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Abstract

We summarize the Storkey Learning Rules for the Hopfield Model, and
evaluate performance relative to other learning rules. Hopfield Models
are normally used for auto-association, and Storkey Learning Rules have
been found to have good balance between local learning and capacity. In
this paper we outline different learning rules and summarise capacity re-
sults. Hopfield networks are related to Boltzmann Machines: they are the
same as fully visible Boltzmann Machines in the zero temperature limit.
Perhaps renewed interest in Boltzmann machines will produce renewed
interest in Hopfield learning rules?

1 Introduction

The Hopfield Model [1] is a deterministic neural network model commonly used
for auto-association. It is related to spin systems in statistical physics and is the
same as a fully visible Boltzmann Machine in the zero temperature limit. The
Hopfield Model produces auto-association via dynamics that leads to attractive
fixed points. The usual purpose of a Hopfield Model is to make sure the training
data are fixed points of the Hopfield Network dynamics. The network can
generalise in two ways: first certain patterns are not fixed points and have
a dynamic that leads to another pattern - this gives an association. Second
the network can make fixed points that are not the required memory patterns.
These are called spurious patterns. However we can view spurious patterns as
potential generalisations of the stored memories.

The weights of the Hopfield neural network are to be set to make the memo-
ries be fixed points of the dynamics. This is done with a learning rule. There
are many learning rules for Hopfield Networks. In this paper we discuss learn-
ing rules in general, but focus on the Storkey Learning Rules [2, 3, 4, 5] first
introduced in [6, 7, 8, 9, 10], and later discussed in [11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21] among others. We choose this focus as we find that these rules
have valuable properties, such as locality and, most importantly, online learn-
ing (called being incremental in [10]). However they also have a high capacity
(defined later). They seem to have become the most desirable rules to use in
the Hopfield network setting.
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Let the variables to be modeled be si and take the values +1 or −1 as in
statistical physics. The Hopfield Model is described by the dynamic update

si → sign

 n∑
j=1

Jijsj

 (1)

where J is a symmetric weight matrix with zeros on the diagonal, and the
updates are done asynchronously for i = 1, 2, . . . , n, where n is the number of
neurons in the network.

Given an initial setting for (s1, s2, s3, . . . , sn) we can run the network to find
the pattern associated with this initial setting. Ideally we want the patterns to
be found to be stored memories of the system.

2 Learning Rules

The learning rules are used to set the weight matrices to store memories in
the network. The first learning rule proposed by John Hopfield himself [1] is
a formulation of the Hebb rule, due to Donald Hebb. Consider the case of an
incremental process where we have a weight matrix Jij and we wish to update
it to an new Jij so that the new memory given by pattern (s1, s2, s3, . . . , sn) is
stored. All the old memories must also remain stored.

2.1 Hopfield-Hebb rule

In this context the Hopfield-Hebb (or Hebb for short) rule states that the weight
matrix Jij is updated using

Jij → Jij + sisj (2)

for all i different from j. The diagonal terms Jii must be zero for all i.

2.2 Hopfield-Perceptron Rule

The Hopfield-Perceptron rule derives from the maximum likelihood learning
algorithm for the Perceptron, by applying it to auto-association instead of the
perceptron. It is an iterative, non-incremental gradient based rule, as opposed
to the Hebb rule and the Storkey Rules below which are all one shot rules. The
iterative update is

Jij → Jij+α
∑
k

(
ski − sign

(
n∑

r=1

Jirskr

))
skj+α

∑
k

(
skj − sign

(
n∑

r=1

Jjrskr

))
ski

(3)
where ski is the ith element on the kth training item, and α is a learning rate.

The Hopfield-Perceptron rule was used in [22], for Temporal Hidden Hopfield
Networks. It maximizes the probability that each item maps to itself. A zero
diagonal for J is necessary to ensure the Perceptron rule cannot just learn the
identity matrix.
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2.3 Boltzmann Machine Learning Rule

As the Hopfield Model is a special case of a Boltzmann Machine in the limit of
zero temperature, it is sensible to use the Boltzmann Machine Learning Rule to
train Hopfield Networks. There is one difficulty. The gradient in the Boltzmann
machine learning rule involves expectations with respect to the model, usually
approximated by sampling generatively from the Boltzmann machine. This is
done with Gibbs MCMC. However in the zero temperature limit, the Boltzmann
machine is not ergodic, so a Gibbs Markov chain does not produce a unique
equilibrium.

Good mixing for Boltzmann machine sampling is hard even at finite temper-
ature. One method is contrastive divergence, which makes a single step from
each data point to approximate a sample from the distribution. The result is
the contrastive divergence rule.

2.3.1 Contrastive Divergence Rule

The Contrastive Divergence Rule for Hopfield Networks is

Jij → Jij + α

(∑
k

skiskj −
∑
k

tkitkj

)
(4)

where tkj = sign (
∑

r Jirsr).
We can also use a form of contrastive divergence rule in an incremental

online, rather than iterative, setting. The form

Jij → Jij +

(∑
k

skiskj −
∑
k

tkitkj

)
(5)

performs poorly, but the form

Jij → Jij + skiskj − hkihkj (6)

is a much better performing rule. We use this in the experiments below.

2.4 Pseudo-inverse Rule

Where the Hopfield-Perceptron rule is used to map each memory to itself (after
thresholding with the sign function), the pseudo-inverse rule attempts to map a
memory to itself before thresholding: that is it maps to the ±1 activation levels
rather than just ± activation levels. This turns the problem into a real valued
regression problem which can be solved. The solution to linear regression is given
by the pseudo-inverse, leading to the pseudo-inverse solution for the Hopfield
Model. The Hebb rule is the special case of the pseudo-inverse rule for training
vectors that are orthogonal.

Jij =
1

n

∑
k,l

ski(C
−1)klslj (7)
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where

Ckl =
1

n

∑
i

skisli (8)

Note that this learning rule is a batch rule: it does not involve local computation;
it does not involve incremental updates.

2.5 Storkey Rules

The motivation for various Storkey Rules, all derived in [10], can come from two
directions. They can either be seen as an approximation to the pseudo inverse,
or they can be seen as derived from the Hebb rule applied to residuals.

2.5.1 Storkey General Rule

Storkey notes [10] that the pseudo-inverse rules can be used to get an incremental
update rule for the pseudo-inverse solution and proposes the general form of
update rule

Jij → Jij +
c(k, sk)

n
(skiskj − skihkj − hkiskj + hkihkj) (9)

where
hki =

∑
r

Jirskr (10)

and states that if we use

c =

1− 1

n

∑
ij

skiJijskj

−1

. (11)

then we implement an incremental form of the pseudo-inverse rule via the par-
titioned inverse equations.

For the pseudo-inverse, this rule still involves non-local computation for com-
puting c. This General Rule can be seen as the basis for the Storkey Learning
Rules that follow. In this rule it is beneficial to maintain diagonal Jii terms for
the learning procedure, though we remove them when neural updates are made
at test time. As the Jii terms are local to an individual neuron, this does not
affect the locality of the rule.

2.5.2 First Order Storkey Rules

We focus on the simplest form of rule, as that provides the most interesting
properties. We refer the reader to [10] to see the variations. Suppose in (9),
we write c ≈ 1, and assume that h is smaller than s, so hkihkj terms can be
neglected, we end up with the first order Storkey Learning Rule.

Jij → Jij +
1

n
skiskj −

1

n
skihkj −

1

n
hkiskj (12)
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2.5.3 Second Order Storkey Rules

The Extended Storkey Learning Rule, or second-order Storkey Learning Rule
keeps the hkihkj , but takes the c ≈ 1, giving

Jij → Jij +
1

n
skiskj −

1

n
skihkj −

1

n
hkiskj +

1

n
hkihkj (13)

where
hki =

∑
r

Jirskr (14)

2.5.4 Discussion

Compared with the pseudo inverse rule the Storkey Rules result in some patterns
are overtrained and some are undertrained. However this can be an advantage:
under the pseudo-inverse, later patterns would typically have smaller c than
the larger patterns. However eventually the network would hit capacity and
forget all the memories. By keeping c fixed, the network favors remembering
recent memories at expense of earlier ones. The Storkey learning rules are called
palimpsest rules for this reason. Alternatively the Extended Storkey Learning
Rule can be seen as doing a Hebb update using the residual from the one step
update (viewing ski as a real value).

J+
ij → Jij + (ski − hki)(skj − hkj) (15)

All the forms of Storkey Rules are fully local, in that the synaptic dynamics
only need information available from the adjacent neurons. However they do
require communication for computing the local fields.

2.6 Properies

Up to the point the various properties of learning rules have only been men-
tioned. The following are issues in Hopfield Networks:

• Generalisation and Spurious memories

• Capacity

• Locality of Learning

• Incrementality of learning

• Catastrophic Behaviour

2.6.1 Generalisation and Spurious Memories

A Hopfield Network with non-zero diagonal has the facility to learn the identity
matrix. This is undesirable as it leads to an inability to generalize: the noisy
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patterns will be mapped to noisy patterns and not to their noise-free memories.
Hence larger basins of attraction for a learning rule is better.

Spurious memories are fixed points of the Hopfield network that are not
original training vectors. Spurious memories can be good or bad depending on
their characteristics. Spurious memories may generalize memories to new, but
reasonable vectors that capture the distribution of the problem. However they
may also be undesirable confounders. Which of these is true depends on the
representation and the location of the spurious memories.

2.6.2 Capacity

Capacity refers to the number of memories that can be stored by a learning rule.
In general higher capacity is better. The capacity of a network depends on the
error rate that is allowed, how correlated patterns might be, and the learning
rule. However capacity must not occur at the expense of generalization. Hence
all capacity calculations must be computed for zero diagonal Jij .

2.6.3 Local Learning

A learning rule is local if the learning process for a weight depends on informa-
tion that can be made available at the two adjacent nodes. This information
can be information from the patterns presented at the nodes, or from the result
of the neural dynamics at the nodes.

2.6.4 Incremental Learning

Incremental learning is what we would normally call online learning: the update
process can be done incrementally and does not require a batch process, or
reference to previous memories. This is of great importance in modern systems
for handling large data sets and streaming data. An incremental rule, in this
context, achieves the required learning goal in an incremental way: it is not
just using online streamed data as a proxy for multiple passes through a batch
dataset.

2.6.5 Catastrophic Behaviour

As learning in Hopfield Networks progresses, it is possible for catastrophic for-
getting to occur, where none of the previous learnt memories are stored in the
system.

3 Experiments

We performed tests on storing image patches in a Hopfield Neural Network.
Standard 16 by 16 image patches randomly sampled from natural images were
truncated to 6 bit depth and represented in binary, resulting in a 1536 length
binary vector. Each was then combined with a random binary vector of the
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Figure 1: Capacity Calculations: Total number of erroneous bits on attempted
recall of all patterns as a proportion of the number of erroneous bits expected
for randomly generated recall vectors.

same length, and the resulting vectors were stored in a Hopfield model with
full connectivity, using each of the above learning rules. The memories were
then tested for recall and the total number of bits error was reported. This
was compared with the bit error expected if recalled memories had just been
random vectors. This was done for all incremental forms of Hopfield learning
rules to compare like with like. We have not included the incremental form of
the perceptron learning rule as that fails almost immediately.

The results are presented in Figure 1. We note that though the Storkey
incremental version of the Pseudo Inverse works well for a number of patterns
less than the number of neurons, it has a catastrophic failure afterwards. The
Hebb rule is particularly poor. The second order Storkey Rule performs better
than all other methods for all memory loadings considered.

4 Comments

It has been a long time since the original work by Hopfield, and since the im-
proved learning schemes introduced by Storkey. Since then Hopfield Networks
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have been of little interest in the machine learning and neural networks com-
munities: interest has been primarily relegated to analogical use within certain
areas of psychology and computational neuroscience. However given the close
similarities between Hopfield Networks and Boltzmann machines, perhaps the
new interest in Boltzmann machines within a deep learning context will produce
with it increased awareness of Hopfield networks, and a renewed interest in the
various learning algorithms associated with them.
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