Could photosensitive emulsions make dark matter visible?

M. Pitkänen

Email: matpitka@luukku.com.
http://tgdtheory.com/public_html/
Mailing address: Köydenpunojankatu 2 D 11, 10940, Hanko, Finland.

Abstract

The article ”Possible detection of tachyon monopoles in photographic emulsions” by Keith Fredericks describes in detail (http://restframe.com/downloads/tachyon_monopoles.pdf) very interesting observations by him and also by many other researchers about strange tracks in photographic emulsions induced by various (probably) non-biological mechanisms and also by the exposure to human hands (touching by fingertips) as in the experiments of Fredericks. That the photographic emulsion itself consists of organic matter (say gelatin) might be of significance as also the fact that practically all experimental arrangements involve di-electric breakdown (nerve pulses in the experiments of Fredericks). For particle physicist it is very difficult to accept the proposed interpretation as particle tracks and even more difficult to agree with the identification of particles as tachyonic magnetic monopoles. A more natural interpretation seems to be as ”photographs” of pre-existing structures - either completely standard but not well-understood or reflecting new physics associated with the living matter. In TGD framework the identification as images of magnetic flux tubes carrying dark matter and associated with the emulsion - less probably with the source - is natural and the images would be very much analogous to those obtained by Peter Gariaev’s group by illuminating DNA sample with visible light.

1 Introduction

The article ”Possible detection of tachyon monopoles in photographic emulsions” by Keith Fredericks [12] describes in detail (http://restframe.com/downloads/tachyon_monopoles.pdf) very interesting observations by him and also by many other researchers about strange tracks in photographic emulsions induced by various (probably) non-biological mechanisms and also by the exposure to human hands (touching by fingertips) as in the experiments of Fredericks. That the photographic emulsion itself consists of organic matter (say gelatin) might be of significance.
1.1 The findings

The tracks have width between 5 µm-110 µm (horizontal) and 5 µm-460 µm (vertical). Even tracks of length up to at least 6.9 cm have been found. Tracks begin at some point and end abruptly. A given track can have both random and almost linear portions, regular periodic structures (figs 11 and 12), tracks can appear in swarms (fig. 24), bundles (fig. 25), and correlated pairs (fig. 16), tracks can also split and recombine (fig. 32) (here and below ”fig.” refers to a figure of the article at http://restframe.com/downloads/tachyon_monopoles.pdf).

Tracks differ from tracks of known particles: the constant width of track implies that electrons are not in question. No delta rays (fast electrons caused by secondary ionization appearing as branches in the track) characteristic for ions are present. Unlike alpha particle tracks the tracks are not straight. In magnetic fields tracks have parabolic portions whereas ordinary charged particle move along spiral. The magnetic field needed to cause spiral structure for baryons should be by two orders of magnitude higher than in the experiments.

For particle physicist all these features - for instance constant width - strongly suggest pre-existing structures becoming visible for some reason. The pre-existing structure could of course correspond to something completely standard structures present in the emulsion. If one is ready to accept that biology involves new physics, it could be something more interesting.

Also evidence for cold fusion is reported by the group of Urutskoev [H1]. There is evidence for cold fusion in living matter [C1, C2]: the fact that the emulsion contains gelatin might relate to this. In [K2] a dark matter based mechanism of cold fusion allowing protons to overcome the Coulomb wall is discussed. Either dark protons or dark nuclei with much larger quantum size than usually would make this possible and protons could end up to the dark nuclei along dark flux tubes. In TGD inspired biology dark protons (large h_{eff}) with scaled up Compton length of order atomic size are proposed to play key role since their states allow interpretation in terms of vertebrate genetic code [K2, K5].

1.2 The importance of belief system

These structures could be something quite standard or not. This readiness to consider non-standard explanations depends on belief system.

1. In the belief system of standard physics these pre-existing structures would be organic material consisting of ordinary matter so that no new physics is involved. Probably it is easy to kill this hypothesis. If this can be done, the situation becomes really interesting.

2. In my own belief system they could correspond to dark matter structures made visible by some mechanism. The presence of human hands could induce this phenomenon in the experiments of Fredericks. If so we might be already considering remote interactions involving dark photons and magnetic flux tubes, whose images ”tracks” would be.

3. The first guess is that these structures are in the emulsion. This need not be the case! They could be structures outside- say in human hands - sending dark
photon beam absorbed by the small photosensitive crystals in the emulsion. A photograph of dark matter (say in the hands of sender) would be formed! One possibility is that tracks represent a photograph of the dark matter at the flux tubes of the magnetic body of the emulsion. This would be a variant for what Gariaev perhaps managed to achieve with camera: taking a photo of dark matter [K1]!

4. Unfortunately belief system becomes important also in second manner. The reductionistic belief system tells that the tracks must be something trivial. There cannot be new physics in scale of cell as we have read in text books. Therefore these tracks are not studied by professionals who could very easily find whether there is something really interesting involved.

Dark matter in TGD based belief system corresponds to a hierarchy of phases of ordinary matter with an effective value h_{eff} of Planck constant coming as integer multiple of ordinary Planck constant. This makes possible macroscopic quantum phases consisting of dark matter. The flux tubes could carry magnetic monopole flux but the magnetic charge would be topological (made possible by the non-trivial second homology of CP^2 factor of the 8-D imbedding space containing space-times as surfaces) rather than Dirac type magnetic charge.

The TGD inspired identification of tracks could be as images of magnetic flux tubes or bundles of them containing dark matter defining one of the basic new physics elements in TGD based quantum biology. One can imagine two options for the identification of the tracks as "tracks".

1. The primary structures are in the photosensitive emulsion.

2. The structures in photograph are photographs of dark matter in external world, say structures in human hands or human body or of dark matter at some magnetic body, say at the flux tubes of the magnetic body of the emulsion.

The fact that the tracks have been observed in experimental arrangements not involving exposure to human hands, indeed suggests that tracks represent photographs about parts of the magnetic body assignable to the emulsion. For this option the external source would serve only as the source of possibly dark photons.

This would imply a close analogy with the experiments of Peter Gariaev’s group interpreted in TGD framework as photographing of the magnetic body of DNA sample [K1]. Also here one has an external source of light: the light would be transformed to dark photons in DNA sample, scatter from the dark charged particles at the flux tubes of the magnetic body of DNA sample, and return back transforming to ordinary light and generating the image in the photosensitive emulsion.

2 Why not tachyonic monopoles?

The identification of the tracks as orbits of particles proposed by author and also by other experimentalists is to my opinion problematic for the reasons which I have already explained. The article of Fredericks lists futhur details which do not conform with the particle interpretation. A further proposal is that the particles are tachyonic magnetic
monopoles. One motivation for the monopole hypothesis is the (unsuccessful) attempt
to explain the parabolic shape of the tracks in external magnetic field.

To my view the interpretation as a tachyonic monopole - a notion introduced by
Recami and Mignani [H3](http://link.springer.com/journal/11546) - adopted in
the article is theoretically problematic. Of course, if the tracks are actually pre-existing
structures made visible by some mechanism, there is no need to postulate super-luminal
propagation. To see the problem, one can start from a general formula relating energy,
momentum and mass. One has

\[E^2 = p^2 + m^2. \]

When \(m \) is imaginary as for tachyon so that one can write \(m = iM \), one obtains

\[E^2 = p^2 - M^2. \]

If \(E \) and \(p \) are assumed to be real as is done usually the condition \(E \geq 0 \) and more
generally the reality of \(E \) gives \(p \geq M \). Tachyon cannot therefore be at rest and one
cannot assign to it kinetic energy since tachyon at rest would have imaginary energy.

This has two implications.

1. The identification as tachyon and the conclusion \(p \ll M \) from experiments (see
 figure 34 for the relation between \(E, p \) and \(m \) in various cases) is not consistent
 with \(p \geq M \).

2. Recami and Mignani assign a kinetic energy to tachyon (formula 14). Unfortunately,
 this formula does not make sense if one accepts that \(E \) and \(p \) are real
 since one cannot assign to tachyon kinetic energy: the analogy of kinetic energy
 would be ”kinetic momentum” defined as the difference of the actual momentum
 and minimal momentum \(p = M \) (\(p_{\text{kin}} = \sqrt{E^2 + M^2} - M \approx E - M - M^2/2E \)).

As Fredericks notices, the behavior is not actually consistent with a motion of
magnetic monopole in magnetic field. Parabolic orbits are in plane orthogonal to
magnetic field rather than containing its direction vector (http://restframe.
com/downloads/tachyon_monopoles.pdf)!

3 Interpretation as dark matter structures becoming visible in presence of living matter

As such the observations are extremely interesting. I cannot however believe that
the tracks represent particles. To my opinion tachyonic monopole interpretation fails
because it does not make sense to talk about kinetic energy of tachyon.

To me the complex structures of tracks very strongly suggest pre-existing structures
becoming visible for some reason. Looking the shape of tracks brings to my mind linear
structure such as protein molecules. They contain regular helical portions and dena-
tured portions. Now the longitudinal scale is of course much longer. The transversal
scale is that for cells. This is perhaps not too surprising since organic materials such
as gelatin are involved. The flux tubes could carry magnetic monopole fluxes and in purely formal sense would thus be analogous to magnetic monopoles with space-like momentum in their direction - that is tachyonic monopoles. They would be however actually ordinary systems with non-tachyonic momentum.

The particles possibly causing the tracks cannot be electrically charged since in this case they would not have managed to reach the emulsion. There seems however to be an interaction with magnetic fields since the tracks are parabola. Urutskoev et al [H1] propose that tracks are caused by magnetic monopoles. Unfortunately, the predicted parabolic orbit would be in the plane containing the magnetic field lines: the situation is completely analogous to the parabolic motion of projectile in the Earth’s gravitational field.

3.1 "Tracks" as photographs of magnetic flux tubes?

Consider first the identification of "tracks" (for convenience I will drop the quotation marks in the sequel) as images of magnetic flux tubes.

1. The hypothesis that tracks are photographs of flux tubes explains the "track-ness". In the Earth’s magnetic field the thickness of flux tubes is by flux quantization of the same order of magnitude as the thickness of thickest tracks observed for single flux quantum. Flux tube hypothesis seems to be also consistent with the other strange properties of the "tracks". In particular, the composition to random and smoothly curved portion would conform with the idea that also linear molecules are formed around templates defined by magnetic flux tubes.

2. The tracks have been observed to be created in several situations and it is not at all clear whether the exposure to hands in the experiments of Fredericks is absolutely necessary. TGD suggests that the analog of dielectric breakdown associated with nerve pulses (the electric field at cell membrane is two times higher than the electric field inducing di-electric breakdown in air) replaces the strong electric fields causing di-electric breakdown used in the experiments of Urutskoev [H1]. Dark magnetic flux tubes can accompany any kind of matter so that tracks could be also images about the dark magnetic body of an external object rather than that of emulsion. In principle, one cannot exclude the possibility that the presence of the experimenter is decisive in all cases. If so, this would be a new kind of experimenter effect.

3. To what could the abrupt ending of the track correspond in this picture? Magnetic flux tubes cannot end but they can go to another space-time sheet through wormhole contact and apparently disappear. This would indeed take place for the closed flux tubes representing elementary particles and carrying magnetic monopole flux. The flux tubes could quite generally carry a multiple of magnetic monopole flux. They would have rather large scale as compared to the CP_2 scale of 10^4 Planck lengths.

3.1.1 Explanation for parabolic portions of tracks

The presence of parabolic tracks in the plane orthogonal to the external static magnetic fields is very interesting feature to be explained. Parabolic character could be simply
due to the simplest non-linear fit to the shape of the flux tube: it is however argued that parabolic character is exact. One should understand why the flux tube is orthogonal to the external magnetic field or magnetic field generated by the emulsion? Could this reflect the geometry of the experimental arrangement?

In TGD framework one can consider a very natural possibility that a constant electric field orthogonal to the external magnetic field is present.

1. In standard physics the presence of the electric field might be excluded easily. In TGD framework simplest space-time sheets representing constant Kähler magnetic fields allow a simple deformation to sheets containing orthogonal electric field. A simple situation (not necessarily a preferred extremum of Kähler action) corresponds to a space-time sheet \(X^4 \subset M^4 \times S^2 \), \(S^2 \) a geodesic sphere of \(CP_2 \). Using spherical coordinates \((u = \cos(\Theta), \Phi) \) for \(S^2 \) and Cartesian coordinates \((t, x, z, y) \) for \(M^4 \), one has \((u = f(x), \Phi = \omega t + ky) \) \((c = 1)\). The non-vanishing components of magnetic and electric fields are apart from a coefficient of proportionality of order unity given by \(E_x \equiv J_0x = \partial_x u \times \omega \) and \(B_z \equiv J_{xy} = \partial_x u \times k \) with \(E_x/B_z = \omega/k \). Electric and magnetic fields are orthogonal and the value of the \(\omega/k \) ratio fixes the electric field strength in terms of the magnetic field strength. In fact, the mere assumption that the \(CP_2 \) projection is 2-dimensional implies that electric and magnetic parts of various induced gauge fields are orthogonal.

2. This field would be represented by a space-time sheet at which the flux tubes of the external magnetic are topologically condensed (glued by wormhole contacts). The charged particles inside the flux tube would experience the presence of this electric field as a constant force trying to force them out from the flux tube. If the flux tube adopts a parabolic shape of the orbit of individual charged particle, the electric force is parallel to the flux tube and one has equilibrium situation. All charged particles inside flux tube must move with the same velocity at given point of flux tube: this conforms with super-conductivity implying the existence of global order parameter. Note that the dark charged particles inside flux tube would not directly interact with the emulsion or with air so that they can reach the emulsion easily.

3. For non-relativistic motion the equation for the parabolic orbit is \(y = x^2/L \), where the length \(L = 2mv^2/qE \) characterizes the size scale of the parabola. Parametrizing \(E \) in terms of voltage and length \(L \) as \(E = V_c/L \) one has \(eV_c/mc^2 = 2(v/c)^2 \). For electron rest energy \(m_e c^2 = .5 \text{ MeV} \) and \(v/c = 10^{-3} \) one would have \(V_c = 1 \text{ V} \). For proton the electric field would be by a factor \(2^{11} \) stronger for the same orbit parameters.

For a given electric field the parameters of the parabola allow to distinguish between flux tubes carrying different charged particles since the kinetic energies from the are expected to be different. I have indeed proposed that magnetic flux tubes could serve as a kind of filter allowing to distill ions with different masses at their own magnetic flux tubes: the equilibrium condition would make the flux tubes filters. The cyclotron energy scale \(E_c = \hbar_{\text{eff}} ZeB/m \) would give a rough guess for the order of magnitude of kinetic energy of the particle: cyclotron energy scale is proportional to \(\hbar_{\text{eff}} \) so that quite high energies can be considered. eV as a typical atomic energy scale and also as the energy scale of biophotons
(interpreted as decay products of dark photons [K4]) is the first guess for the energy scale.

4. It should be easy to check whether the emulsion is accompanied by electric field and also to deduce bounds for its values. Living matter is electret and one could imagine that gelatin contains some kind of remnants of bio-electric fields - perhaps as dark variants.

3.1.2 The decrease of the track thickness with the increase of distance

Urutskoev et al [H1] have reported the decrease of the track thickness with the increase of the source distance. Does this mean that the flux tubes photographed are near the source and the reduction of track thickness with distance is an optical effect similar to that for ordinary photographs?

If the flux tubes belong to the magnetic body of emulsion, this explanation fails. It is however easy to invent plausible explanation also in this case. Based on a simple model for the quantization of the magnetic flux.

1. The reconnection for flux tubes of the source and emulsion can take place only for flux tubes with same magnetic field strength and by flux conservation same transversal area S. Note that conservation of magnetic flux implies $B \times S = \text{constant}$ so that increasing the thickness of flux tube decreases the strength of the magnetic field.

2. If the flux tubes have a fractal structure with flux tubes containing bundles of flux tubes (bundle structure has been observed for the tracks), one can argue that the weaker the magnetic field, the smaller the number of flux tubes in the typical bundle and the smaller the radius of the bundle if the flux tubes inside bundle have constant density. For dipole field the weakening of the average field with distance could mean that flux tube bundles split to smaller bundles. A "temporary" splitting of a track to a bundle of widely separated tracks has been observed for tracks and would mean reduction of the average magnetic field strength.

3. If the number of grains corresponds to the number of flux tubes within a bundle, the number of flux tubes in the bundle would be thousands. The average size of the grain suggests a diameter of order $0.34 \mu m$ for the flux tubes. If the magnetic length $L_B = \sqrt{\hbar / eB}$ equals to $L_B = 0.17 \mu m$ (scaling rule: 1 Tesla corresponds to $L_B = 64 \, \text{nm}$), the magnetic field strength would be 354 Gauss (the Earth’s magnetic field has nominal value of 0.5 Gauss). The external magnetic field of 20 Gauss used by Urutskoev et al defines a good candidate for the flux tube radius. For this field single flux tube would correspond to 18-19 crystals.

If this model is on correct track, these photographs could among other things provide means for the detailed study of the quantized dynamics of magnetic fields based on decomposition to flux tubes consisting of flux tubes consisting of...
3.2 What could be the source of dark photons?

Photographic emulsion would work as usually by detecting photons. What is clear that the photons must be dark when they scatter from the magnetic flux tubes of the magnetic body of the emulsion. There are however several options for how the dark photons are produced.

1. Ordinary photons from the source could hit the emulsion, transform to dark photons and propagate to the magnetic flux tubes, reflect back, transform to ordinary photons, and interact with the micro-crystals of the emulsion and generate the visible track as the image of the flux tube. Emulsion would take the role possessed by DNA sample in Gariaev's experiments and the external source would take the role of lamps used to generate visible light [K1].

2. Dark photons could also originate from the source. They could arrive along the flux tubes of its magnetic body. In the experimental situations considered these would reconnect with the flux tubes of the magnetic body of the emulsion and scatter from dark matter at them. After this the photons would propagate to the emulsion and transform to ordinary photons and give rise to the image. Reconnection of the flux tubes is the basic mechanism of attention in TGD inspired theory of consciousness and in TGD inspired biology, and also used to explain various findings of Persinger et al [K5].

3. The emission of dark photons is expected to take place in critical systems in which large values of effective Planck constant h_{eff} making possible long range correlations can be present. The situations studied (glow discharge plasma processes, exploding wires and foils, low energy discharges in water, super-compression of solid targets using electron beams) indeed seem to be critical. Only the search of monopoles of solar origin at the north pole represents a situation in which criticality is not present in obvious manner (the measurement method might involve criticality to guarantee maximal sensitivity). This kind of situations would generate time varying magnetic fields, whose flux tubes could reconnect with the magnetic flux tubes assignable to the photographic emulsion. This in turn would make possible for dark photons to propagate from source to the emulsion. In some experiments also static magnetic fields are present.

4. What is interesting that the "cold currents" reported already by Tesla in his experiments involving di-electric breakdowns at surfaces of wires of coils could correspond to dark currents propagating along the magnetic flux tubes [L1] [L1]. Most of these experiments correspond to critical situations making possible the manifestation of otherwise hidden new physics. Whether one can see these manifestations of course depends on whether one believes on the reductionistic Bible or not.
REFERENCES

Particle and Nuclear Physics

Fringe Physics

Books related to TGD

Articles about TGD