Labeling, Covering and Decomposing of Graphs
--- Active Problems From the Journal:

Linfan Mao
(Chinese Academy of Mathematics and System Science, Beijing, 10080, P.R.China)

maolinfan@163.com

Beijing Jiaotong University
Nov. 18, 2009, Beijing
Abstract: This report surveys the applications of Smarandache’s notion for presenting new conceptions and generalizing problems in classical graph theory. Topics covered in this report include (1) What is a Smarandache System?; (2) Vertex-Edge Labeled Graphs with Applications: (i) Smarandachely k-constrained labeling of a graph; (ii) Smarandachely super m-mean graph; (iii) Smarandachely uniform k-graph; (iv) Smarandachely total coloring of a graph; (3) Covering and Decomposing of a Graph: (i) Smarandache path k-cover of a graph; (ii) Smarandache graphoidal tree d-cover of a graph; (4) Furthermore.
§1. Smarandache Systems

Definition 1.1 A rule in a mathematical system $(\Sigma; R)$ is said to be Smarandachely denied if it behaves in at least two different ways within the same set Σ, i.e., validated and invalidated, or only invalidated but in multiple distinct ways.

A Smarandache system $(\Sigma; R)$ is a mathematical system which has at least one Smarandachely denied rule in R.
Definition 1.2 For an integer $m \geq 2$, let $(\Sigma_1; R_1), (\Sigma_2; R_2), \cdots, (\Sigma_m; R_m)$ be m mathematical systems different two by two. A Smarandache multi-space is a pair $(\tilde{\Sigma}; \tilde{R})$ with

$$\tilde{\Sigma} = \bigcup_{i=1}^{m} \Sigma_i, \quad \text{and} \quad \tilde{R} = \bigcup_{i=1}^{m} R_i.$$

Definition 1.3 An axiom is said to be Smarandachely denied if the axiom behaves in at least two different ways within the same space, i.e., validated and invalidated, or only invalidated but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely denied axiom (1969).
Example 1.1 Let us consider an Euclidean plane \mathbb{R}^2 and three non-collinear points A, B and C. Define s-points as all usual Euclidean points on \mathbb{R}^2 and s-lines any Euclidean line that passes through one and only one of points A, B and C, such as those shown in Fig.1.1.

(i) The axiom (A5) replaced by two statements: *one parallel*, and *no parallel*.

(ii) The axiom replaced by; *one s-line*, and *no s-line*.

![Fig.1](image)
Definition 1.4 A combinatorial system \mathcal{E}_G is a union of mathematical systems $(\Sigma_1; R_1), (\Sigma_2; R_2), \ldots, (\Sigma_m; R_m)$ for an integer m, i.e.,

$$\mathcal{E}_G = (\bigcup_{i=1}^{m} \Sigma_i; \bigcup_{i=1}^{m} R_i)$$

with an underlying connected graph structure G, where

$$V(G) = \{\Sigma_1, \Sigma_2, \ldots, \Sigma_m\},$$

$$E(G) = \{ (\Sigma_i, \Sigma_j) \mid \Sigma_i \cap \Sigma_j \neq \emptyset, 1 \leq i, j \leq m \}.$$
§2. Vertex-Edge Labeled Graphs

2.1 Application to Principal Fiber Bundles

Definition 2.1 A labeled graph on a graph $G = (V, E)$ is a mapping $\theta_L : V \cup E \to L$ for a label set L, denoted by G^L.

If $\theta_L : E \to \emptyset$ or $\theta_L : V \to \emptyset$, then G^L is called a vertex labeled graph or an edge labeled graph, denoted by G^V or G^E, respectively. Otherwise, it is called a vertex-edge labeled graph.
Example:

![Diagram](image)

Fig.2
Definition 2.2: For a given integer sequence $0 < n_1 < n_2 < \cdots < n_m$, $m \geq 1$, a combinatorial manifold \tilde{M} is a Hausdorff space such that for any point $p \in \tilde{M}$, there is a local chart (U_p, φ_p) of p, i.e., an open neighborhood U_p of p in \tilde{M} and a homeomorphism $\varphi_p : U_p \to \mathbb{R}(n_1(p), n_2(p), \cdots, n_s(p)(p))$, a combinatorial fan-space with $\{n_1(p), n_2(p), \cdots, n_s(p)(p)\} \subseteq \{n_1, n_2, \cdots, n_m\}$, and $\bigcup_{p \in \tilde{M}} \{n_1(p), n_2(p), \cdots, n_s(p)(p)\} = \{n_1, n_2, \cdots, n_m\}$, denoted by $\tilde{M}(n_1, n_2, \cdots, n_m)$ or \tilde{M} on the context and

$$\tilde{A} = \{(U_p, \varphi_p) | p \in \tilde{M}(n_1, n_2, \cdots, n_m)\}$$

an atlas on $\tilde{M}(n_1, n_2, \cdots, n_m)$.

A combinatorial manifold \tilde{M} is *finite* if it is just combined by finite manifolds with an underlying combinatorial structure G without one manifold contained in the union of others. Certainly, a finitely combinatorial manifold is indeed a combinatorial manifold. Examples of combinatorial manifolds can be seen in Fig.3.

![Diagram](image)

(a)

(b)

Fig.3
Let \(\tilde{M}(n_1, n_2, \cdots, n_m) \) be a finitely combinatorial manifold and \(d, d \geq 1 \) an integer. We construct a vertex-edge labeled graph \(G^d[\tilde{M}(n_1, n_2, \cdots, n_m)] \) by

\[
V(G^d[\tilde{M}(n_1, n_2, \cdots, n_m)]) = V_1 \cup V_2,
\]

where \(V_1 = \{ n_i - \text{manifolds } M^{n_i} \text{ in } \tilde{M}(n_1, \cdots, n_m) \mid 1 \leq i \leq m \} \) and \(V_2 = \{ \text{isolated intersection points } O_{M^{n_i}, M^{n_j}} \text{ of } M^{n_i}, M^{n_j} \text{ in } \tilde{M}(n_1, n_2, \cdots, n_m) \mid 1 \leq i, j \leq m \} \). Label \(n_i \) for each \(n_i \)-manifold in \(V_1 \) and \(0 \) for each vertex in \(V_2 \) and

\[
E(G^d[\tilde{M}(n_1, n_2, \cdots, n_m)]) = E_1 \cup E_2,
\]

where \(E_1 = \{(M^{n_i}, M^{n_j}) \text{ labeled with } \dim(M^{n_i} \cap M^{n_j}) \mid \dim(M^{n_i} \cap M^{n_j}) \geq d, 1 \leq i, j \leq m \} \) and \(E_2 = \{(O_{M^{n_i}, M^{n_j}}, M^{n_i}), (O_{M^{n_i}, M^{n_j}}, M^{n_j}) \text{ labeled with } 0 \mid M^{n_i} \text{ tangent } M^{n_j} \text{ at the point } O_{M^{n_i}, M^{n_j}} \text{ for } 1 \leq i, j \leq m \} \).
Now denote by $\mathcal{H}(n_1, n_2, \cdots, n_m)$ all finitely combinatorial manifolds $\tilde{M}(n_1, n_2, \cdots, n_m)$ and $\mathcal{G}[0, n_m]$ all vertex-edge labeled graphs G^L with $\theta_L : V(G^L) \cup E(G^L) \to \{0, 1, \cdots, n_m\}$ with conditions following hold.

(1) Each induced subgraph by vertices labeled with 1 in G is a union of complete graphs and vertices labeled with 0 can only be adjacent to vertices labeled with 1.

(2) For each edge $e = (u, v) \in E(G)$, $\tau_2(e) \leq \min\{\tau_1(u), \tau_1(v)\}$.

Then we know a relation between sets $\mathcal{H}(n_1, n_2, \cdots, n_m)$ and $\mathcal{G}([0, n_m], [0, n_m])$ following.

Theorem 2.1 Let $1 \leq n_1 < n_2 < \cdots < n_m, m \geq 1$ be a given integer sequence. Then every finitely combinatorial manifold $\tilde{M} \in \mathcal{H}(n_1, n_2, \cdots, n_m)$ defines a vertex-edge labeled graph $G([0, n_m]) \in \mathcal{G}[0, n_m]$. Conversely, every vertex-edge labeled graph $G([0, n_m]) \in \mathcal{G}[0, n_m]$ defines a finitely combinatorial manifold $\tilde{M} \in \mathcal{H}(n_1, n_2, \cdots, n_m)$ with a 1–1 mapping $\theta : G([0, n_m]) \to \tilde{M}$ such that $\theta(u)$ is a $\theta(u)$-manifold in \tilde{M}, $\tau_1(u) = \dim(\theta(u))$ and $\tau_2(v, w) = \dim(\theta(v) \cap \theta(w))$ for $\forall u \in V(G([0, n_m]))$ and $\forall (v, w) \in E(G([0, n_m])).$
Definition 2.3 A principal fiber bundle consists of a manifold P action by a Lie group G, which is a manifold with group operation $G \times G \rightarrow G$ given by $(g, h) \rightarrow g \circ h$ being C^∞ mapping, a projection $\pi : P \rightarrow M$, a base pseudo-manifold M, denoted by (P, M, G), seeing Fig.4 (where $V = \pi^{-1}(U)$) such that conditions (1), (2) and (3) following hold.

(1) there is a right freely action of G on P, i.e., for $\forall g \in G$, there is a diffeomorphism $R_g : P \rightarrow P$ with $R_g(p) = pg$ for $\forall p \in P$ such that $p(g_1 g_2) = (pg_1) g_2$ for $\forall p \in P$, $\forall g_1, g_2 \in G$ and $pe = p$ for some $p \in P$, $e \in G$ if and only if e is the identity element of G.

(2) the map $\pi : P \rightarrow M$ is onto with $\pi^{-1}(\pi(p)) = \{pg | g \in G\}$.

(3) for $\forall x \in M$ there is an open set U with $x \in U$ and a diffeomorphism $T_U : \pi^{-1}(U) \rightarrow U \times G$ of the form $T_U(p) = (\pi(p), s_U(p))$, where $s_U : \pi^{-1}(U) \rightarrow G$ has the property $s_U(pg) = s_U(p)g$ for $\forall g \in G$, $p \in \pi^{-1}(U)$.

\[
\begin{array}{c}
P \xrightarrow{T_U} U \times G \\
\pi^{-1} \\
M \quad \text{with} \quad x \in U
\end{array}
\]
Question For a family of k principal fiber bundles $P_1(M_1, \mathcal{G}_1), P_2(M_2, \mathcal{G}_2), \cdots, P_k(M_k, \mathcal{G}_k)$ over manifolds M_1, M_2, \cdots, M_k, how can we construct principal fiber bundles on a smoothly combinatorial manifold consisting of M_1, M_2, \cdots, M_k underlying a connected graph G?

The answer is YES.

The technique is by voltage assignment on labeled graphs.
Definition 2.4 A voltage labeled graph on a vertex-edge labeled graph G^L is a 2-tuple $(G^L; \alpha)$ with a voltage assignments $\alpha : E(G^L) \to \Gamma$ such that

$$\alpha(u, v) = \alpha^{-1}(v, u), \quad \forall (u, v) \in E(G^L),$$

with its labeled lifting G'^L_{α} defined by

$$V(G'^L_{\alpha}) = V(G^L) \times \Gamma, \quad (u, g) \in V(G^L) \times \Gamma \text{ abbreviated to } u_g;$$

$$E(G'^L_{\alpha}) = \{ (u_g, v_{g \circ h}) \mid \forall (u, v) \in E(G^L) \text{ with } \alpha(u, v) = h \}$$

with labels $\Theta_L : G'^L_{\alpha} \to L$ following:

$$\Theta_L(u_g) = \theta_L(u), \quad \text{and} \quad \Theta_L(u_g, v_{g \circ h}) = \theta_L(u, v)$$

for $u, v \in V(G^L), \ (u, v) \in E(G^L) \text{ with } \alpha(u, v) = h \text{ and } g, h \in \Gamma.$
For a voltage labeled graph \((G^L, \alpha)\) with its lifting \(G^L_\alpha\), a natural projection \(\pi : G^L_\alpha \rightarrow G^L\) is defined by \(\pi(u_g) = u\) and \(\pi(u_g, v_{gh}) = (u, v)\) for \(\forall u, v \in V(G^L)\) and \((u, v) \in E(G^L)\) with \(\alpha(u, v) = h\). Whence, \((G^L_\alpha, \pi)\) is a covering space of the labeled graph \(G^L\). A voltage labeled graph with its labeled lifting are shown in Fig.4.4, in where, \(G^L = C_3^L\) and \(\Gamma = Z_2\).
Construction 2.1 For a family of principal fiber bundles over manifolds M_1, M_2, \ldots, M_l, such as those shown in Fig.6,
where \mathcal{H}_{i} is a Lie group acting on P_{M_i} for $1 \leq i \leq l$ satisfying conditions PFB1-PFB3, let \tilde{M} be a differentiably combinatorial manifold consisting of M_i, $1 \leq i \leq l$ and $(G^L[\tilde{M}], \alpha)$ a voltage graph with a voltage assignment $\alpha : G^L[\tilde{M}] \to \mathcal{G}$ over a finite group \mathcal{G}, which naturally induced a projection $\pi : G^L[\widetilde{P}] \to G^L[\tilde{M}]$. For $\forall M \in V(G^L[\tilde{M}])$, if $\pi(P_M) = M$, place P_M on each lifting vertex $M^L\alpha$ in the fiber $\pi^{-1}(M)$ of $G^L\alpha[\tilde{M}]$, such as those shown in Fig.7.

![Diagram](image_url)

Fig.7
Let $\Pi = \pi \Pi_M \pi^{-1}$ for $\forall M \in V(G^L[\widetilde{M}])$. Then $\widetilde{P} = \bigcup_{M \in V(G^L[\widetilde{M}])} P_M$ is a smoothly combinatorial manifold and $\mathcal{L}_G = \bigcup_{M \in V(G^L[\widetilde{M}])} \mathcal{H}_M$ a Lie multi-group by definition. Such a constructed combinatorial fiber bundle is denoted by $\widetilde{P}^{L,\alpha}(\widetilde{M}, \mathcal{L}_G)$.

For example, let $\mathcal{G} = Z_2$ and $G^L[\widetilde{M}] = C_3$. A voltage assignment $\alpha : G^L[\widetilde{M}] \to Z_2$ and its induced combinatorial fiber bundle are shown in Fig.8.
Then we know the existence result following.

Theorem 2.2 A combinatorial fiber bundle $\tilde{P}^\alpha(\tilde{M}, \mathcal{L}_G)$ is a principal fiber bundle if and only if for $\forall (M', M'') \in E(G^L[\tilde{M}])$ and $(P_{M'}, P_{M''}) = (M', M'')^{L^\alpha} \in E(G^L[\tilde{P}])$, $\Pi_{M'}|_{P_{M'} \cap P_{M''}} = \Pi_{M''}|_{P_{M'} \cap P_{M''}}$.
2.2 Smarandachely k-constrained labeling of a graph

Definition 2.5 A Smarandachely k-constrained labeling of a graph $G(V,E)$ is a bijective mapping $f : V \cup E \to \{1, 2, ..., |V| + |E|\}$ with the additional conditions that $|f(u) - f(v)| \geq k$ whenever $uv \in E$, $|f(u) - f(uv)| \geq k$ and $|f(uv) - f(vw)| \geq k$ whenever $u \neq w$, for an integer $k \geq 2$. A graph G which admits a such labeling is called a Smarandachely k-constrained total graph, abbreviated as $k-CTG$.
An example for $k = 5$:

![Graph](image)

Fig.9: A 5-constrained labeling of a path P_7.
Definition 2.6 The minimum positive integer n such that the graph $G \cup \overline{K}_n$ is a $k-CTG$ is called k-constrained number of the graph G and denoted by $t_k(G)$, the corresponding labeling is called a minimum k-constrained total labeling of G.

Problem 2.1 Determine $t_k(G)$ for $\forall k \in \mathbb{Z}^+$ and a graph G.
Update Results for Problem 2.1:

Case 1. \(k = 1 \)

In fact, \(t_1(G) = 0 \) for any graph \(G \) since any bijective mapping \(f : V \cup E \rightarrow \{1, 2, \ldots, |V| + |E|\} \) satisfies that \(|f(u) - f(v)| \geq 1 \) whenever \(uv \in E \), \(|f(u) - f(w)| \geq 1 \) and \(|f(uv) - f(vw)| \geq 1 \) whenever \(u \neq w \).
Case 2. $k = 2$

\[t_2(P_n) = \begin{cases}
2 & \text{if } n = 2, \\
1 & \text{if } n = 3, \\
0 & \text{else.}
\end{cases} \]

Proof Let $V(P_n) = \{v_1, v_2, \ldots, v_n\}$ and $E(P_n) = \{v_iv_{i+1} | 1 \leq i \leq n - 1\}$. Consider a total labeling $f : V \cup E \rightarrow \{1, 2, 3, \ldots, 2n-1\}$ defined as $f(v_1) = 2n - 3; f(v_2) = 2n - 1; f(v_1v_2) = 2; f(v_2v_3) = 4$; and $f(v_k) = 2k - 5, f(v_kv_{k+1}) = 2k$, for all $k \geq 3$. This function f serves as a Smarandachely 2-constrained labeling for P_n, for $n \geq 4$. Further, the cases $n = 2$ and $n = 3$ are easy to prove.

\[\square \]
(2) \(t_2(C_n) = 0 \) if \(n \geq 4 \) and \(t_2(C_3) = 2 \).

Proof. If \(n \geq 4 \), then the result follows immediately by joining end vertices of \(P_n \) by an edge \(v_1v_n \), and, extending the total labeling \(f \) of the path as in the proof of the Theorem 2.4 above to include \(f(v_1v_2) = 2n \).

Consider the case \(n = 3 \). If the integers \(a \) and \(a + 1 \) are used as labels, then one of them is assigned for a vertex and other is to the edge not incident with that vertex. But then, \(a + 2 \) cannot be used to label the vertex or an edge in \(C_3 \). Therefore, for each three consecutive integers we should leave at least one integer to label \(C_3 \). Hence the span of any Smarandachely 2-constrained labeling of \(C_3 \) should be at least 8. So \(t_2(C_3) \geq 2 \). Now from the Figure 3 it is clear that \(t_2(C_3) \leq 2 \). Thus \(t_2(C_3) = 2 \). \(\square \)
Fig. 11
(3) \(t_2(K_n) = 0 \) if \(n \geq 4 \).

(4) \(t_2(W_{1,n}) = 0 \) if \(n \geq 3 \).

(6) \[
\begin{cases}
2 & \text{if } n = 1 \text{ and } m = 1, \\
1 & \text{if } n = 1 \text{ and } m \geq 2, \\
0 & \text{else.}
\end{cases}
\]
Case 3. \(k \geq 3 \)

\[
(1) \quad t_k(K_{1,n}) = \begin{cases}
3k - 5, & \text{if } n = 3, \\
 n(k - 2), & \text{otherwise.}
\end{cases} \quad \text{if } k.n \geq 3.
\]

Proof For any Smarandachely \(k \)-constrained labeling \(f \) of a star \(K_{1,n} \), the span of \(f \), after labeling an edge by the least positive integer \(a \) is at least \(a + nk \). Further, the span is minimum only if \(a = 1 \). Thus, as there are only \(n + 1 \) vertices and \(n \) edges, for any minimum total labeling we require at least \(1 + nk - (2n + 1) = n(k - 2) \) isolated vertices if \(n \geq 4 \) and at least \(1 + nk - 2n = n(k - 2) + 1 \) if \(n = 3 \). In fact, for the case \(n = 3 \), as the central vertex is incident with each edge and edges are mutually adjacent, by a minimum \(k \)-constrained total labeling, the edges as well the central vertex can be labeled only by the set \(\{1, 1+k, 1+2k, 1+3k\} \). Suppose the label 1 is assigned for the central vertex, then to label the end vertex adjacent to edge labeled \(1+2k \) is at least \((1+3k) + 1 \) (since it is adjacent to 1, it can not be less than \(1+k \)). Thus at most two vertices can only be labeled by the integers between 1 and \(1+3k \). Similar argument holds for the other cases also.
Therefore, \(t(K_{1,n}) \geq n(k - 2) \) for \(n \geq 4 \) and \(t(K_{1,n}) \geq n(k - 2) + 1 \) for \(n = 3 \).

To prove the reverse inequality, we define a \(k \)-constrained total labeling for all \(k \geq 3 \), as follows:

(1) When \(n = 3 \), the labeling is shown in the Fig.10 below

![Diagram](image.png)

Fig.12
(2) When $n \geq 4$, define a total labeling f as $f(v_0v_j) = 1 + (j - 1)k$ for all $j, 1 \leq j \leq n$. $f(v_0) = 1 + nk$, $f(v_1) = 2 + (n - 2)k$, $f(v_2) = 3 + (n - 2)k$, and for $3 \leq i \leq (n - 1)$,

$$f(v_{i+1}) = \begin{cases} f(v_i) + 2, & \text{if } f(v_i) \equiv 0 \pmod{k}, \\ f(v_i) + 1, & \text{otherwise}. \end{cases}$$

and the rest all unassigned integers between 1 and $1 + nk$ to the $n(k - 2)$ isolated vertices, where v_0 is the central vertex and $v_1, v_2, v_3, \ldots, v_n$ are the end vertices.

The function so defined is a Smarandachely k-constrained labeling of $K_{1,n} \cup \overline{K}_{n(k-2)}$, for all $n \geq 4$. \hfill \square
(2) Let P_n be a path on n vertices and $k_0 = \left\lfloor \frac{2n-1}{3} \right\rfloor$. Then

$$t_k(P_n) = \begin{cases}
0 & \text{if } k \leq k_0, \\
2(k - k_0) - 1 & \text{if } k > k_0 \text{ and } 2n \equiv 0 \pmod{3}, \\
2(k - k_0) & \text{if } k > k_0 \text{ and } 2n \equiv 1 \text{ or } 2 \pmod{3}.
\end{cases}$$

(3) Let C_n be a cycle on n vertices and $k_0 = \left\lfloor \frac{2n-1}{3} \right\rfloor$. Then

$$t_k(C_n) = \begin{cases}
0 & \text{if } k \leq k_0, \\
2(k - k_0) & \text{if } k > k_0 \text{ and } 2n \equiv 0 \pmod{3}, \\
3(k - k_0) & \text{if } k > k_0 \text{ and } 2n \equiv 1 \text{ or } 2 \pmod{3}.
\end{cases}$$
2.3 Smarandachely Super m-Mean Graph

Definition 2.7 Let G be a graph and $f : V(G) \rightarrow \{1, 2, 3, \cdots, |V| + |E(G)| \}$ be an injection. For each edge $e = uv$ and an integer $m \geq 2$, the induced Smarandachely edge m-labeling f_S^* is defined by

$$f_S^*(e) = \left\lfloor \frac{f(u) + f(v)}{m} \right\rfloor.$$

Then f is called a Smarandachely super m-mean labeling if $f(V(G)) \cup \{f^*(e) : e \in E(G)\} = \{1, 2, 3, \cdots, |V| + |E(G)|\}$. A graph that admits a Smarandachely super mean m-labeling is called Smarandachely super m-mean graph.
Particularly, if $m = 2$, we know that

$$
f^*(e) = \begin{cases}
\frac{f(u)+f(v)}{2} & \text{if } f(u) + f(v) \text{ is even;} \\
\frac{f(u)+f(v)+1}{2} & \text{if } f(u) + f(v) \text{ is odd.}
\end{cases}
$$

Example: A Smarandache super 2-mean graph P_6^2

Fig.13
Problem 2.2 Find integers m and graphs G such that G is a Smarandachely super m-mean graph.

Update Results for Problem 2.2:

Now all results is on the case of Smarandache super 2-mean graphs.

(1) A H-graph of a path P_n is the graph obtained from two copies of P_n with vertices v_1, v_2, \ldots, v_n and u_1, u_2, \ldots, u_n by joining the vertices v_{n+1} and u_{n+1} if n is odd and the vertices v_{n+1} and u_{n+1} if n is even. Then

A H-graph G is a Smarandache super 2-mean graph.
(2) The corona of a graph G on p vertices v_1, v_2, \ldots, v_p is the graph obtained from G by adding p new vertices u_1, u_2, \ldots, u_p and the new edges $u_i v_i$ for $1 \leq i \leq p$, denoted by $G \odot K_1$.

If a H-graph G is a Smarandache super 2-mean graph, then $G \odot K_1$ is a Smarandache super 2-mean graph.

(3) For a graph G, the 2-corona of G is the graph obtained from G by identifying the center vertex of the star S_2 at each vertex of G, denoted by $G \odot S_2$.

If a H-graph G is a Smarandache super 2-mean graph, then $G \odot S_2$ is a Smarandache super 2-mean graph.

(4) Cycle C_{2n} is a Smarandache super 2-mean graph for $n \geq 3$.

(5) Corona of a cycle C_n is a Smarandache super 2-mean graph for $n \geq 3$.
(6) A cyclic snake mC_n is the graph obtained from m copies of C_n by identifying the vertex $v_{(k+2)_j}$ in the j^{th} copy at a vertex $v_{1_{j+1}}$ in the $(j + 1)^{th}$ copy if $n = 2k + 1$ and identifying the vertex $v_{(k+1)_j}$ in the j^{th} copy at a vertex $v_{1_{j+1}}$ in the $(j + 1)^{th}$ copy if $n = 2k$.

The graph mC_n-snake, $m \geq 1$, $n \geq 3$ and $n \neq 4$ has a Smarandache super 2-mean labeling.

(7) A $P_n(G)$ is a graph obtained from G by identifying an end vertex of P_n at a vertex of G.

If G is a Smarandache super 2-mean graph then $P_n(G)$ is also a Smarandache super 2-mean graph.

(8) $C_m \times P_n$ for $n \geq 1, m = 3, 5$ are Smarandache super 2-mean graphs.

Problem 2.3 For what values of m (except 3,5) the graph $C_m \times P_n$ is a Smarandache super 2-mean graph?
2.4 Smarandachely Uniform k-Graphs

Definition 2.7 For an non-empty subset M of vertices in a graph $G = (V, E)$, each vertex u in G is associated with the set $f^o_M(u) = \{d(u, v) : v \in M, u \neq v\}$, called its open M-distance-pattern.

A graph G is called a Smarandachely uniform k-graph if there exist subsets M_1, M_2, \ldots, M_k for an integer $k \geq 1$ such that $f^o_{M_i}(u) = f^o_{M_j}(u)$ and $f^o_{M_i}(u) = f^o_{M_j}(v)$ for $1 \leq i, j \leq k$ and $\forall u, v \in V(G)$. Such subsets M_1, M_2, \ldots, M_k are called a k-family of open distance-pattern uniform (odpu-) set of G and the minimum cardinality of odpu-sets in G, if they exist, is called the Smarandachely odpu-number of G, denoted by $od^S_k(G)$.

Usually, a Smarandachely uniform 1-graph G is called an open distance-pattern uniform (odpu-) graph. In this case, its odpu-number $od^S_k(G)$ of G is abbreviated to $od(G)$.
Problem 2.4 Determine which graph G is Smarandachely uniform k-graph for an integer $k \geq 1$.

Update Results for Problem 2.4:

1. A connected graph G is an odpu-graph if and only if the center $Z(G)$ of G is an odpu-set.
2. Every self-centered graph is an odpu-graph.
3. A tree T has an odpu-set M if and only if T is isomorphic to P_2.
4. If G is a unicyclic odpu-graph, then G is isomorphic to a cycle.
5. A block graph G is an odpu-graph if and only if G is complete.
6. A graph with radius 1 and diameter 2 is an odpu-graph if and only if there exists a subset $M \subset V(G)$ with $|M| \geq 2$ such that the induced subgraph $\langle M \rangle$ is complete, $\langle V - M \rangle$ is not complete and any vertex in $V - M$ is adjacent to all the vertices of M.
Problem 2.5 Determine the Smarandachely odpu-number \(od_k^S(G) \) of \(G \) for an integer \(k \geq 1 \).

⇒ Update Results for Problem 2.5:

(1) For every positive integer \(k \neq 1, 3 \), there exists a graph \(G \) with odpu-number \(k \).
(2) If a graph \(G \) has odpu-number 4, then \(r(G') = 2 \).
(3) The number 5 cannot be the odpu-number of a bipartite graph.
(4) Let \(G \) be a bipartite odpu-graph. Then \(od(G') = 2 \) if and only if \(G \) is isomorphic to \(P_2 \).
(5) \(od(C_{2k+1}) = 2k \).
(6) \(od(K_n) = 2 \) for all \(n \geq 2 \).
2.5 Smarandachely Total Coloring of a graph

Definition 2.8 Let f be a total k–coloring on G. Its total-color neighbor of a vertex u of G is denoted by $C_f(x) = \{ f(x) | x \in T_N(u) \}$. For any adjacent vertices x and y of $V(G)$, if $C_f(x) \neq C_f(y)$, say f a k AVSDT-coloring of G (the abbreviation of adjacent-vertex-strongly-distinguishing total coloring of G).

The AVSDT-coloring number of G, denoted by $\chiast(G)$ is the minimal number of colors required for an AVSDT-coloring of G.
Definition 2.9 A Smarandachely total k-coloring of a graph G is an AVSDT-coloring with $|C_f(x)\setminus C_f(y)| \geq k$ and $|C_f(y)\setminus C_f(x)| \geq k$.

The minimum Smarandachely total k-coloring number of a graph G is denoted by $\chi_{ast}^k(G)$.

Obviously, $\chi_{ast}(G') = \chi_{ast}^1(G)$ and

$$\cdots \leq \chi_{ast}^{k+1}(G') \leq \chi_{ast}^k(G) \leq \chi_{ast}^{k-1}(G) \leq \cdots \leq \chi_{ast}^1(G)$$

by definition.

Problem 2.6 Determine $\chi_{ast}^k(G')$ for a graph G.

Update Results for Problem 2.6:

$$\chi_{ast}^1(S_m + W_n) = m + n + 3 \text{ if } \min\{m,n\} \geq 5.$$
§3. Covering and Decomposing of a Graph

Definition 3.1 Let \(\mathcal{P} \) be a graphical property. A Smarandache graphoidal \(\mathcal{P} \) \((k, d) \)-cover of a graph \(G \) is a partition of edges of \(G \) into subgraphs \(G_1, G_2, \ldots, G_l \in \mathcal{P} \) such that \(E(G_i) \cap E(G_j) \leq k \) and \(\Delta(G_i) \leq d \) for integers \(1 \leq i, j \leq l \).

The minimum cardinality of Smarandache graphoidal \(\mathcal{P} \) \((k, d) \)-cover of a graph \(G \) is denoted by \(\Pi^{(k, d)}_{\mathcal{P}}(G) \).

Problem 3.1 Determine \(\Pi^{(k, d)}_{\mathcal{P}}(G) \) for a graph \(G \).
3.1 Smarandache path k-cover of a graph

Definition 3.2 A Smarandache path k-cover of a graph G is a Smarandache graphoidal \mathcal{P} $(k, \Delta(G))$-cover of G with $\mathcal{P}=\text{path}$ for an integer $k \geq 1$.

A Smarandache path 1-cover of G such that its every edge is in exactly one path in it is called a simple path cover.

The minimum cardinality of simple path covers of G is called the simple path covering number of G and is denoted by $\Pi_{\mathcal{P}}^{(1,\Delta(G))}(G)$.

If do not consider the condition $E(G_i) \cap E(G_j) \leq 1$, then a simple path cover is called path cover of G, its minimum number of path cover is denoted by $\pi(G)$ in reference. For examples, $\pi_s(K_n) = \lceil \frac{n}{2} \rceil$ and $\pi_s(T) = \frac{k}{2}$, where k is the number of odd degree in tree T.

Problem 3.2 determine $\Pi_{\mathcal{P}}^{(k,d)}(G)$ for a graph G.
Update Results for Problem 3.2:

(1) $\Pi_{\mathcal{G}}^{(1,\Delta(G))}(T) = \pi(T) = \frac{k}{2}$, where k is the number of vertices of odd degree.

(2) Let G be a unicyclic graph with cycle C. Let m denote the number greater than 2 on C. Let k be the number of vertices of odd degree. Then

$$
\Pi_{\mathcal{G}}^{(1,\Delta(G))}(G) = \begin{cases}
3 & \text{if } m = 0 \\
\frac{k}{2} + 2 & \text{if } m = 1 \\
\frac{k}{2} + 1 & \text{if } m = 2 \\
\frac{k}{2} & \text{if } m \geq 3
\end{cases}
$$
(3) For a wheel $W_n = K_1 + C_{n-1}$, we have

$$\Pi^{(1,\Delta(G))}_{\mathcal{F}}(W_n) = \begin{cases} 6 & \text{if } n = 4 \\ \left\lfloor \frac{n}{2} \right\rfloor + 3 & \text{if } n \geq 5 \end{cases}$$

Proof Let $V(W_n) = \{v_0, v_1, \ldots, v_{n-1}\}$ and $E(W_n) = \{v_0v_i : 1 \leq i \leq n-1\} \cup \{v_iv_{i+1} : 1 \leq i \leq n-2\} \cup \{v_1v_{n-1}\}$.

If $n = 4$, then $W_n = K_4$ and hence $\Pi^{(1,\Delta(G))}_{\mathcal{F}}(W_n)(W_n) = 6$.

Now, suppose $n \geq 5$. Let $r = \left\lfloor \frac{n}{2} \right\rfloor$

If n is odd, let

$$P_i = (v_i, v_0, v_{r+i})$$

$i = 1, 2, \ldots, r$.

$$P_{r+1} = (v_1, v_2, \ldots, v_r)$$

$$P_{r+2} = (v_1, v_{2r}, v_{2r-1}, \ldots, v_{r+2})$$

and

$$P_{r+3} = (v_r, v_{r+1}, v_{r+2})$$.
If n is even, let

$$P_i = (v_i, v_0, v_{r-1+i}), \; i = 1, 2, \ldots, r - 1.$$

$$P_r = (v_0, v_{2r-1}),$$

$$P_{r+1} = (v_1, v_2, \ldots, v_{r-1}),$$

$$P_{r+2} = (v_1, v_{2r-1}, \ldots, v_{r+1})$$ and

$$P_{r+3} = (v_{r+1}, v_{r+2}, \ldots)$$

Then $\Pi^{(1,\Delta(G))}(W_n) = \{P_1, P_2, \ldots, P_{r+3}\}$ is a simple path cover of W_n. Hence $\pi_s(W_n) \leq r + 3 = \left\lceil \frac{n}{2} \right\rceil + 3$. Further, for any simple path cover ψ of W_n at least three vertices on $C = (v_1, v_2, \ldots, v_{n-1})$ are terminal vertices of paths in ψ. Hence $t \leq q - \frac{k}{2} - 3$, so that

$$\Pi^{(1,\Delta(G))}(W_n) = q - t \geq \frac{k}{2} + 3 = \left\lfloor \frac{n}{2} \right\rfloor + 3.$$ Thus $\Pi^{(1,\Delta(G))}(W_n) = \left\lceil \frac{n}{2} \right\rceil + 3$. \qed

Definition 3.3 A Smarandache path 1-cover of G such that its every edge is in exactly two path in it is called a path double cover.

Define $G \ast H$ with vertex set $V(G) \times V(H)$ in which (g_1, h_1) is joined to (g_2, h_2) whenever $g_1g_2 \in E(G)$ or $g_1 = g_2$ and $h_1h_2 \in E(H)$; $G \circ H$, the weak product of graphs G, H with vertex set $V(G) \times V(H)$ in which two vertices (g_1, h_1) and (g_2, h_2) are adjacent whenever $g_1g_2 \in E(G)$ and $h_1h_2 \in E(H)$ and

$$\gamma_2(G) = \min \{ |\psi| : \psi \text{ is a path double cover of } G \}.$$
(4) Let $m \geq 3$.

$$
\gamma_2(C_m \circ K_2) = \begin{cases}
3 & \text{if } m \text{ is odd;} \\
6 & \text{if } m \text{ is even.}
\end{cases}
$$

(5) Let $m, n \geq 3$. $\gamma_2(C_m \circ C_n) = 5$ if at least one of the numbers m and n is odd.

(6) Let $m, n \geq 3$.

$$
\gamma_2(P_m \circ C_n) = \begin{cases}
4 & \text{if } n \equiv 1 \text{ or } 3 \text{(mod 4)} \\
8 & \text{if } n \equiv 0 \text{ or } 2 \text{(mod 4)}
\end{cases}
$$
(7) \(\gamma_2(C_m \ast K_2) = 6 \) if \(m \geq 3 \) is odd.

(8) \(\gamma_2(P_m \ast K_2) = 4 \) for \(m \geq 3 \).

(9) \(\gamma_2(P_m \ast K_2) = 5 \) for \(m \geq 3 \).

(10) \(\gamma_2(C_m \times P_3) = 5 \) if \(m \geq 3 \) is odd.

(11) \(\gamma_2(P_m \circ K_2) = 4 \) for \(m \geq 2 \).

(12) \(\gamma_2(K_{m,n}) = \max\{m, n\} \).

(13)

\[
\gamma_2(P_m \times P_n) = \begin{cases}
3 & \text{if } m=2 \text{ or } n=2; \\
4 & \text{otherwise,}
\end{cases}
\]

if \(m, n \geq 2 \).

(14) \(\gamma_2(C_m \times C_n) = 5 \) if \(m \geq 3, n \geq 3 \) and at least one of the numbers \(m \) and \(n \) is odd.

(15) \(\gamma_2(C_m \times K_2) = 4 \) for \(m \geq 3 \).
3.2 Smarandache graphoidal tree d-cover of a graph

Definition 3.4 A Smarandache graphoidal tree d-cover of a graph G is a Smarandache graphoidal $\mathcal{D}\ (|G|,d)$-cover of G with \mathcal{D}=tree for an integer $d \geq 1$.

The minimum cardinality of Smarandache graphoidal tree d-cover of G is denoted by $\gamma_{T}^{(d)}(G) = \Pi^{(|G|,d)}(G)$. If $d = \Delta(G)$, then $\gamma_{T}^{(d)}(G)$ is abbreviated to $\gamma_{T}(G)$.

Problem 3.3 determine $\gamma_{T}(G)$ for a graph G, particularly, $\gamma_{T}(G)$.
Update Results for Problem 3.3:

Case 1: \(\gamma_T(G) \)

(1) \(\gamma_T(K_p) = \left\lceil \frac{p}{2} \right\rceil \);

(2) \(\gamma_T(K_{m,n}) = \left\lceil \frac{m+n}{3} \right\rceil \) if \(m \leq n < 2m - 3 \).

(3) \(\gamma_T(K_{m,n}) = m \) if \(n > 2m - 3 \).

(4) \(\gamma_T(P_m \times P_n) = 2 \) for integers \(m, n \geq 2 \).

(5) \(\gamma_T(P_n \times C_m) = 2 \) for integers \(m \geq 3, n \geq 2 \).

(6) \(\gamma_T(C_m \times C_n) = 3 \) if \(m, n \geq 3 \).
Case 2: $\gamma_T^{(d)}(G)$

(1)

$$\gamma_T^{(d)}(K_p) = \begin{cases} \frac{p(p-2d+1)}{2} & \text{if } d < \frac{p}{2}; \\ \lceil \frac{p}{2} \rceil & \text{if } d \geq \frac{p}{2}. \end{cases}$$

if $p \geq 4$.

(2) $\gamma_T^{(d)}(K_{m,n}) = p + q - pd = mn - (m + n)(d - 1)$ if $n, m \geq 2d$.

(3) $\gamma_T^{(d)}(K_{2d-1,2d-1}) = p + q - pd = 2d - 1$.

(4) $\gamma_T^{(d)}(K_{n,n}) = \lceil \frac{2n}{3} \rceil$ for $d \geq \lceil \frac{2n}{3} \rceil$ and $n > 3$.

(5) $\gamma_T^{(d)}(C_m \times C_n) = 3$ for $d \geq 4$ and $\gamma_T^{(2)}(C_m \times C_n) = q - p$.
Thanks!