Atom Model and Relativity

Kimmo Rouvari

March 11, 2014

Abstract

What is the theoretical explanation for fine structure? What is the mechanism behind relativity? These questions have bothered numerous physicists for a very long time. Atom Model and Relativity explains the mechanism behind fine structure, hyperfine structure, energy levels and relativity based on ToEbi. The result is a new atom model.
Contents

Building blocks 3

Size matters 3

Mass 3
 - Electron vs. Photon 4

Equilibrium State 4

Elementary particles 4
 - Electron 5
 - Photon 5

Proton 5

Allowed orbitals 6

Hydrogen 7
 - First energy level 7

Photon 7

Photon-electron collision 8
 - Head-on collision 8
 - Other collisions 9

Electron pair production 9

Mechanism of Relativity 9
 - Velocity 10
 - Relativity factor of particle 10
 - Time dilation 10
 - GPS satellite 10
 - Atomic clock on the aeroplain 11

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Proton</td>
<td>6</td>
</tr>
</tbody>
</table>
Building blocks

Spinning proton (at rest \(8.98755 \times 10^{16}\) \(1/\text{s} \) on Earth) generates a complex force transfer ether (FTE) environment for particles like electrons, photons and neutrinos. Atom nucleus is constructed from protons and neutrons. Both of these are constructed from three electrons \([1]\) currently named as quarks.

Three electrons form a standing equilateral triangle. The reason why it’s a standing triangle is because particles change their spinning orientation according to surrounding FTE density and FTEP flux orientation. Nucleus electrons are the keys for understanding of atom and the mechanism behind (hyper)fine structure, energy levels and relativity.

Size matters

When particles have an approximately equal cross section (mass) and they are not disturbed by other particles, II Law of ToEbi applies directly. It means that same spin direction generates pulling force and opposite spin directions generate pushing force between particles. However, our universe is filled with particles and systems of particles (SoPs), so idealized conditions between two particles are fewer.

In case of complex FTE environment, like conditions on Earth, things change into an interesting. Good examples are gravitational interaction and antimatter. Our bodies hold a nice amount of atoms. Each and every one them experiences gravitational interaction. No matter what’s the spin orientation on horizontal plane. And yes, they all are spinning in an alignment with Earth’s idealized surface thanks to the FTEP flux generated by Earth. This alignment is naturally broken all the time due to different collisions but particles are heading towards that alignment constantly. Concept of inertia is very much involved with the phenomenon described above.

Based on Third law of ToEbi, atoms have their own kingdom so to speak. Dampening generated by Earth doesn’t effect subatomic particle interactions. However, dampening effect generated by nucleus effects interactions between other subatomic particles.

Mass

As defined in ToEbi, mass is cross section of an independent particle. Elementary particle has the shape of sphere (hypothesis in ToEbi) hence the cross section equals \(\pi r^2\).

Because particles are sphere like (also hadrons due to surrounding FTE pressure) then effected volume around them is sphere like. We can define particle volume as

\[
V_{\text{particle}} = \frac{4}{3} \pi r^3.
\]

In case of none-composite particles, this volume won’t be effected by spin frequency changes. However, composite particles are effected by such changes due to their spinning phenomenon generated structure.
Hence particle’s spin frequency change

\[k = \frac{f_{\text{rest}} + \Delta f}{f_{\text{rest}}} \]

where (based on ToEbi energy relation) \(\Delta f = \frac{1}{2}v^2 \) would obviously effect proton by factor of \(k^3 \).

Electron vs. Photon

Another good example of mass is when two electrons annihilate, resulting two photons. Based on ToEbi, electron’s energy at rest is

\[E = m_e f_e \]

Based on conservation of energy the decrease of masses \(m_e \rightarrow h \) results increased spin frequency for the created photons (incident electrons). Same can happen inverse but due to smaller cross section it’s much more unlikely event. Photon-photon scattering is more probable outcome. It might also require that incident photons collide in such a manner that their spins are opposite which allows them to decrease the spin frequency.

Equilibrium State

In equilibrium state, attractive force between particles equals with repulsive force generated by repulsive wall. It means that due to numerous FTEPs particles can’t spin through them all. Equilibrium state can be found from core of any composite particle. Factors involved in equilibrium state are particle spin frequency and mass.

Half of particles’ energy get involved in equilibrium state between two particles, so those energies define the equilibrium distance between particles. In case of parallel spin vectors following applies for two particles

\[r_1 + r_2 = \frac{1}{2}E_1 + \frac{1}{2}E_2 = \frac{1}{2}f_1 m_1 + \frac{1}{2}f_2 m_2 \]

where \(f \) is spin frequency and \(m \) is particle mass.

Balanced distance (center to center) between two electrons without any dampening (e.g. caused by nucleus) is \(\approx 4.09 \times 10^{-14} \) m.

Elementary particles

Standard Model contains 17 elementary particles plus their antiparticles. ToEbi contains only two elementary particles and each particle is its antiparticle [2]. In ToEbi, elementary particles are made of FTEPs (Force Transfer Ether Particles) by compressing them together.

FTEPs themselves are not behaving like electrons or photons. Because FTEPs are the smallest ingredient in universe they can’t spin through a “sea” of particles like larger particles. It’s also obvious that FTEPs can’t annihilate. Due to those qualities, FTEP isn’t count as an elementary particle. More proper label would be the primary particle or something like that.
Electron

If we study Standard Model’s elementary particles (excluding photon), from ToEbi’s point of view, we can soon realize that those particles are nothing but different versions of electron. Radius of electron (at rest on Earth) is $\sqrt{\frac{9.1098291 \times 10^{-31}}{\pi}} \approx 5.3848 \times 10^{-16}$ m.

Particles created with particle accelerator have naturally higher spin frequency (see Lightest quark section) than particles at rest in lab reference frame. If we ignore this fact we might make the conclusion that found particle is different than electron and it has higher mass!

But things can go even more complicated due to particle collisions. If mainstream physicist measures (in magnetic field) incoming muon particles caused by cosmic rays what does (s)he will see? Apparently muon’s path won’t be curved as much as electron’s path. Conclusion based on a mainstream physics theory: Muon mass is $1.883531475 \times 10^{-28}$ kg. **In reality, it’s not.**

In reality, that muon is an electron, originated from composite particle, now with reduced spin frequency. Reduced spin frequency causes reduced interaction e.g. in magnetic field, which explains muon’s less curved path. After a while, muon decays most likely into an electron, muon neutrino and electron antineutrino. Neutrinos will be explained later.

What’s behind the muon decay process? Apparently, electron with reduced spin frequency a.k.a. muon gains back the spin frequency of average electron. How’s that possible? Most likely due to interactions with surrounding protons and electrons. Those interactions generate also those two neutrinos. Same kind of phenomenon occurs in free neutron decay where proton with reduced spin frequency gains back its original spin frequency.

Author will include calculation related to neutrons, muons and neutrinos in future versions.

Photon

Radius of photon is $\sqrt{\frac{h}{\pi}} \approx 1.452289 \times 10^{-17}$ m. Radius of electron is roughly 36.8 times the radius of photon.

Proton

Based on proton’s structure it’s likely that proton is just constructed from three electrons. Hypothesis is also supported by the fact that proton’s and electron’s energy can be calculated with the same spin frequency.
Proton is a composition particle made of three electrons and based on its mass the radius is $2.3074 \times 10^{-15} \text{ m}$ (at rest). Measured diameter is something like $1.6 \times 10^{-15} \text{ m}$. The difference is due to the fact that proton is a composite particle. If you probe its size with scattering particles then you’ll get misleading results. Those three nucleus electrons under particle bombarding just go closer to each other.

Allowed orbitals

The mechanism causing atom’s energy levels, fine structures and hyperfine structures is actually quite obvious. In case of hydrogen atom, there is a single proton and a single electron around it. The first energy level is the closest to the nucleus. In that level there is an adequate repulsive force against the pulling force between nucleus and electron. First energy level contains two allowed sublevels (hyperfine structure).

Difference between those sublevels is due to electron’s two possible spin directions in relation to nucleus electron. If their spin directions are opposite then an additional small pushing force is generated. Because the pushing and pulling force ratio stays the same through the atom this hyperfine structure is observable in every allowed orbital.

These two sublevels of the first energy level generate second energy level’s fine structure (obviously!) and both those second level’s allowed orbitals contain two possible orbitals depending on electron’s spin direction.

Reason for these emerged allowed orbitals is due to a barrier which emerges around spinning electron. Obviously there is a barrier between nucleus and electron which provides the needed repulsion. At the same time, there is a barrier, although much weaker, created around the rest of electron. Let’s call this barrier as Electron Spin Barrier (ESB). Barrier between nucleus and electron is based on repulsion which is based on pressure from colliding FTEPs between the spinning particles. ESB on the other hand emerges from FTEPs pushed away from electron’s volume.

Emerging ESB determinates needed energy for the next allowed orbital. If electron receives needed energy it gets pushed to the next energy level (at
the same time, creates a new ESB), if not, received energy just distributes to thermal energy. Depending on atom mass, current electrical configuration and energy levels involved, previous ESBs vanish after certain time and electron drops back to lowest unoccupied energy level and emits its potential energy away.

Hydrogen

The simplest atom, hydrogen, is a good starting point for ToEbi based atom model. It is usually thought that an electron orbits around a nucleus which implies that the electron is moving around the nucleus all the time. Certainly it can move around the nucleus but it doesn’t have to! It’s velocity can be pretty much anything but considerably under c (due to thick FTE which causes acceleration hence radiation) and its path depends on many things like distance to other particles (inside and outside the atom), collisions with another particles, its orientation in relation to another particles and surrounding FTE conditions.

However, electrons do not move around the nucleus when they are a part of the bond with another atom’s electron. Those two bonding electrons function as a buffer between two nucleus. The mechanism which leads to this phenomenon is obvious. Two atoms create higher FTE density between them which causes those atoms to move closer to each other. At certain point two free electrons confront and find a balanced position between those two nucleus.

Paired electrons in an atom are pretty much invisible to the magnetism. Repulsion between electrons in paired configurations breaks down the waves generated by electron spin. In another words, it means that those paired electrons won’t experience waves generated into FTE by other electrons (magnetism).

First energy level

Balanced distance between same spin proton and electron is

\[r_{proton} + r_{electron} = \frac{1}{2}f(m_{proton} + m_{electron}) \approx 7.52047 \times 10^{-11} \text{ m.} \]

In comparison, Bohr radius is \(\approx 5.3 \times 10^{-11} \) m and quantum mechanical average distance is \(\approx 7.9 \times 10^{-11} \) m. So, the differences are quite moderate.

Orbital electron can have other spin orientations as well, although they tend to get polarized due to SFAF (Spin Frequency Altering Force). In this later case, spin axes are opposite. Electron spin orientation induced configuration is called hyperfine structure.

Calculate balanced distance between different spin proton and electron

Calculate energy difference

Photon

Photon is created by compressing FTEPs together (as well as all known elementary particles besides FTEP). Compression happens usually when an
electron approaches nucleus. With big enough velocity combined with acceleration, photon compression is also possible outside of atom. Good example is synchrotron radiation created by high speed particle while experiencing acceleration within ordinary FTE conditions. Annihilation of electrons at rest is another example.

Based on First Law of ToEbi, photon has a mass which equals Planck constant. Photon’s energy is

\[E = hf, \]

where \(h \) is Planck constant and \(f \) is the spin frequency of photon. During photon-electron interaction photon’s energy (or a part of it) is converted into electron’s energy inside an atom. In case of perfect absorption, photon loses its energy totally and dissolves into the surrounding FTE.

What is the physical mechanism behind the absorption? Incoming photon experiences the repulsive wall of the incident electron and vice versa. Due to interaction (colliding FTEPs) photon loses its spin frequency and gains mass until it matches electron’s mass which is also increased because emerged thicker FTE decreases its spin frequency (Energy conservation). During the interaction incident particles changes their spin directions to opposite and start to generate pushing force against each other. During repulsion phase gained masses will be lost causing increase of spin frequencies for the incident particles. Because photon donated some of its energy (increased electron’s mass) for the electron it won’t gain its previous spin frequency.

Only photons which have a momentum away from the nucleus during the photon-electron collision can change the energy level of an electron. Otherwise Thomson scattering occurs.

Radius of a photon is \(\sqrt{\frac{h}{\pi}} \approx 1.452289 \times 10^{-17} \text{ m.} \) Radius of electron is roughly 36.8 times the radius of photon.

Photon-electron collision

There is two non-trivial cases.

Head-on collision

During head-on collision electron and photon have their momentum vectors at the same line. Let’s consider that electron is stationary (it most certainly can be!) when a photon hits it.

\[h\vec{c}_1 = M_{electron}\vec{v}_{electron} + h\vec{c}_2 \]

Electron’s velocity after impact is \(\approx 237.5 \text{ m/s.} \) Let’s say that electron’s velocity is roughly 110 000 000 m/s (reasonable velocity for electron in a synchrotron) and, as we know, photon’s kinetic energy stays the same before and after the impact. Therefore photon stores the increased energy into its spin frequency and the increase is roughly \(8.3e18 \text{ Hz} \) which corresponds to X-ray radiation (as observed). It is called inverse Compton scattering when photon increases its energy due to collision.
Other collisions

Far more common is a collision type where electron and photon have their momentum vectors crossed or at least not opposite at the same line. In cases where photon’s momentum vector points away from nucleus, Compton scattering equation applies.

If photon’s released energy isn’t enough to elevate incident electron to any allowed orbital then released energy is not absorbed into atom’s electronic configuration. Released energy just increases atom’s thermal energy. If released energy is too much for the atom to hold in its electronic configuration then photoelectric effect occurs.

Electron pair production

If photon has a collision trajectory with nuclei there is a chance for pair production. Photon’s energy must be at least twice the electron’s energy at rest. Photon has a small cross section which allows it penetrate very close to a nuclei. FTE density near nuclei is much higher than in case of normal encounters between electrons and photons inside atom. Thick FTE provides excellent conditions for particle production.

In right conditions the photon can interact with two nucleus electrons at the same time resulting so called electron pair production. Incoming photon gain mass (spin frequency decreases) while approaching nucleus electrons. Due to high FTE density and compression two new particles starts to emerge between the photon and those two nucleus electrons.

These two new particles won’t be ejected from nucleus until they are gained the cross section of electron and therefore are capable of interact (in pushing manner) with other electrons. If photon is ejected before the needed cross section then pair production won’t happen and the photon is ejected away from the nucleus (normal scattering).

Pair production occurs next to the stopping photon. Naturally, because those two emerging particles are created at the different sides of photon trajectory they’ll gain an opposite spin directions which explains why pair production particles are always particle and its antiparticle.

Mechanism of Relativity

Mechanism of relativity is pretty simple if we look at it through ToEbi and it’s very much originated from the mechanism of an atom in certain FTE (gravitational) environment and its velocity in it.

Gravitational environment is constituted by mass and its spin frequency. For example, without spin frequency of Earth we would weight nothing at all. Importance of spin frequency is actually observable on different planets. Good example is Venus, which is spinning extremely slowly. Due to low spin frequency heavier elements are dominating Venus’s atmosphere which explains the pressure of 93 bar at the surface!

FTE density relates directly to mass density. Therefore we define the
gravitational factor of relativity

\[R_G = \left(\frac{m^3}{kg} \right) \frac{M}{\frac{4}{3} \pi r^3} \]

where \(M \) is the mass of gravitational source and \(r \) distance from its mass point. FTE density changes near particle distribute to particle as much as particle’s spin frequency changes.

Velocity

In addition to the gravitational factor also particle’s velocity near the gravitational source distributes to relativity. Why? And how much?

Let there be two particles, A and B, near gravitational source (like Earth) at the same distance from the center of gravitational source (The reference frame). Particle A moves at speed \(V_A \) and particle B at speed \(V_B \). Based on ToEbi energy relation, particles velocity generated additional spin frequencies define the kinetic factor of relativity.

\[R_K = \frac{\Delta f_B}{\Delta f_A} = \frac{\frac{1}{2} V_B^2}{\frac{1}{2} V_A^2} = \frac{V_B^2}{V_A^2} \]

Relativity factor of particle

Based on both gravitational and kinetic relativity factors we can define relativity factor of particle as

\[R_{\text{particle}} = R_G R_K \]

which gives us information regarding the conditions near particle.

Time dilation

What is time? We measure elapsing time (at its most accurate form) based on events in the atom. We say that 1 second contains 9,192,631,770 events (absorptions or emissions) in cesium-133 atom. Cesium-133 was selected due to its symmetric structure which provides a good conditions to measure hyperfine structure events on the valence electron. The way of measuring time this way makes a perfect sense, after all, everything is constructed from atoms including human beings. The most exciting part is that the rate of measured events varies! So time actually can change its speed. It has been proved in many ways over the years.

Change factor between relativity factors of particle A and B is

\[k = \frac{R_A - R_B}{R_A} \]

GPS satellite

Typical GPS satellite has the mean distance from Earth’s center 26560 km and the orbital mean velocity \(\approx 3874 \text{ m/s} \). Change factor \(k \) would be

\[k = \frac{1}{6371000^3} - \frac{8.321^2}{26560000^3} \approx 0.044428 \]
Because $k^3 \approx 8.769 \times 10^{-5}$ in atom is distributed into sphere shaped volume the effective change factor is

$$k_{\text{effective}} = \frac{k^3}{4\pi} \approx 2.09 \times 10^{-5}$$

Electron’s and nucleus combined effect would be $k_{\text{effective}}^2 \approx 4.38 \times 10^{-10}$. It means that the valence electron’s volume (particle itself) has to spin through $\approx 4.38 \times 10^{-10}$ times less FTEPs than on Earth. In case of an atomic clock this means more “tics” when compared to an atomic clock on Earth. In other words, there will be $\approx 4.38 \times 10^{-10}$ times more cesium-133 atomic events per second!

Cumulative gain during a whole day is ≈ 37.7 ns which agrees the observations.

Atomic clock on the aeroplain

If we had an imaginary aeroplain (equipped with the atomic clock) hovering exactly 10 km above us then how much that atomic clock would gain extra time in 24 hours? Obviously that aeroplain would have a velocity 1.0021459227467811 times our velocity. Hence k would be

$$k = \frac{\frac{1}{6371000^2} - \frac{1.002146^2}{6371000^2}}{6371000^2} \approx 1.567 \times 10^{-3}$$

and the total gain would be 7.3×10^{-14} s. That’s a pretty small time gain. During the 79-year lifetime the gain would be (calculated with exact time) $\approx 2.099 \times 10^{-9}$ s, still pretty small time gain.

References
