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In spite of the widespread fanfare of the 1998 discovery of a positive accelerating expansion and the sub-
sequent need for a “Dark Energy” placeholder in physics, the one geometric component that seems to share a
relationship, the Cosmological Constant, has become shrouded in even more questions by it. After a century
of concentrated efforts, the mounting lack of forthcoming answers has “driven” the NSF/ NASA/DOE Dark
Energy Task Force to consider whether general relativity is “incorrect”. In keeping with this reluctant but forced
skepticism we subject an early competitor to general relativity, Gunnar Nordströms version of the Poisson equa-
tion, to a more stringent definition utilizing an asymmetric property of the Fundamental Theorem of Calculus.
We derive from this property a new metric Laplacian definition for flatness that in perturbed spherical symmetry
form greatly resembles the Schwarzschild solution. However, this metric version would seem capable of uniting
gravity with QFT by utilizing the widely considered equivalence of the Cosmological Constant with a proposed
large value vacuum energy density but at the expense of differential topology and our understanding of tensors
in general. A much larger penalty though seems to be that it results in a geometrical counterpoint to the physical
explanations for general relativity, QFT and energy density.
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I. INTRODUCTION

Even prior to the discovery of a positive accelerating expan-
sion [1–3], there existed fundamental questions as to how a
Cosmological Constant (CC,λ,Λ) could be incorporated into
general relativity (GR) through a seamless geometrical argu-
ment [4–7]. It could be argued that as one comes to under-
stand the geometric basis of GR, the possibility of any CC
becomes even more objectionable. The seemingly pure per-
turbations of basis unit vectors is jarringly interrupted by a
term often considered as a constant of integration. The inabil-
ity to unite GR with QFT has led to a conundrum. How can
a geometrical theory be so exhaustively researched, provide
a seemingly unassailable structure for gravitational phenom-
ena but yet continue to refuse alignment with other theories
and become even more paradoxical as time marches on? The
strength of its geometrical basis would seem to also be a shield
against unity.

While to the general science community, any detractions
of general relativity may sound like ignorant hyperbole, quan-
tum gravity theorists and cosmologists are quietly sounding an
alarm bell. In 2006, the National Science Foundation, along
with NASA and DOE, commissioned a Dark Energy Task
Force [8] to lay out arguments that the existence of a Dark
Energy is profoundly at odds with our current understanding
of physics, thus requiring funding of special programs to de-
termine its nature. It would appear that the energy density
we are familiar with, defined through the Poisson equation, is
fairly insignificant in the universe.

It is an intuitive geometric question that has led us back-
wards through the history of field theory to a subtle but dif-
ferent modification of a starting assumption, that of Laplace’s
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equation. We begin our argument here, but caution against
jumping to early conclusions based on any previous knowl-
edge of what a “scalar” or “tensor” means (although previous
knowledge of gauge invariance and metrics will help). This
warning also applies to any equation which contains energy
density ρ or mass, as we will be required to align our geomet-
ric equations using the same fluid analogies that lead to the
energy-momentum tensor.

We will first give a simple graphical understanding of our
interpretation, followed by a more formulaic explanation us-
ing the same techniques as Riemann sums. We avoid a drawn
out proof here since a vast swath of material must necessar-
ily be leaped over in order to arrive at what we propose is the
significance of our argument. Formalization will be forthcom-
ing but as this is a new theory that changes some basic equa-
tions, refuting peer review criticism will require more exten-
sive knowledge of arguments presented tens, if not hundreds,
of years ago. The phrase “state of the art” may be a bit of a
misnomer in this research path.

In light of the fundamental questions concerning energy
density, we are free to reconsider how scalar covariant the-
ories would be affected by a geometrical reformulation of the
Laplace and Poisson equations. To do this we require a new
understanding of calculus, dubbed “Area Calculus” herein,
that allows formulation of the metric Poisson and comparisons
with other covariant forms.

II. GUNNAR NORDSTRÖM’S THEORIES

During the early days of relativity, various theories were
studied to determine their predictive abilities. One of the most
well known within the circle of geometric interest was that
of extending the Newtonian scalar potential into four dimen-
sions from the usual three. Although other theorists, includ-
ing Einstein, have studied these covariant scalar theories, it is
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the Finnish physicist Nordström who is most widely associ-
ated with them due to a variable mass form he proposed [9]
that was at one point was considered a serious contender. In
more recent times, his theories are generally only utilized in
introductory materials as an illustration of a geometric dead
end. What we find interesting is that although there are ex-
aminations of the original assumptions that form covariant
scalar and tensor theories and the predictions that should re-
sult, there seems to be a lack of research into the differences
between fundamental equational mechanics of linearized ten-
sor approximations and scalar theories from a first principals
standpoint. Critics of these have no problem noting the superi-
ority and relationship of Rµν = 0 to Poisson’s ∇2Φ = f , but
seem to have cast a blind eye towards a rigorous conversion to
Laplace’s equation∇2Φ = 0.

Although it is often stated that the source reason for Ein-
stein’s Λ (sometimes misunderstood as “invented” instead of
derived) was to create a static universe, a review of his 1917
paper Cosmological Considerations On The General Theory
Of Relativity [10] also shows that his first geometric hunch
was to use it as a modification to Poisson’s equation so that it
would become the limiting value of the Newtonian Φ at “spa-
tial infinity”. We present Figure 1 as a visual aid in under-
standing our research. It should be obvious that although all
three figures result in similar outcomes at “spatial infinity”,
the Φ does not have the same value in each plot. However,
keep Einstein’s supposition on Λ in mind as we present Area
Calculus.
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FIG. 1. A geometric illustration of similarities

III. A PROOF OF AREA

Therefore, we start by re-examining the concept of differ-
entiation and integration from their most basic proof in graph-

ical form. Let us draw a regular rectangle where the top and
the bottom are line segments such that each is a function of x
denoted as y∗1 and y∗2 (Fig. 2).
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FIG. 2. Lines segments as two functions

We do not yet place these onto a coordinate plot as a solid
line (Fig. 3) on the x axis can lead to an incorrect proof. We

FIG. 3. Misleading solid axes

then incorporate multiple rectangles (A,B,C,D) (Fig. 4), of
equal length (∆x = x2−x1) and height (∆y = y∗1−y∗2) with
an area of ((y∗1−y∗2)∗(x2−x1)). Each horizontal line segment
has a particular |y∗1 |,|y∗2 | of−∞ > y∗ <∞ as measured from
an unknown zero point. The vertical line segment between
the y functions (∆y = y∗1 − y∗2) that is perpendicular to x will
become our metric.

A B C D

FIG. 4. Rectangles
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Note that if we continue adding on rectangles with the same
width and height (E,F,G,H) (Fig. 5), that the rate of the

A B C D E F G H

FIG. 5. Adding area via rectangles

addition of area is constant (rate of change of addition of
area=area next-area previous). Should we instead add on
blocks of decreasing area (E’,F’,G’,H’)(Fig. 6), then the rate
of the addition of area is decreasing.

A B C D E' F' G' H'

FIG. 6. Addition of area decreasing

From Fig. 7, we can see that a reflection of the rectan-
gles about the lower line segment does not change the rate of
the addition of area. It is still either constant, decreasing or
similarly increasing (not shown) should we add on blocks of
greater area (E”,F”,G”,H”). We assume in this new interpre-
tation of calculus that area is axiomatic such that the x and
y line segments are simply the boundaries used to denote it.
We designate the top line in all plots, even after reflection, as
a variation of y1 and the bottom line as a variation of y2.

A B C D E' F' G' H'

FIG. 7. Reflected but area still decreasing

Let us now use the standard proof technique of taking the
number of individual rectangles to infinity by decreasing the
width of each rectangle. It is important to always maintain in
mind that whereas the width of ∆x is decreasing, the distance
between the line segments of ∆y∗ is not as line segments y∗1
and y∗2 are two separate functions of x. We must, however,
denote the change in each individual line segment function as
∆y∗1 and ∆y∗2 as we take into account the decrease in ∆x to
zero (Fig. 8).

Thus we obtain an instantaneous rate of change of the ad-
dition of area (or the instantaneous change in area of rect-
angles of zero width) as dy1−dy2

dx ≡ lim∆x→ 0
∆y∗1−∆y∗2

∆x =

limh→ 0
(f1(x+h)−f1(x))−(f2(x+h)−f2(x))

(x+h)−x . To reiterate, al-
though x2 − x1 = ∆x → dx we must understand that
y∗1 − y∗2 = ∆y∗1 − ∆y∗2 → dy1 − dy2, not just the single
function form dy! Thus our metric line segment is actually
an instantaneous change in the addition of area and is the def-
inition of our metric.
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FIG. 8. Reflected line segments into continuous functions

Let us put some numerical values in to provide a better un-
derstanding. Let y1 = 10 − 1

x and let y2 = 8. The Area

derivative is dy1−dy2
dx =

d(10− 1
x−8)

dx = 1
x2 . If we should re-

flect the area about y2 we now have y1 = 8 and y2 = 6 + 1
x .

The Area derivative and the “direction” of a directional deriva-
tive is unchanged with dy1−dy2

dx =
d(8−(6+ 1

x ))

dx = 1
x2 despite

incorporating a function with a slope of opposite sign. This
is a proof that differentiation happens with respect to the sec-
ondary constant function (or the change of the line segment
metric), not whether the points that make up a line are chang-
ing positively or negatively.

IV. ANTI-DIFFERENTIATION

Assuming that y2 or y1 is a constant function (we do not
go into it now, but if the functions only differ by a “scalar”
amount, then this would seem to be a truer definition of an
Einstein manifold with R = nk = n(y1 − y2)) and the area
has been reflected, then dy1−dy2

dx = dy1
dx = −dy2

dx . Graphically,
these both reproduce the same function relative to the y=0 on
the x axis ( 1

x2 in our example). During integration, there is
no difference between the answer numerically given through
standard Single Function techniques, however Area Calculus
views the “area under the curve” of y1 as instead the “area
between the functions” of y1 and y2, providing a major proof
difference during the process of anti-differentiation. With area
axiomatic, the x axis must be the function y2 = 0 which has
an indefinite integral form of

∫
0dx = k, where k is an arbi-

trary constant. Thus
∫

d
dx (y1 − y2)dx =

∫
( d
dx (y1)− 0)dx =

(
∫

d
dxy1dx)− (

∫
0dx) = (y1 + c)− (k) which demonstrates

those dual functions within Area Calculus that are viable solu-
tions, including ((10− 1

x )−8), (8−(6+ 1
x )) and ((0− 1

x )−0).

V. THE METRIC LAPLACIAN

While we have only briefly gone over some of the prop-
erties of our new metric definition, we move on to one re-
quired to advance our argument. As can be understood from
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the previous sections, the asymmetry in single function cal-
culus is that differentiation and integration are viewed as a
cyclical process. Generally, a function that can be differen-
tiated can also be anti-differentiated. There is of course, the
anti-symmetric nature of a constant of integration. Simply
put, although there are an infinite number of functions that
equal zero (f ′ = 0) when differentiated, there are NO func-
tions where the anti-derivative equals zero. We view this as an
important distinction between the functional forms ∇2Φ = 0
and∇20 = 0. The second equation can only be geometrically
true, without assigning a function a scalar value, via a metric
line segment. This would give us ∇20 = ∇2(y1 − y2) = 0.
Due to the differential nature of the equation, we could nor-
malize one of the y functions with respect to the other. By
simply multiplying with the inverse of one of the functions,
we normalize the length of our metric line segment such that
1
y1
∇2(y1 − y2) = ∇2(1− y2

y1
) = ∇2(1− 1) = 0.

VI. THE METRIC POISSON EQUATION

In Figure 9 we have the graphical basis of the Poisson equa-
tion where the first derivative of the field potential is force and
the second derivative is the definition of energy density.
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FIG. 9. Poisson field potential

Our metric Laplace equation would require that a normal-
ized Poisson equation have a term with the form of y2y1 ≈ 1−ζ
giving us ∇2(1 − y2

y1
) ≈ ∇2(1 − (1 − ζ)) = µ (we used Φ

instead of ζ earlier in our comparison). We must keep in mind

though, that although the vectorial approximation would be
just of ∇ζ, the normalization process falls away during anti-
differentiation since the function becomes

∫
(0− (0− ζ ′)) ≈

(y1 − (y2 − ζ)).

VII. CONCLUSION

Attempts at incorporating Λ from the linearized field equa-
tion of 1−2Φ into Newton’s Law of Gravity using the Poisson
equation leads to the formula [11]

~g = −∇Φ = −GM
r2

~̂r +
Λc2r

3
~̂r.

There is no known way to reconcile a theoretical relationship
between the observed magnitudes of M and Λ in this equa-
tion, even to the point of being referred to as the “worst” pre-
diction in physics.

Comparing the Area Calculus version of the Metric Poisson
equation against the linearized gravity portion demonstrates
some short comings to incorporating the Cosmological Con-
stant into GR (Fig. 1). In the standard Poisson we also see
hidden assumptions that y1 has been ignored, y2 = 0− β

x and
that the area has no finite boundaries (perhaps not quantized
4-volume) since |(y2)| → 0 as x → ∞ and |(y2)| → −∞ as
x→ 0. We are not aware that either of these boundary condi-
tions match any known empirical evidence, nor how quantized
energy levels can effect out to spatial infinity. From the most
basic of linear solutions, it makes no sense where to place
a multiple of the metric into a plot that already contains the
metric and its perturbations. Where does Λg00 go in relation
to the g00 = 1 line and how can it possibly be permissible for
them both to occupy the same plot?

In light of the deep paradoxes and relationships of the Cos-
mological Constant and Dark Energy, we conclude that the
simplest geometric solution is the one that should receive first
consideration, even if it is disturbing to our current perspec-
tive.
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