The Position-Momentum Commutator

September 26, 2013.
José Francisco García Juliá
jfgj1@hotmail.es

It is shown that the position-momentum commutator is a diagonal matrix.
Key words: position-momentum commutator, diagonal matrix.

In a recent paper [1], we have implied that the position-momentum commutator is a diagonal matrix

$$
\begin{equation*}
[x, p]=x p-p x=i \hbar I \tag{1}
\end{equation*}
$$

where x and p are the position and the momentum of the atomic electron, respectively, i^{2} $=-1, \hbar=h / 2 \pi$, and h is the Planck's constant, and I the unit (or identity) matrix.

And where:
$x_{i j}(t)=x_{i j}(0) \exp \left(i 2 \pi f_{i j} t\right) ; f_{i j}$ being the oscillation frequency of the atomic electron, and therefore also the frequency of the light emitted by it: $f_{i j}=\left(E_{i}-E_{j}\right) / h=E_{i j} / h$, when it goes from the level i to the level $j(i>j)$, and where E_{i} and E_{j} are the energies of the electron corresponding to these levels, and t is the time
$p_{i j}(t)=m d x_{i j}(t) / d t=m x_{i j}(0) \exp \left(i 2 \pi f_{i j} t\right) i 2 \pi f_{i j}=m x_{i j}(t) i 2 \pi f_{i j}=a x_{i j}(t) f_{i j} ; m$ being the electron moving mass and $a=m$ i2 π
$x=\left[x_{i j}\right], p=\left[p_{i j}\right], x_{j i}=x_{i j}{ }^{*}, f_{j i}=\left(E_{j}-E_{i}\right) / h=-f_{i j}$
$[x, p]=x p-p x=\left[\sum_{k} x_{i k} p_{k j}\right]-\left[\sum_{k} p_{i k} x_{k j}\right]=\left[\sum_{k} x_{i k} a x_{k j} f_{k j}\right]-\left[\sum_{k} a x_{i k} f_{i k} x_{k j}\right]$
$=a\left[\sum_{k}\left(f_{k j}-f_{i k}\right) x_{i k} x_{k j}\right]=a\left[\left(\sum_{k}\left(f_{k j}-f_{i k}\right) x_{i k} x_{k j}\right)_{i \neq j}+\left(\sum_{k}\left(f_{k j}-f_{i k}\right) x_{i k} x_{k j}\right)_{i=j}\right]$
$=a\left[0+\sum_{k}\left(f_{k j}-f_{j k}\right) x_{j k} x_{k j}\right]=a\left[\sum_{k} 2 f_{k j} x_{k j} * x_{k j}\right]=a\left[\sum_{k} 2 f_{k j}\left|x_{k j}\right|^{2}\right]$
$=i\left[\sum_{k} 2 m 2 \pi f_{k j}\left|x_{k j}\right|^{2}\right]=i \hbar I$
That is

$$
\begin{equation*}
[x, p]=i\left[\sum_{k} 2 m 2 \pi f_{k j}\left|x_{k j}\right|^{2}\right]=i \hbar I \tag{2}
\end{equation*}
$$

For the last relation, note that the stationary orbit condition of Bohr for the atomic electron was: $m v r=n \hbar$; then, $n \hbar=m v r=m \omega r r=m 2 \pi f r^{2}$, where n is a positive integer, $\omega=2 \pi f$ the angular frequency and r the radius of the orbit.

Note also that it would be

$$
\begin{equation*}
\left(\sum_{k}\left(f_{k j}-f_{i k}\right) x_{i k} x_{k j}\right)_{i \neq j}=0 \tag{3}
\end{equation*}
$$

which implies that $[x, p]=x p-p x$ is a diagonal matrix.
To demonstrate this, Jordan [2] used the Hamilton's equations: $\dot{q}=d q / d t=\partial H / \partial p$ and $\dot{p}=-\partial H / \partial q$, where q, p and H are the (canonical) position, the momentum and the Hamiltonian, respectively. Then

$$
d[q, p] / d t=d(q p-p q) / d t=\dot{q} p+q \dot{p}-\dot{p} q-p \dot{q}=(q \dot{p}-\dot{p} q)+(\dot{q} p-p \dot{q})=(0)+(0)=0
$$

As

$$
\begin{equation*}
[x, p]=\left[\sum_{k} a\left(f_{k j}-f_{i k}\right) x_{i k} x_{k j}\right]=\left[\sum_{k} a\left(f_{k j}-f_{i k}\right) x_{i k}(0) \exp \left(i 2 \pi f_{i k} t\right) x_{k j}(0) \exp \left(i 2 \pi f_{k j} t\right)\right] \tag{4}
\end{equation*}
$$

where $f_{i j} \neq 0$ for $i \neq j$ but $f_{i j}=0$ for $i=j$, and as $f_{i k}+f_{k j}=f_{i j}$, then $[x, p]$ is a matrix of the type: $g=\left[g_{i j} \exp \left(i 2 \pi f_{i j} t\right)\right]$. As $d g / d t=\left[g_{i j} \exp \left(i 2 \pi f_{i j} t\right) i 2 \pi f_{i j}\right]$, then $d g / d t=0$ only if g is diagonal $(i=j): g=\left[g_{i i}\right]$, which corresponds with (1), (2) and (3).

Now, let be the equation [3]:
$d y / d t=B y$, where B is a constant (independent of t) matrix with distinct characteristic roots (the equation, $\operatorname{det}(B-\lambda I)=0$, has distinct values of λ)

Doing $y=T z$, where T is a non singular ($\operatorname{det} T \neq 0$) constant matrix whose columns are the eigenvectors of B, we have
$T d z / d t=B T z$
$d z / d t=T^{-1} B T z$
If $T^{-1} B T=\Lambda$, where Λ is a diagonal matrix, then we have k equations
$d z_{k} / d t=\lambda_{k} z_{k}$
whose solutions are
$z_{k}(t)=\exp \left(\lambda_{k} t\right) z_{k}(0)$
But, using only matrices, it is also
$Z(t)=\left[\exp \left(\lambda_{k} t\right)\right] Z(0)$
$Y(0)=T Z(0), Z(0)=T^{-1} Y(0)=T^{-1} I=T^{-1}$, doing $Y(0)=I$
$Y(t)=T Z(t)=T\left[\exp \left(\lambda_{k} t\right)\right] Z(0)=T\left[\exp \left(\lambda_{k} t\right)\right] T^{-1}$
If for the matrix B, it can be obtained a diagonal matrix $T\left[\exp \left(\lambda_{k} t\right)\right] T^{-1}$; then, from our matrix (4), it can also be obtained the diagonal matrix (2) with the condition (3).

In summary, the position-momentum commutator is a diagonal matrix.
[1] José Francisco García Juliá, A Criticism to the Quantum Mechanics, September 20, 2013. viXra:1308.0001 [Quantum Physics] http://vixra.org/abs/1308.0001
[2] M. Born and P. Jordan, Zur Quantenmechanik, Zeitschrift für Physik, 34, 858-888, 1925 (received September 27, 1925).
[3] Richard Bellman, Introducción al Análisis Matricial, pp. 207-210, Reverté, Barcelona, 1965. Original edition, Introduction to Matrix Analysis, McGraw-Hill, New York, 1960.

