time that it contaigg 2 for the Higgs fermiorh, with T( p,0, p), and because

it is in spacetimei@“y , etc.) not momentum space@/{ etc.). But we may then use (14.20) as
the starting point to convert into momentum spacea did from (8.7) to (8.16). Thereafter we
may expand about the vacuum as we did in sectidons1q to isolateh, =¢ - v,** rather than

. And as result of this exercise (which we leasean exercise), one may extract the vertex
r“(p,0,p) which goes into the renormalization equatibfi( p,0, p) - (1/Z)y*. Then we
use the Ward identity on (14.18) and the vertexveédrfrom (14.20) to write:

S ™ _ 1 A*-¢f _l_ u
o, 6piyﬂp” Ze( . ﬂ =r“(po,p. (14.21)

which yields a first order differential equatiorr f§ ¢, A andm as a running function op, .
Becausen may be held constant at all scales by the uttizive gauge transformation (4.14), we
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are enabled via (14.21) to renormalize with thesmas 3 e(A2 —qaz)/go held constant, that is,
mathematically speaking, treated as a constant aumtihe differential equation (14.21).
This is the upshot of “Invariant Mass Renormalizati Renormalization of rest mass is

no more and no less than a re-gauging of gaugesfielThe ability to renormalize using gauge
symmetry during renormalization to absorb any \emmof the mass into the gauge freedom of

the gauge fieldA”, is another reason for having made definition)(323L5) in the first place.

15. Orbital Angular Momentum

Let us now briefly touch upon the orbital angulaomentum of the Higgs fermioh, .

As the starting point for this discussion, we ttorDirac’s equation yﬂaﬂw +ey“¢/A), -uy =0
used after (8.1) for a free field, =0. Now, in contrast to (8.2) which enabled us toppint

the “intrinsic” spin, we write Dirac’s equation ntiglied from the left byy® and developed in a
customary manner with’y' =a', see (8.13), as:

0=(iy*a, ~u)y =iy, ~vu)y=(rv'e,~vu)w=(E-y¥ o -y Uy
=(E~y’y 0 -¥u) u=[E_” < ﬁ}(u}

—o'p E+u)\v

(15.1)

We then restructure this is the usual way into,(eag, [8] at [5.21]):

(5 20y T

while defining the Dirac Hamiltonian vielu = Eu, and specifically, as thaperator.

H=a'p +u/. (15.3)

Then, because it is sandwiched between (operatmgDirac spinors as in (15.2), we
return to (8.16) and use (15.2) to replace eachuroeece of E=p’° above with

E- H+ul=ap+uy’. Then, withy - —-m via (6.17), this yields:

T(p.0.0) =0y B =gy by-—u(a bp- b Wy +) " u(d E-2B)y+ gyyp

— TPl T _E__piAi o py _g_e——dB‘ 0 E
=gy DY -y Py w(aipiw _Mjw ‘/’(ide i

.(15.4)

m 22m

jw + ey Yy

80



This is equivalent to (8.16) in all respects. \Mert develop the terrﬁ(cri po-p A)(// in

(15.4)in exactly the same waxa Higgs expansion as we developed the t@r(miE‘ ->B )z//

by Higgs expansion in sections 9, 10 and 11. &pgiocess of this development, originating
from a'p’, we will come across the cross prodwzlxp:i[H,L] which commutes the

Hamiltonian with the orbital angular momentum jastwe earlier came across terms based in
ia'E' which ended up yielding both tHe[E and O xE terms from Maxwell's equations. And,
because the lead coefficient f(w(a‘ po-p A)(/l is e/ m rather than thee/2m which

precedeszﬁ(ia‘Ei —ZiBi)l/J, the orbital angular momentum will inherently haweice the

magnitude as the spin angular momentum, that wgillicome in whole increments of rather
than only in a7 packet. We leave this full development of orbaagular momentum to a
future exercise.

16. Conclusion

As observed throughout this paper, Higgs theorfurslamentally a theory about the
particles and fields that we do and do not observeture. It informs us that the fields we write
down in our Lagrangians or Hamiltonians are notftblels we observe, and that only after we
have expanded these “seed” fields about a noratriwon-zero vacuum do we obtain the
particles and fields that are actually observedut to date, Higgs theory has only been fully
developed for scalars, and the experimental dat&liiggs scalars is very thin compared to the
wealth of data that is available and known for fiems. It is intended that the application of
Higgs theory to fermions as developed in this pap#lr provide additional avenues through
which this fundamentally-important theory of whag wbserve in the physical universe might be
experimentally validated.

One possible avenue for validation, at (13.10)pimes detecting the impact of a time-
dependent magnetic field on the known g-factorghef charged leptons. This is a specific
numeric prediction as to the magnitude of the gaprfactor associated with a time-dependent
magnetic field, as well as a qualitative predictibat a time-dependent magnetic field will cause
a much greater response for the tau lepton thathfomother two charged leptons, and in the
muon more than in the electron, progressively bgual2 to 3 orders of magnitude from one
generation to the next. In general, all threehaf ¢-factor types (12.10), (12.12) and (12.13)
could with some ingenuity provide paths to furtialidation of the Higgs thesis.

Another possible venue for validation is (13.9)istthdecomposes the mass of each
fermion into the two constituent gauge potentials\ihich the observed mass is th#ference
between potentials. Of course, gauge fields ateohservables as absolute numbers; the only
thing that has physical meaning is a differencpatential. So one expects the separate energy
contributions in (13.9) will not be directly obsable. Yet at the same time, there can be little
doubt that the scalar potentia is fundamentally an indicator of the fact that edectrically-
charged fermion has a charge, while the vectornpiaieA fundamentally indicates that that
charge is spinning and thus has “intrinsic” kinetispects as well. Whether there is some
alternate, observable way to discern how much efrtfass-energy associated with a charged
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lepton comes from its charge and how much comaes ft® spin is left as an open question, but
(13.9) is the “food for thought” as to this possilalvenue for validation.

Another avenue to consider originates when cotigaghe particle Lagrangian (5.13)
with the antiparticle Lagrangian (5.14). Clearthere is a broken symmetry as between
fermions and antifermions. Beyond (5.14), we fecufull attention on developing the particle
(positive energy, positive vacuum) Lagrangian, atid no further development for the
antiparticle Lagrangian. That is clearly a “to d@&m for which the development path is well-
laid out by the particle development. Whether thisken symmetry between particles and
antiparticles translates into something that caonridgas been observed is unclear at the moment,
but is worth further exploration.

In section 15, we laid out how the orbital angul@amentum is to be developed, but
stopped short adding the several additional sestain to sections 9 through 11 to do this
complete development. This is a worthwhile pursand could lead to further validation
opportunities by finding factors for orbital anguraomentum of an analogous nature to the spin
g-factors developed here.

Another important topic for further developmentesnormalization, which has bedeviled
physicists for years. In many ways, doing renoimasibn is like trying to walk on air, because
everything becomes scale dependent and as sooneashanges the scale, everything else
changes. This is especially so the moment that mess cannot even be regarded as an
invariant. In the 20 century, physicists learned the value of findingariant quantities in
nature, and of understanding the symmetries andecwation laws behind those invariants.
Renormalization poses a severe challenge that mobiecause even the supposedly reliable
ground of an invariant rest mass apparently is woem But the constant-mass renormalization
of section 14 appears to put an end to that qugndaass is a constant, even as one shifts the
renormalization scalehecause a variation in the mass along the renomaéibn scale can
always be gauged aut So equation (14.21), which is the Ward identgpould be fully
developed by developing the vertex of (14.20) amentwriting out in full, the first-order

differential equation (14.21) id/0dp, as a function ofe, ¢, A, m and the vacuunv,®. What

(14.14) and (14.15) tell us, is that once we doaextthe full differential equation which is the
Ward identity (14.21), and then work to solve teguation as a function op, or really the

magnitude ofy =,/ p, p” , we can treat the massas well as the vev, as constant numbers, so

that the only variables in the differential equatare the gauge field8” and the running charge
e=+/4/mr . Being able to treat the mass as a constantweike mathematical life much simpler

when solving (14.21), and the deduced running ef #f will then be a measure the gauge
transformations which were applied to keep the nwassstant. Additionally, (14.20) should

provide a complete, closed expression ffé’r( p, 0, p), S0 (14.21) should provide a fully closed
form for the differential equation to be solved.

Another avenue for development that appeared aloagvay which we bypassed in the
present development, was non-Abelian, Yang-Millsigga theory. In (9.9) and its later
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counterparts (10.6) and (11.8), we ran into commulmrms[A", A“]. We were not seeking

these, but they appeared anyway. To simplify dgueakent and restrict ourselves to
electrodynamics for the time being, we Eét’, A“] =0. But Yang-Mills theory is distinguished

from Abelian gauge theory solely and exclusively thy fact that its gauge fields do not
commute,[A", AV] # 0, because they are now defined asrtiarices A* = A' A* where A' are

the group structure constants for a gauge groupSId(N) . Were we to forego setting
[A“, AV] =0, we would have additional terms in results sucfil@s5) and (12.11) which would

represent non-Abelian theory, and then the runoingenormalization would invert the running
of coupling and charges and produce asymptotidénee etc., and all of this development could
then be applied, most notably, to weak and strateyactions. Clearly, this too is an avenue that
ought to be pursued.

The one final aspect of this development whichathing if not stunning, exemplified by
(12.5) and (12.11), is that all of the time andcgpdependencies of Maxwell’'s equations are
“revealed” from gauge fields which start out asdéaberg operators without any explicit space
or time dependency. This time and space dependsmneyealed because Dirac’s equation and
its spinor solutions created commutation relatigrskwvith the canonical momentum that placed

a time or space dependency back into the Diractengutor all of the gauge fieldg\” to reveal
the electric and magnetic fielElsandB, and then went even further to commute the eteatrd
magnetic fields with the canonical momentum to puB, [1xE, OJE and [IxB terms right
into the middle of the Dirac Lagrangian. And thdyoreason we did not havela[B magnetic
monopole term is because we turned off any noniAbehteractions. It is a testament to the
economy of nature that Dirac, Heisenberg and Malxalelconverge in this way. But what is
tremendously profound is the realization that oae start with an equation which has no space
or time dependencies, and then by the simple agijgitc of Heisenberg commutation to various
commutator relationships that emerge, end up withllaspace and time dependency for all of
the electric and magnetic fields akin to those @ixMell’s equations. If Higgs theory is about
“revealing” fields and masses which are not in auiginal Lagrangian, then what is
demonstrated here is that that Dirac and Heisenthexayy reveakpace and time dependencies
even when they are not in the original Lagrangidh.the entirety of our experience in the
physical universe is about what transpires in spaeg time, then the fact that space and time
dependencies can emerge from a Lagrangian withguala initio space and time dependency —
what Wheeler in a Geometrodynamic mind might capdcetime without spacetime” — is a
deeply penetrating insight into the nature of oorld.
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