QUANTUM THEORY DEPENDING ON MAXWELL EQUATIONS

WU SHENG-PING

Abstract

This article try to unified the three basic forces by Maxwell equations, the only experimental theory. Self-consistent Maxwell equation with the current from electromagnetic field is proposed. and is solved to four kinds of electrons and the structures of particles. The static properties and decay and scattering are reasoned, all meet experimental data. The momentum-energy tensor of the electromagnetic field coming to the equation of general relativity is discussed. In the end that the conformation elementarily between this theory and QED and weak theory is discussed compatible, except some bias in some analysis.

Contents

1. Unit Dimension of sch 1
2. Quantization 2
3. Self-consistent Electrical-magnetic Fields 3
4. Stable Particle 3
5. Radium Function 4
6. Solution 4
7. Electrons and Their Symmetries 5
8. Mechanic Feature 6
9. Propagation and Movement 7
10. Antiparticle 10
11. Conservation Law and Balance Formula 10
12. Muon 10
13. Pion Positive 11
14. Pion Neutral 11
15. tau 12
16. Proton 12
17. Scattering and decay life 12
18. Conclusion 14

References 14

1. Unit Dimension of sch

A rebuilding of units and physical dimensions is needed. Time s is fundamental. The velocity of light is set to 1

$$
\text { Velocity }: c=1
$$

Date: Jan 14, 2013.
Key words and phrases. Maxwell equations, Decay, Antiparticle.

Hence the dimension of length is

$$
L: c(s)
$$

The \hbar is set to 1

$$
\text { Energy : } \hbar\left(s^{-1}\right)
$$

In Maxwell equations the following is set

$$
c \epsilon=1, c \mu=1
$$

One can have

$$
\begin{gathered}
\epsilon: \frac{Q^{2}}{\varepsilon L} \\
\mu: \frac{\varepsilon L}{c^{2} Q^{2}}
\end{gathered}
$$

$$
\text { UnitiveElectricalCharge }: \sigma=\sqrt{\hbar}
$$

It's very strange that the charge is analyzed as space and mass. Charge Q is then defined as Q / σ here, without unit.

$$
\begin{gathered}
\sigma=1.03 \times 10^{-17} C=64 e, e_{/ \sigma}=e / \sigma=1 / 64=1.56 \times 10^{-2} \\
H: Q /(L T): \sqrt{\hbar} / c\left(s^{-2}\right) \\
E: \varepsilon /(L Q): \sqrt{\hbar} / c\left(s^{-2}\right)
\end{gathered}
$$

If \hbar, c is taken as a number instead of unit, then all physical units is described as the powers of the second: s^{n}.

The unit of charge can be reset by linear variation of charge-unit

$$
Q \rightarrow C Q, Q: \sigma / C
$$

We will use it without detailed explanation.

2. Quantization

All discussion base on a explanation of quantization, or real probability explanation for quantum theory, which bases on a Transfer Probability Matrix (TPM)

$$
P_{i}(x) M=P_{f}(x)
$$

As a fact, that a particle appears in a point at rate 1 is independent with appearing at anther point at rate 1. There still another pairs of independent states

$$
S_{1}=e^{i p x}, S_{2}=e^{i p^{\prime} x}
$$

because

$$
<s_{1}, s_{2}>_{4}=\int d V s_{1} s_{2}^{*}=N \delta\left(p-p^{\prime}\right)
$$

$<s_{1}, s_{2}>_{4}$ means make product integrated in time-space. Similarly the symbol

$$
<s_{1}, s_{2}>
$$

is the product integrated in space and always means its branch of zero frequency. In fact in the TPM formulation, it's been accepted for granted that the Hermitian inner-product is the measure of the dependence of two states, and it is also implied by the formula

$$
P_{1} M P_{2}^{*}
$$

Depending on this view point one can constructs a wave

$$
e^{i p x}
$$

and gifts it with the momentum explanation p, Then all quantum theory is set up.

3. Self-consistent Electrical-magnetic Fields

The Maxwell equations are

$$
\begin{gathered}
\frac{\partial H}{\partial t}+\nabla \times E=0 \\
\frac{\partial E}{\partial t}-\nabla \times H+\mathbf{j}=0
\end{gathered}
$$

Try equation for the free E-M field

$$
\begin{equation*}
A_{, j}^{i, j}-A_{, j}^{j, i}=i A_{\nu}^{*} \cdot \partial^{i} A^{\nu} / 2+c c .=J, Q_{e}=1 \tag{3.1}
\end{equation*}
$$

It's deduced by using momentum to express current.

$$
\begin{gathered}
\left(A^{i}\right):=(V, \mathbf{A}),\left(J^{i}\right)=(\rho, J) \\
\partial:=\left(\partial_{i}\right):=\left(\partial_{t}, \partial_{x_{1}}, \partial_{x_{2}}, \partial_{x_{3}}\right) \\
\partial^{\prime}:=\left(\partial^{i}\right):=\left(\partial_{t},-\partial_{x_{1}},-\partial_{x_{2}},-\partial_{x_{3}}\right)
\end{gathered}
$$

The equation 3.1 have symmetry

$$
C P T, c c . P T
$$

If the gauge is

$$
\partial_{\mu} A^{\mu}=0
$$

the continuous charge current meets

$$
\partial_{\mu} \cdot j^{\mu}=0
$$

The energy of field A is $\varepsilon=\int d V\left(E^{2}+H^{2}\right) / 2$

$$
\begin{gathered}
\varepsilon=<A_{, j}^{i}-A_{, i}^{j} \mid A_{, j}^{i}-A_{, i}^{j}>/ 4 \\
=<\partial A^{\mu}\left|\partial A^{\mu}>=<\partial^{\prime} A_{\mu}\right| \partial A^{\mu}>/ 2=-<A \mid J>/ 2
\end{gathered}
$$

4. Stable Particle

All particles are elementarily E-M fields is presumed. It's trying to find stable solution of the Maxwell equations in complex domain. One can write down a function initially and correct it by re-substitution. Here is the initial state

$$
V=V_{i} e^{-i k t}, A_{i}=V
$$

Substituting into equation 3.1

$$
\begin{gathered}
\partial_{\mu} \partial^{\mu} A_{i}^{\nu}-\partial^{\nu} \partial_{\mu} A_{i}^{\mu}=2 J_{i} \\
2 J_{i}=-\partial^{\nu} \partial_{\mu} A_{i}^{\mu}=-\partial^{\nu} \partial_{t} V
\end{gathered}
$$

It has the properties

$$
\partial \cdot J_{i}=0
$$

J_{i} causes the initial fields V, so that it is the real seed of recursive algorithm.
The static fields E_{0}, H_{0}

$$
\begin{align*}
\nabla \cdot E_{0} & =i A_{i \nu}^{*} \cdot \partial_{t} A_{i}^{\nu} / 2+c c .=\rho_{0} \tag{4.1}\\
\nabla \times H_{0} & =-i A_{i \nu}^{*} \cdot \nabla A_{i}^{\nu} / 2+c c .=J_{0}
\end{align*}
$$

We calls the fields' correction with n times of crossing is called the n-th order correction.

5. Radium Function

Firstly

$$
\nabla^{2} A=-k^{2} A
$$

is solved. Exactly, it's solved in spherical coordinate

$$
0=r^{2} \nabla^{2} f+k^{2} f=\left(r^{2} f_{r}\right)_{r}+k^{2} r^{2} f+\frac{1}{\sin \theta}\left(\sin \theta f_{\theta}\right)_{\theta}+\frac{1}{\sin ^{2} \theta}\left(f_{\phi}\right)_{\phi}
$$

Its solution is

$$
\begin{gathered}
f=R \Theta \Phi=R_{l} Y_{l m} \\
\Theta=P_{l}^{m}(\cos \theta), \Phi=\cos (\alpha+m \phi) \\
R_{l}=N \eta_{l}(k r), \eta_{l}(r)=r^{l} \int_{0}^{\infty} \frac{(1-\lambda)^{l}}{(1+\lambda)^{l+2}} \cos (\lambda r) d \lambda \\
\int_{0}^{\infty} d r \cdot r^{2} R^{2}=1
\end{gathered}
$$

R is solved like

$$
\begin{gathered}
\left(r^{2} R_{r}\right)_{r}=-k^{2} r^{2} R+l(l+1) R, l \geq 0 \\
R \rightarrow r R^{\prime} \\
\left(r^{2} R^{\prime}\right)_{r r}=-k^{2} r^{2} R^{\prime}+l(l+1) R^{\prime} \\
R^{\prime} \rightarrow r^{l-1} R^{\prime} \\
r R_{r r}^{\prime}+2(l+1) R_{r}^{\prime}+k^{2} r R^{\prime}=0 \\
r \rightarrow r / k \\
\left(s^{2} F\right)^{\prime}+2(l+1) F+F^{\prime}=0, F=F\left(R^{\prime}\right)
\end{gathered}
$$

$F()$ is the Fourier transform

$$
R^{\prime}=\int_{0}^{\infty} \frac{(1-\lambda)^{l}}{(1+\lambda)^{l+2}} \cos (\lambda r) d \lambda
$$

The function R_{1} has zero derivative at $r=0$ and is zero as $r \rightarrow \infty$.

6. Solution

The derivatives of the function of electron has a strange breaking point in coordinate origin hence without normal convenience of Fourier transform. The following are some proximation of the first rank. The solution of $l=1, m=1, Q=e_{/ \sigma}$ is calculated or tested for electron.

$$
A_{1}=N R_{1}(k r) Y_{1,1}
$$

The curve of R_{1} is like the one in the figure 1.
The magnetic dipole moment μ_{z} is calculated as the first rank of proximation

$$
\begin{gathered}
\mu_{z}=<A_{\nu}\left|-i \partial_{\phi}\right| A^{\nu}>/ 2 \\
=1 / 2, k_{e}=1
\end{gathered}
$$

The power of unit of charge is not equal, but it's valid for unit $Q=e$.

$$
\frac{Q}{2 k}=\mu_{B}
$$

Figure 1. the shape of radium function R_{1} by DFT

7. Electrons and Their Symmetries

Some states of electrical field A are defined as the core of the electron, it's the initial function $A_{1}=V$ for the re-substitution to get the whole electron function.

$$
\begin{gathered}
e_{r}^{+}: N R_{1}(k r) Y_{1,1} e^{-i k t} \\
e_{l}^{+}: N R_{1}(k r) Y_{1,-1} e^{-i k t} \\
e_{l}^{-}:-R_{1}(k r) Y_{1,1} e^{i k t} \\
e_{r}^{-}:-R_{1}(k r) Y_{1,-1} e^{i k t} \\
k=k_{e}=m_{e} / e_{/ \sigma}
\end{gathered}
$$

r, l is the direction of the spin. We use these symbols e to express the complete potential field A or the abstract particle.

Energy of static E-field crossing is discussed. In the zero rank of correction ie. the static field is

$$
e^{*}\left(-i \partial^{\prime}\right) e=J_{e}, Q_{e}=1
$$

The equation of charge

$$
\rho_{0}=e^{*}\left(i \partial_{t}\right) e, Q_{e}=1
$$

is used to normalize electron function that's the same with the normalization of electron to energy and charge

$$
\begin{gathered}
<\partial e \mid \partial e>/ 2=k_{e} e_{/ \sigma}=m_{e} \\
<e\left|-i \partial_{t}\right| e>=e
\end{gathered}
$$

The static energy of electric field between A_{0} is

$$
\varepsilon_{q}=-e_{/ \sigma}^{3} k_{e} / 2=-\frac{1}{6.7 \times 10^{-16} s}
$$

Energy of the static M-field crossing

$$
\varepsilon_{m}^{\prime}=\varepsilon_{e}
$$

Hence the gross energy is

$$
\varepsilon_{e}=2 \varepsilon_{q}=-\frac{1}{3.355 \times 10^{-16} s}
$$

The value of crossing term generated by static fields between electrons are

ε_{e}	e_{r}^{+}	e_{r}^{-}	e_{l}^{+}	e_{l}^{-}
e_{r}^{+}	+	-	0	0
e_{r}^{-}	-	+	0	0
e_{l}^{+}	0	0	+	-
e_{l}^{-}	0	0	-	+

The field of four kinds of electrons has symmetries

$$
\begin{gathered}
\left.e_{r}^{+}: E_{n}+M_{n}\right) \\
e_{l}^{+}: E_{n}-M_{n} \\
e_{r}^{-}:(-1)^{n-1} E_{n}+(-1)^{n / 2-1} M_{n} \\
e_{l}^{-}:(-1)^{n-1} E_{n}-(-1)^{n / 2-1} M_{n}
\end{gathered}
$$

E is electrical field, M is magnetic field. n is the order of the correction. The non zero crossing in re-substitution is the crossing with A_{i}. The higher absolute frequency than k_{e} is also zero.

Calculating the crossing part between e_{r}^{+}, e_{l}^{-}. the non zero results of crossing is between A_{2} and A_{6} or between A_{4}.

$$
\varepsilon_{x} \approx-e_{/ \sigma}^{7} k_{e} / 4 \approx-\frac{1}{2.18 \times 10^{-8} s}
$$

The theorem 9.6 is used. The value of this crossing term generated between electrons are

ε_{x}	e_{r}^{+}	e_{r}^{-}	e_{l}^{+}	e_{l}^{-}
e_{r}^{+}	+	0	0	-
e_{r}^{-}	0	+	-	0
e_{l}^{+}	0	-	+	0
e_{l}^{-}	-	0	0	+

8. Mechanic Feature

If the equation that connects space and E-M fields is written down for cosmos of electrons, it's the following:

$$
\begin{gather*}
R_{i j}-\frac{1}{2} R g_{i j}=8 \pi G T_{i j} \tag{8.1}\\
e_{/ \sigma}^{2} T_{i j}=F_{i}^{k *} F_{k j}-g_{i j} F_{\mu \nu} F^{\mu \nu^{*}} / 4, Q_{e}=1
\end{gather*}
$$

F is the electromagnetic tensor. This equation give mass because the space is decided by E-M fields instantly. the factor $e_{/ \sigma}^{2}$ is to balances the physical unit.

Because fields F is additive, the group of electrons are express by:

$$
\sum_{i} f_{i} * \nabla e_{i},<f_{i} \mid f_{i}>=1
$$

The convolution is made only in space:

$$
f * g=\int d V f(t, y-x) g(t, x)
$$

It's called propagation. Each f_{i} is normalized to 1 . We always use

$$
\sum_{i} f_{i} * e_{i}, \sum_{i} f_{i} * \nabla e_{i}
$$

to express its abstract construction and the field. The reason is that

$$
f_{i} *\left(\partial e_{i}-\left(e_{i} \partial\right)\right)
$$

is the potential field F Its potential and strength fields is

$$
A=\int d x \sum_{i} f_{i} * \nabla e_{i},, \partial A-A \partial
$$

When the mechanical physical is discussed, observing the Energy-Momentum tensor T we have the momentum is

$$
p^{\mu}=T_{0}^{\mu}
$$

The spin of electron is calculated as

$$
S_{e}=<A\left|\partial_{\phi} \cdot \partial_{t}\right| A>/ 2=1 / 2
$$

The MDM (magnetic Dipole moment) of electron is calculated as

$$
\mu_{e}=\frac{1}{2}<A\left|\partial_{\phi}\right| A>=1 /\left(2 k_{e}\right), Q_{e}=1
$$

9. Propagation and Movement

Define symbols for particle x

$$
\begin{gathered}
e_{x r}^{+}:=N \cdot R_{1}\left(k_{x} r\right) Y(1,1) e^{-i k_{x} t} \\
e_{x x}^{+} \\
:=\left(e_{x l}^{+}+e_{x r}^{+}\right) / \sqrt{2} \\
\\
<e_{x} \mid e_{x}>=1
\end{gathered}
$$

The following are also (stable) classical propagations.

particle	electron	photon	neutino
notation	e_{r}^{+}	γ_{r}	ν_{r}
structure	e_{r}^{+}	$\left(e_{r}^{+}+e_{r}^{-}\right)$	$\left(e_{r}^{+}+e_{l}^{-}\right)$

Not all EM field is explained as photon, but photon is explained as EM fields.
By mathematic

$$
\varsigma_{k, l, m}(x):=R_{l}(k r) Y_{l, m}, \varsigma_{k}(x):=\varsigma_{k, 1, \pm 1}(x)
$$

meets the following results
Theorem 9.1. C_{A} is a global area with its center in A and its diameter is r_{A}

$$
\lim _{r_{o}=r_{y} \rightarrow 0} \int_{I-\sum C_{i}} d V \varsigma_{k}(x) \varsigma_{k}^{*}(x-y)=0, y \neq O
$$

Proof. Use the limit

$$
\lim _{k^{\prime} \rightarrow k} \lim _{r_{o}=r_{y} \rightarrow 0}\left(\int_{I-\sum C_{i}} d V \varsigma_{k}(x) \varsigma_{k^{\prime}}^{*}(x-y)\right)
$$

We have of course:

$$
\varsigma_{k}(\mathbf{r})=\int d \mathbf{p} C_{p} e^{i \mathbf{p r}}, \mathbf{p}^{2}=k^{2}
$$

Theorem 9.2.

$$
<f(x) * \varsigma_{k}\left|g(x) * \varsigma_{k}>=<f(x)\right| g(x)>
$$

$|f|^{2},|g|^{2}$ is integrable.

It's proved by

$$
<\sum_{i} a_{i} \varsigma_{k}\left(x-x_{i}\right) \mid \sum_{i} b_{i} \varsigma_{k}\left(x-x_{i}\right)>=\sum_{i} a_{i}^{*} b_{i}
$$

Theorem 9.3. if $e^{i \mathbf{p r}}, \varsigma_{k}$ is normalized to 1 ,

$$
e^{i \mathbf{p r}} * \varsigma_{k}=\omega e^{i \mathbf{p r}},|\omega|=1
$$

Theorem 9.4.

$$
\begin{gathered}
\nabla\left(\varsigma_{k} * \varsigma_{k^{\prime}}\right)=\left(\nabla \varsigma_{k}\right) * \varsigma_{k^{\prime}}+\varsigma_{k} * \nabla\left(\varsigma_{k^{\prime}}\right) \\
-\partial_{y} \int d V_{x} I(y-x) \varsigma_{k}(x-y) \varsigma_{k^{\prime}}(x) \\
=-\int d V_{x} I^{\prime}(y-x) \varsigma_{k}(x) \varsigma_{k^{\prime}}(x) \\
=\int d V_{x} I(x-y)\left(\varsigma_{k}(x-y) \varsigma_{k^{\prime}}(x)\right)_{x} \\
=\int d V_{z} I(z)\left(\varsigma_{k}(z) \varsigma_{k^{\prime}}(z+y)\right)_{z}, z=x-y \\
=\int d V_{z}\left(\varsigma_{k}^{\prime}(-z) \varsigma_{k^{\prime}}(z+y)+\varsigma_{k}(-z) \varsigma_{k^{\prime}}^{\prime}(z+y)\right) \\
=\int d V_{z}\left(\varsigma_{k}^{\prime}(z) \varsigma_{k^{\prime}}(-z+y)+\varsigma_{k}(z) \varsigma_{k^{\prime}}^{\prime}(-z+y)\right) \\
I(y-x):=\left\{\begin{array}{l}
0, x \neq O \\
1, x=O
\end{array}\right.
\end{gathered}
$$

Theorem 9.5.

$$
\left(\nabla \varsigma_{k}\right) * \varsigma_{1}=k \varsigma_{k} * \nabla \varsigma_{1}
$$

Theorem 9.6.

$$
\varsigma_{1} * \frac{1}{r}=\varsigma_{1}
$$

C is relative to the measure of sampling dense of integration. It's because

$$
\begin{gathered}
\int d V \varsigma_{1} \cdot \varsigma_{1}^{*} \cdot \varsigma_{1} \cdot \varsigma_{1}^{*} \\
=C \int d P \cdot F\left(\varsigma_{1}\right) * F\left(\varsigma_{1}^{*}\right) * F\left(\varsigma_{1}\right) * F\left(\varsigma_{1}^{*}\right) \\
=\int d P \omega * \omega^{*} * \omega * \omega^{*} *=1
\end{gathered}
$$

The figure 2 is the shape of distribution of momenta of electron function e_{x}.
The movement of the propagation is called Movement, ie. the third level wave, harmonic wave. The moment and field is determined by the grid shift. The harmonic wave for static particle x is

$$
e^{i \mathbf{p r}} * e_{x} *\left(\sum_{i} e_{i}\right)
$$

The general fields is obtained by the shift of grid in which real electron is

$$
\int d x \cdot e^{i \mathbf{p r}+i k t+i k_{e} t} * \partial e, \mathbf{p}^{\mathbf{2}}=k^{2}
$$

Figure 2. the shape of distribution of radioactive momenta of electron fields in one direction: $k /(1+k)^{4}-4 k /(1+k)^{5}$, calculated through spherical Bessel functions

The static MDM (magnetic dipole moment) is decoupled for coupling system, it is

$$
\begin{gathered}
\mu=<\sum_{i} \int d x_{i} \cdot e_{x} * \nabla e_{i}\left(x_{i}\right)|-i \mathbf{r} \times \nabla| \sum_{i} \int d x_{i} \cdot e_{x} * \nabla e_{i}\left(x_{i}\right)>/ 4+c c ., Q_{e}=1 \\
\mathbf{r} \times \nabla=\sum_{i} \mathbf{r}_{\mathbf{i}} \times \nabla_{i} \\
=<\sum_{i} e_{x} * e_{i}\left(x_{i}\right)|-i \mathbf{r} \times| \sum_{i} e_{x} * \nabla e_{i}\left(x_{i}\right)>\frac{k_{e}}{4 k_{x}}+c c . \\
\mu_{z}=<\sum_{i} e_{x} * e_{i}\left(x_{i}\right) \left\lvert\, \sum_{i} e_{x} *\left(-i \partial_{\phi} e_{i}\left(x_{i}\right)\right)>\frac{k_{e}}{4 k_{x}}+c c .\right.
\end{gathered}
$$

The MDM couples between electrons. Its spin (decoupled) is

$$
\begin{gathered}
\left.S_{z}=<\sum_{i} \int d x \cdot e_{x} * \nabla e_{i}\left(x_{i}\right)\left|-\partial_{\phi} \partial_{t}\right| \sum_{i} \int d x \cdot e_{x} * \nabla e_{i}\left(x_{i}\right)\right) / 4+c c ., Q_{e}=1 \\
=<\sum_{i} e_{x} * e_{i}\left(x_{i}\right) \mid \sum_{i} e_{x} *\left(-i \partial_{\phi} e_{i}\left(x_{i}\right)\right)>k_{e} / 4+c c .
\end{gathered}
$$

Mechanical spin decouples between electrons.
Calculating the following for coupling system for the initial fields:

$$
A=\int d x \cdot e_{x} * \sum_{i} \partial e_{i}
$$

we find $e_{x} * e$ meets the wave equation

$$
\partial \cdot \partial^{\prime} A \approx 0
$$

Hence it's real particle, its mechanical feature

$$
e_{/ \sigma}^{2}<A\left|-i \partial_{t}\right| A>/<A|A>=<\partial A| \partial A>
$$

10. Antiparticle

Antimatter is the positive matter reverse world-line, so that it meets

$$
\begin{gathered}
\partial_{\nu} \partial^{\nu} A^{i}=-i A_{\nu}^{*} \cdot \partial^{i} A_{\nu} / 2+c c . \\
\partial_{\nu} \partial^{\nu}\left(A^{i}(-x)+B\right)=i\left(A_{\nu}(-x)+B\right)^{*} \cdot \partial^{i}\left(A_{\nu}(-x)+B\right) / 2+c c .
\end{gathered}
$$

The right part is negative in accordance to positive matter. B is outer field the particle is in. If $A(x)$ describes positive matter, $A(-x))$ is describes antimatter, we define

$$
\overline{A(x)}:=A(-x)
$$

We have the reaction

$$
p \rightarrow, A(-x) \rightarrow \bullet \rightarrow p
$$

equivalent to

$$
p \rightarrow \bullet \rightarrow A(x), \rightarrow p
$$

and

$$
\overline{e_{r}^{+}} \approx e_{l}^{-}
$$

11. Conservation Law and Balance Formula

No matter in E-M fields level or in movement (the third) level, the conservation law is conservation of momentum and conservation of angular momentum. A balance formula for a reaction is the equivalent formula in positive matter, ie. after all anti-matter is shifted to the other side of the reaction formula. Balance formula is suitable for the analysis of the energy transition of E-M fields in the reaction. The invariance of electron itself in reaction is also a conservation law.

12. Muon

μ is composed of

$$
\mu_{+}^{r}: e_{\mu} *\left(e_{r}^{+}+\overline{\nu_{r}}\right)
$$

μ is with mass $3 k_{e} / e_{/ \sigma}^{2}=3 \times 64 k_{e}$, spin $1 / 2, \operatorname{MDM} \mu_{B} k_{e} / k_{\mu}$.
The main channel of decay

$$
\begin{gathered}
\mu_{r}^{+} \rightarrow M_{l}^{+}+\overline{\nu_{l}} \\
M_{r}^{+}=e_{M} *\left(\overline{e_{l}^{-}}+\nu_{l}\right) \\
e_{\mu} * e_{r}^{+}+e^{-i p_{1} x} * e_{M}^{*} * e_{l}^{-}+\overline{e^{i p_{2} x}} * \nu_{l} \rightarrow \overline{e_{\mu}} * \nu_{r}+\overline{e^{i p_{1} x}} * \overline{e_{M}} \nu_{l}
\end{gathered}
$$

There are kinds of energy increase.
Weak coupling

$$
W:<e_{r}^{+}, e_{l}^{-}>
$$

Light coupling

$$
L:<e_{r}^{+}, e_{r}^{-}>
$$

Weak side coupling

$$
W s:<e_{r}^{+}, e_{l}^{-}>-<e_{x} * e_{r}^{+}, e^{i p x} * e_{l}^{-}>
$$

Light side coupling

$$
L s:<e_{r}^{+}, e_{r}^{-}>-<e_{x} * e_{r}^{+}, e^{i p x} * e_{r}^{-}>
$$

Strong coupling

$$
S:<e_{r}^{+}, e_{r}^{+}>
$$

The outer waves e_{μ} and $e^{-i p_{1} x} * e_{M}^{*}, e^{-i p_{1} x} * e_{M}^{*}$ and $e^{-i p_{2} x}, e_{\mu}$ and $e^{-i p_{2} x}$ are coupling. The energy difference is kind of $W s$, the interacting field is E that between A_{2}, A_{6}.

$$
\begin{gathered}
<\overline{e_{\mu}} * \partial e_{r}^{+}\left|\overline{e_{\mu}} * \partial * e_{l}^{-}>-<\overline{e_{\mu}} * \partial e_{r}^{+}\right|\left(e^{i \mathbf{p}_{\mathbf{1}} \mathbf{r}+i k_{\mu} t} * \partial e_{l}^{-}>/ 2\right. \\
\mathbf{p}_{\mathbf{1}}^{2}=\left(k_{\mu}+k_{e}\right)^{2} \\
\left.\left(1-\frac{k_{\mu}-k_{e}}{k_{\mu}+k_{e}}\right)<\overline{e_{\mu}} * \partial e_{l}^{+} \right\rvert\,\left(e^{i \mathbf{p}_{1} \mathbf{r}+i k_{\mu} t} * \partial e_{r}^{-}>/ 2 / 2\right.
\end{gathered}
$$

sum up in spectrum of p_{1}

$$
=\frac{2 k_{e} \varepsilon_{x}}{k_{\mu}}
$$

The emission of decay is

$$
=-\frac{1}{2.1 \times 10^{-6} s} \quad\left[2.1970 \times 10^{-6} s\right][1]
$$

The data in square bracket is experimental data of the full width. The decay of particle M is like a scattering with no energy emission

$$
M_{r}^{+} \rightarrow \overline{e_{l}^{-}}+\nu_{l}
$$

13. Pion Positive

Pion positive is

$$
\pi_{l}^{-}: e_{\pi} *\left(\overline{e_{r}^{+}}+e_{l}^{-}\right)+e_{\pi}^{*} * e_{r}^{+}
$$

It's with mass $5 \times 64 k_{e}$, spin $1 / 2$ and MDM $\mu_{B} k_{e} / k_{\pi^{+}}$.
Decay Channels:

$$
\pi_{l}^{-} \rightarrow \mu_{l}^{-}+\nu_{r}
$$

It's with balance formula

$$
e_{\pi}^{*} * e_{r}^{+}+e_{\pi} * e_{l}^{-}+\overline{e^{i p_{1} x}} * \overline{e_{\mu}} * \nu_{r} \rightarrow \overline{e_{\pi}} * e_{r}^{+}+e^{i p_{1} x} * e_{\mu} * e_{l}^{-}+e^{i p_{2} x} * \nu_{r}
$$

The emission of energy is kind of W

$$
\varepsilon_{x}=-\frac{1}{2.18 \times 10^{-8} s} \quad\left[\left(2.603 \times 10^{-8} s\right][1]\right.
$$

The referenced data is the full width.

14. Pion Neutral

Pion neutral is atom-like particle

$$
\pi^{0}: e_{\pi^{0}}+\nu_{r}+e_{\pi^{0}}^{*} * \nu_{l}
$$

It has mass $4 \times 64 k_{e}$, zero spin and zero MDM. Its decay modes are

$$
\pi^{0} \rightarrow \gamma_{r}+\gamma_{l}
$$

The loss of energy is kind of L

$$
4 \varepsilon_{e}=-\frac{1}{8.39 \times 10^{-17} s} \quad\left[8.4 \times 10^{-17} s\right][1]
$$

15. TAU

τ maybe that

$$
\tau_{l}^{+}: e_{\tau} *\left(5 e_{r}^{+}+\overline{5 e_{r}^{+}+e_{r}^{-}}\right)
$$

Its mass $51 \times 64 k_{e}$, spin $1 / 2, \operatorname{MDM} \mu_{B} / k_{\mu}$. It has decay mode

$$
\tau_{l}^{+} \rightarrow \overline{\mu_{l}^{-}}+\nu_{l}+\overline{\nu_{l}}
$$

$e_{\tau} * 5 e_{r}^{+}+\overline{e^{i p_{1} x}} * \overline{e_{\mu}} * \nu_{r}+\overline{e^{i p_{2} x}} * \nu_{l} \rightarrow \overline{e_{\tau}} * 5 e_{r}^{+}+\overline{e_{\tau}} * e_{r}^{-}+e^{i p_{1} x} * e_{\mu} * e_{l}^{-}+e^{i p_{3} x} * \nu_{l}$
The energy gap is kind of $L s, E=J_{2}$

$$
\begin{gathered}
5<\overline{e_{\tau}} * \partial E_{r}^{+} \mid \overline{e_{\tau}} * \partial E_{r}^{-}>/ 2 \\
-5<\overline{e_{\tau}} * \partial E_{r}^{+} \mid e^{i \mathbf{p}_{1} \mathbf{r}-i k_{\tau} t} * \partial E_{r}^{-}>/ 2 \\
e_{\tau}=e_{\tau l}^{-}, p_{1}^{2}=\left(k_{\tau} t+k_{e}\right)^{2} \\
\left.=5\left(1-\frac{k_{\tau}-k_{e}}{k_{\tau}+k_{e}}\right)<\overline{e_{\tau}} * E_{r}^{+} \right\rvert\, \nabla^{2} e^{i \mathbf{p}_{1} \mathbf{r}-i k_{\tau} t-i k_{e} t} * E_{r}^{-}>/ 2 \\
=\frac{10 \varepsilon_{e}}{k_{\tau} / k_{e}} \\
=-\frac{1}{1.2 \times 10^{-13} s} \quad\left[2.9 \times 10^{-13} s, B R .0 .17\right][1]
\end{gathered}
$$

16. Proton

Proton may be like

$$
p^{+}: e_{p} *\left(4 \overline{e_{r}^{+}}+3 e_{r}^{+}+2 \overline{e_{l}^{-}}\right)
$$

The mass is $30 \times 64 k_{e}$ that's very close to the real mass. The MDM is calculated as $3 \mu_{N}$, spin is $1 / 2$. The proton thus designed is eternal because even if decay to the finest small parts the emission is negative.

We define an unit: Mass-number Unit

$$
m:=m_{e} \sigma / e \approx 64 k_{e}
$$

17. Scattering and decay life

The scattering can be calculated as dynamic electromagnetic mechanical theory, ie. the magnitude scattered is

$$
-i e^{\int d V_{4} \hat{j}^{\mu} \hat{A}_{\mu}}
$$

From the equation 3.1 the operator of current is

$$
4 \hat{j} A^{\mu}=i A_{\mu}^{*} \partial A^{\mu}-i A^{\mu} \partial A_{\mu}^{*}
$$

The reaction is like

$$
\sum_{i} f_{i} * e_{i} \rightarrow \sum_{i} f_{i}^{\prime} * e_{i}
$$

e_{i} are positive matter all. The interaction between electrons

$$
I\left(, e_{i},\right)=I\left(, J\left(e_{i}\right),\right)
$$

is the cross interaction. At little scale of interaction it's

$$
\begin{gathered}
I\left(j_{1}, j_{2}\right)=\int d V_{4} A_{1} J_{2} \\
A_{1 i}=\int d x \cdot f_{1 i} * \partial e_{i}, A_{1 f}=\int d x \cdot f_{1 f} * \partial e_{i}
\end{gathered}
$$

$$
2 J=i A_{i}^{*} \partial A_{f}-i A_{f} \partial A_{i}^{*}
$$

For example the scattering

$$
e^{i p_{1} x} * e_{r}^{+}+e^{i p_{2} x} * e_{r}^{-} \rightarrow e^{i p_{3} x} * e_{r}^{+}+e^{i p_{4} x} * e_{r}^{-}
$$

The transfer is

$$
i \mu \approx \frac{C\left(p_{1}^{\prime}+p_{3}^{\prime}\right)^{\nu}\left(p_{2}^{\prime}+p_{4}^{\prime}\right)_{\nu}}{\left(p_{1}^{\prime}-p_{3}^{\prime}\right)^{2}}
$$

The p_{i}^{\prime} is the cap momentum relative to p_{i}. The number of particle of wave is normalized by the following covariant term

$$
d V_{3} \sqrt{k / k_{e}} e^{i p x} * \partial e_{r}^{+}
$$

And we have

$$
\int \prod_{i} d V_{4, i} I\left(, J\left(e_{i}\right),\right)=\varepsilon_{e}
$$

this calculation must conform to classical theory

$$
i C=e^{2}=\frac{\varepsilon_{e}}{k_{e} e}
$$

The interaction is between A_{0}. In the mean effect rate of transfer for the scattering of one to one particles is

$$
\frac{|\mu|^{2}}{2 k_{1} \cdot 2 k_{2} \cdot 2 k_{3} \cdot 2 k_{4}}
$$

The energy gap in fact is part of interaction for example

$$
e^{p_{1} x} * e+e^{p_{2} x} * e \rightarrow e^{p_{3} x} * e+e^{p_{4} x} * e
$$

e is the same electron of the four kind and of the same polarization. In fact the final state includes

$$
s:=e_{s} *(e+e)
$$

The interaction in the reaction is

$$
I=I\left(j_{13}, j_{24}\right)=\int d V_{4} A_{13} J_{24}^{*} \delta(x-G)
$$

The domain G is the domain meeting Clain-Golden equation and momentum conservations, for all emitted matter. Taking the mass center system, the part generating s is

$$
\begin{gathered}
e+e \rightarrow s=e^{-i k t} e_{-i k_{s} t \varsigma_{k_{s}} *(e+e)} \\
k+k_{s}=k_{1}
\end{gathered}
$$

Using

$$
\varsigma_{k_{s}}=\int d \mathbf{p} C_{p} e^{i \mathbf{p r}}, \mathbf{p}^{2}=k_{s}^{2}
$$

the invariable magnitude is

$$
i \mu \approx C \int d \mathbf{p} C_{p} \frac{-\left(\mathbf{p}+\mathbf{p}_{\mathbf{1}}\right)^{2}+4 k_{1}^{2}}{\left(\mathbf{p}-\mathbf{p}_{\mathbf{1}}\right)^{2}}, \mathbf{p}^{2}=k_{s}
$$

For a decay with two particles emission, the first order term of the scattering effect is identity of the calculation of energy difference between the initial and final state, which a easy analysis can prove.

18. Conclusion

The relative theory is applied to electromagnetic wave to give the mass of the fields, by energy-momentum tensor. In my view point the sum-up of the grains (as electrons) of electromagnetic field is express of mechanic movement. Fortunately this model explained all the effects in the known world: strong, weak and electromagnetic effects, and even subclassify them further if not add new ones. In this model the only field is electromagnetic field except gravity, and this stands for the philosophical with the point of that unified world from unique source. All depend on a simple fact: the current of matter in a system is time-invariant zero in masscenter frame, and we can devise current of matter to analysis the E-M current. So that all effects is explained with diffusion process.

The inertial mass is deduced by mechanical operator $i \partial_{t}$. But the gravitational mass (by the equation of 8.1) of the naked electron is 64 time of the inertial and mechanical mass, the photon and neutrino has zero mechanical mass but their gravitational mass is not zero obviously. this is hard problem unsettled by this article. For atom the inertial mass less then gravitational mass by $1 / 50$ approximately.

Except electron function my description of particles in fact has the same form with Quantum Electromagnetic Mechanics, and they two should reach the same result except for some little bias. But my theory isn't compatible to the theory of quarks, the upper part of standard model, if not it is calculated in the style of Quantum Electromagnetic Mechanics. In fact, The electron function is a good promotion for the experimental model of proton that went up very early.

References

[1] K. Nakamura et al. (Particle Data Group), JPG 37, 075021 (2010) (URL: http://pdg.lbl.gov) E-mail address: hiyaho@126.com
Wuhan University, Wuhan, Hubei Province, The People's Republic of China. PostCODE: 430074

