The sum and number of primes between any two positive integers

Zhen Liu

Abstract

Using the method for equation reconstruction of prime sequence, this paper gives the proof that there is at least one prime between positive integers n^{2} and $(n+1)^{2}$. The sum and number formulae of primes between any two positive integers are also given out.

1 Introduction

Because it can not be divisible except 1 and itself, primes are difficult to be described by appropriate expressions. This property makes prime sequence be difficult to be described such as arithmetic progression, geometric progression with the determined term formula. However, this property can make prime number establish some diophantine equations. And prime numbers can be decided by whether there is positive whole number solutions of these diophantine equations. Therefore, the expressions for solutions of these diophantine equations and its transform are used to describe the divisible property of prime number, and forming an equivalent sequence for the property. Thus, this will be easy to find the key node and the law implied to solve the problem. To this end, the theorem for equation reconstruction of prime sequence is presented and proved. Using the method, this paper gives the proof that there is at least one prime between positive integers n^{2} and $(n+1)^{2}$. The sum and number formulae of primes between two positive integers are also given out. It could be hope to provide an idea and methods to solve similar problems.

Zhen Liu
Doctor, Associate Professor of School of Marine Sciences, Sun Yat-sen University, China
Adds: Sun Yat-sen University, No.135, Xingang Xi Rd, Haizhu District, Guangzhou, Guangdong, 510275, China
E-mail: liuzh8@mail.sysu.edu.cn

In this paper, all parameters are positive whole number except where stated.

2 Proof of the theorem for equation reconstruction of prime sequence

Lemma: The prime sequence could be equivalent to the sequence with the determined general term formula through equation reconstruction of prime number for the divisible property.

Proof.

Any prime number c could be expressed as $3 a \pm 1$ (a is an positive even), $4 a \pm 1$ or $6 a \pm 1$.

Proof is carried out the following in the case of $3 a \pm 1$ first.
If $3 a \pm 1$ is a prime number, it certainly can not be written $3 a \pm 1=\left(3 x_{1} \pm 1\right)\left(3 x_{2} \pm 1\right)$, otherwise, and vice versa.

Case 1:3a+1

$$
3 a+1=\left(3 x_{1}+1\right)\left(3 x_{2}+1\right)=9 x_{1} x_{2}+3\left(x_{1}+x_{2}\right)+1
$$

or

$$
3 a+1=\left(3 x_{1}^{\prime}-1\right)\left(3 x_{2}^{\prime}-1\right)=9 x_{1}^{\prime} x_{2}^{\prime}-3\left(x_{1}^{\prime}+x_{2}^{\prime}\right)+1
$$

Where, let $-x_{1}^{\prime}=x_{1},-x_{2}^{\prime}=x_{2}$.
Then there is $a=3 x_{1} x_{2}+\left(x_{1}+x_{2}\right)$.
It is easy to see that whether $3 a+1$ is a prime number depends entirely on the a.
Namely $3 a+1$ is a prime number that is equivalent x_{1} and x_{2} are both positive whole
number in $a=3 x_{1} x_{2}+\left(x_{1}+x_{2}\right)$.
Let $x_{1}+x_{2}=-q, x_{1} x_{2}=p$
According to Vieta's formulas, equation (1) is established.

$$
\begin{equation*}
x^{2}+q x+p=0 \tag{1}
\end{equation*}
$$

Then there is $x_{1,2}=\frac{-q \pm \sqrt{q^{2}-4 p}}{2}$
Therefore, if x_{1} and x_{2} of equation (1) roots are not both positive whole number, $3 a+1$
must be a prime number. Otherwise, it will be a composite number.
There is

$$
a=3 p-q
$$

Obviously, if $3 a+1$ is a prime number, q and $\sqrt{q^{2}-4 p}$ are not both even numbers.
Therefore, in the divisible property of prime number, c_{i} in prime sequence $\left\{c_{n}\right\}$ is equivalent to $a_{i}=3 p_{i}-q_{i}$ in sequence $\left\{a_{n}\right\}$, namely prime sequence $\left\{c_{n}\right\}$ is equivalent to sequence $\left\{a_{n}\right\}$.

Here q_{i} and $\sqrt{q_{i}^{2}-4 p_{i}}$ are not both even numbers.
In order to facilitate the expression, let $q=2 s, \quad p=2 r$.
Here s and r are real numbers.
$\therefore x_{1,2}=s \pm \sqrt{s^{2}-2 r}$
Let $\sqrt{s^{2}-2 r}=t$
There is

$$
a=12 s t-12 t^{2}-2 s
$$

Therefore, $a_{i}=3 p_{i}-q_{i}$ in sequence $\left\{a_{n}\right\}$ (q_{i} and $\sqrt{q_{i}^{2}-4 p_{i}}$ are not both even numbers) is equivalent to $a_{i}^{\prime}=12 s_{i} t_{i}-12 t_{i}^{2}-2 s_{i}$ in sequence $\left\{a_{n}^{\prime}\right\}$ (s_{i} and t_{i} are not both positive whole number solutions).

Namely, in the divisible property of prime number, prime sequence $\left\{c_{n}\right\}$ is equivalent to sequence $\left\{a_{n}^{\prime}\right\}$.

It is obvious that

$$
t=\frac{s \pm \sqrt{s^{2}+\frac{2 s-a}{3}}}{2}
$$

Let $s^{2}+\frac{2 s-a}{3}=e^{2}$
Then there is

$$
a=3 s^{2}+2 s-3 e^{2}
$$

Therefore, $a_{i}^{\prime}=12 s_{i} t_{i}-12 t_{i}^{2}-2 s_{i}$ in sequence $\left\{a_{n}^{\prime}\right\} \quad\left(s_{i}\right.$ and t_{i} are not both positive whole number solutions) is equivalent to $a_{i}^{\prime \prime}=3 s_{i}^{2}+2 s_{i}-3 e_{i}^{2}$ in sequence $\left\{a_{n}^{\prime \prime}\right\}$ (s_{i} and e_{i} are not both positive whole number solutions) .

Namely, in the divisible property of prime number, prime sequence $\left\{c_{n}\right\}$ is equivalent to sequence $\left\{a_{n}^{\prime \prime}\right\}$.

It is obvious that

$$
s=\frac{-1 \pm \sqrt{9 e^{2}+3 a+1}}{3}
$$

Let $9 e^{2}+3 a+1=(3 h+1)^{2}$
Then there is

$$
\begin{gathered}
3 a+1=(3 h+1)^{2}-(3 e)^{2} \\
a=3 h^{2}+2 h-3 e^{2}
\end{gathered}
$$

Therefore, $a_{i}^{\prime \prime}=3 s_{i}^{2}+2 s_{i}-3 e_{i}^{2}$ in sequence $\left\{a_{n}^{\prime \prime}\right\}$ (s_{i} and e_{i} are not both positive whole number solutions) is equivalent to $3 a_{n}^{\prime \prime \prime}+1=\left(3 h_{i}+1\right)^{2}-\left(3 e_{i}\right)^{2}$ in sequence $\left\{a_{n}^{\prime \prime}\right\}$ (e_{i} and h_{i} are not both positive whole number solutions) .

Namely, in the divisible property of prime number, prime sequence $\left\{c_{n}\right\}$ is equivalent to sequence $\left\{a_{n}^{\prime \prime \prime}\right\}$.

Case 2: $3 a-1$

$$
3 a-1=\left(3 x_{1}^{\prime}+1\right)\left(3 x_{2}^{\prime}-1\right)=9 x_{1}^{\prime} x_{2}^{\prime}+3\left(x_{2}^{\prime}-x_{1}^{\prime}\right)-1
$$

Where, let $-x_{1}^{\prime}=x_{1}, x_{2}^{\prime}=x_{2}$.
Then there is $a=-3 x_{1} x_{2}+\left(x_{1}+x_{2}\right)$.
Namely $3 a-1$ is a prime number that is equivalent x_{1} and x_{2} are both positive whole number in $a=-3 x_{1} x_{2}+\left(x_{1}+x_{2}\right)$.

Let $x_{1}+x_{2}=-q, x_{1} x_{2}=p$. Here p is negative whole number.
According to Vieta's formulas, equation (2) is established.

$$
\begin{equation*}
x^{2}+q x+p=0 \tag{2}
\end{equation*}
$$

Then there is $x_{1,2}=\frac{-q \pm \sqrt{q^{2}-4 p}}{2}$.
Therefore, if x_{1} and x_{2} of equation (2) roots are not both positive whole number, $3 a-1$ must be a prime number. Otherwise, it will be a composite number.

There is

$$
a=-3 p-q
$$

Obviously, if $3 a-1$ is a prime number, q and $\sqrt{q^{2}-4 p}$ are not both even numbers.
Therefore, in the divisible property of prime number, c_{i} in prime sequence $\left\{c_{n}\right\}$ is equivalent to $a_{i}=-3 p_{i}-q_{i}$ in sequence $\left\{a_{n}\right\}$, namely prime sequence $\left\{c_{n}\right\}$ is equivalent to sequence $\left\{a_{n}\right\}$.

Using the same argument as in the case 1, we can easily get

$$
a=12 t^{2}-12 s t-2 s
$$

Therefore, $a_{i}=-3 p_{i}-q_{i}$ in sequence $\left\{a_{n}\right\} \quad\left(q_{i}\right.$ and $\sqrt{q_{i}^{2}-4 p_{i}}$ are not both even numbers) is equivalent to $a_{i}^{\prime}=12 t_{i}^{2}-12 s_{i} t_{i}-2 s_{i}$ in sequence $\left\{a_{n}^{\prime}\right\}$ (s_{i} and t_{i} are not both positive whole number solutions) .

Namely, in the divisible property of prime number, prime sequence $\left\{c_{n}\right\}$ is equivalent to sequence $\left\{a_{n}^{\prime}\right\}$.

It is obvious that

$$
t=\frac{s \pm \sqrt{s^{2}+\frac{2 s+a}{3}}}{2}
$$

Let $s^{2}+\frac{2 s+a}{3}=e^{2}$
Then there is

$$
a=3 e^{2}-3 s^{2}-2 s
$$

Therefore, $a_{i}^{\prime}=12 t_{i}^{2}-12 s_{i} t_{i}-2 s_{i}$ in sequence $\left\{a_{n}^{\prime}\right\} \quad\left(s_{i}\right.$ and t_{i} are not both positive whole number solutions) is equivalent to $a_{i}^{\prime \prime}=3 e_{i}^{2}-3 s_{i}^{2}-2 s$ in sequence $\left\{a_{n}^{\prime \prime}\right\}$ (s_{i} and e_{i} are not both positive whole number solutions) .

Namely, in the divisible property of prime number, prime sequence $\left\{c_{n}\right\}$ is equivalent to sequence $\left\{a_{n}^{\prime \prime}\right\}$.

It is obvious that

$$
s=\frac{-1 \pm \sqrt{9 e^{2}-3 a+1}}{3}
$$

Let $9 e^{2}-3 a+1=(3 h+1)^{2}$
Then there is

$$
\begin{gathered}
3 a-1=(3 e)^{2}-(3 h+1)^{2} \\
a=3 e^{2}-3 h^{2}-2 h
\end{gathered}
$$

Therefore, $a_{i}^{\prime \prime}=3 e_{i}^{2}-3 s_{i}^{2}-2 s$ in sequence $\left\{a_{n}^{\prime \prime}\right\}$ (s_{i} and e_{i} are not both positive whole number solutions) is equivalent to $3 a_{n}^{\prime \prime \prime}-1=\left(3 e_{i}\right)^{2}-\left(3 h_{i}+1\right)^{2}$ in sequence $\left\{a_{n}^{\prime \prime}\right\}$ (e_{i} and h_{i} are not both positive whole number solutions) .

Namely, in the divisible property of prime number, prime sequence $\left\{c_{n}\right\}$ is equivalent to sequence $\left\{a_{n}^{\prime \prime \prime}\right\}$.

The prime sequence that prime number c could be expressed as $4 a \pm 1$ or $6 a \pm 1$, have equivalent methods that are similar to the case of $3 a \pm 1$. It can be proved in the same way as shown in the case of $3 a \pm 1$ before. Of course, some new equivalent sequences are reconstructed through establishing other forms equations.

This completes the proof.
According to above proof, in the divisible property of prime number, the prime sequence $\left\{c_{n}\right\}$ without term formula is analyzed by using the sequence $\left\{a_{n}\right\}, ~\left\{a_{n}^{\prime}\right\}, ~\left\{a_{n}^{\prime \prime}\right\}, ~\left\{a_{n}^{\prime \prime \prime}\right\}$ with
term formula. This will be easy to find the key node and the law implied to solve the problem.

3 Proof of existing at least one prime between positive integers n^{2} and $(n+1)^{2}$

Theorem1: There is at least one prime between positive integers n^{2} and $(n+1)^{2}$, where n is any positive integer.

Proof.

It proves the Theorem with the reduction to absurdity follows.
If the Theorem is not true, it becomes: there is a positive integer n_{0} that makes all integers between n_{0}^{2} and $\left(n_{0}+1\right)^{2}$ be composite numbers.

According to the Lemma for equation reconstruction of prime sequence, there are

$$
\begin{gather*}
3 a-1=\left(3 x_{1}+1\right)\left(3 x_{2}-1\right) \tag{3}\\
3 a+1=\left(3 x_{1}^{\prime}+1\right)\left(3 x_{2}^{\prime}+1\right) \text { or } 3 a+1=\left(3 x_{1}^{\prime}-1\right)\left(3 x_{2}^{\prime}-1\right) \tag{4}
\end{gather*}
$$

Where, $a=2 l, l$ is positive whole number.
Therefore, when a is large enough, at least one of equation (9) and equation (10) has integer solutions.

Using the same argument as in the proof of equation reconstruction of prime sequence, we can easily get this statement fellows.

For equation (3), there are

$$
\begin{gathered}
\frac{a}{2}=6 t_{1}^{2}-6 s_{1} t_{1}-s_{1} \\
t_{1}=\frac{s_{1} \pm \sqrt{s_{1}^{2}+\frac{2 s_{1}+a}{3}}}{2}
\end{gathered}
$$

Let $s_{1}^{2}+\frac{2 s_{1}+a}{3}=e_{1}^{2}$
Then, there is

$$
s_{1}=\frac{-1 \pm \sqrt{9 e_{1}^{2}-6 l+1}}{3}
$$

Let $9 e_{1}^{2}-6 l+1=\left(3 h_{1}+1\right)^{2}$, Namely it makes s_{1} be a positive whole number.

Then, there is

$$
\begin{align*}
& 6 l-1=9 e_{1}^{2}-\left(3 h_{1}+1\right)^{2} \\
& a=2 l=3 e_{1}^{2}-3 h_{1}^{2}-2 h_{1} \\
& 3 a-1=9 e_{1}^{2}-\left(3 h_{1}+1\right)^{2} \tag{5}
\end{align*}
$$

For equation (4), there are

$$
\begin{gathered}
\frac{a}{2}=6 s_{2} t_{2}-6 t_{2}^{2}-s_{2} \\
t_{2}=\frac{s_{2} \pm \sqrt{s_{2}^{2}+\frac{2 s_{2}-a}{3}}}{2}
\end{gathered}
$$

Let $s_{2}^{2}+\frac{2 s_{2}-a}{3}=e_{2}^{2}$
Then, there is

$$
s_{2}=\frac{-1 \pm \sqrt{9 e_{2}^{2}+6 l+1}}{3}
$$

Let $9 e_{2}^{2}+6 l+1=\left(3 h_{2}+1\right)^{2}$, Namely it makes s_{2} be a positive whole number.
Then, there is

$$
\begin{align*}
& 6 l+1=\left(3 h_{2}+1\right)^{2}-9 e_{2}^{2} \\
& a=2 l=3 h_{2}^{2}+2 h_{2}-3 e_{2}^{2} \\
& 3 a+1=\left(3 h_{2}+1\right)^{2}-9 e_{2}^{2} \tag{6}
\end{align*}
$$

According to the equation (5) and equation (6), there is

$$
3 a \pm 1=\left|(3 h+1)^{2}-9 e^{2}\right|
$$

Let $3 a \pm 1=n_{0}^{2}+m, \quad 0<m<2 n_{0}+1$.
Then, if the Theorem is not true, it becomes: there is a positive integer n_{0} that makes $n_{0}^{2}+m$ be composite numbers. Namely there is a positive integer n_{0} that makes $n_{0}^{2}+m=\left|(3 h+1)^{2}-3 e^{2}\right|$.

For n_{0}, there are 3 cases: $n_{0}=3 k_{0}-1, n_{0}=3 k_{0}$ and $n_{0}=3 k_{0}+1$.

Let when k_{0} is a even, $k_{0}=2 d_{0}$. Let when k is odd, $k_{0}=2 d_{0}-1$.
Then,
Case $n_{0}=3 k_{0}-1$:
when $k_{0}=2 d_{0}, n_{0}^{2}=36 d_{0}^{2}-12 d_{0}+1$,
when $k_{0}=2 d_{0}-1, n_{0}^{2}=36 d_{0}^{2}-48 d_{0}+16$.
Csae $n_{0}=3 k_{0}$:
when $k_{0}=2 d_{0}, n_{0}^{2}=36 d_{0}^{2}$,
when $k_{0}=2 d_{0}-1, n_{0}^{2}=36 d_{0}^{2}-36 d_{0}+9$.
Case $n_{0}=3 k_{0}+1$:
when $k_{0}=2 d_{0}, n_{0}^{2}=36 d_{0}^{2}+12 d_{0}+1$,
when $k_{0}=2 d_{0}-1, \quad n_{0}^{2}=36 d_{0}^{2}-24 d_{0}+4$.
\because Any prime could be expressed as $6 b \pm 1$.
\therefore Just consider only a situation that $n_{0}^{2}+m$ could be expressed as $6 b \pm 1$, while the rest are composite numbers.

Because of $n_{0}^{2}+m$ corresponding to be expressed as $6 b+1$ and $6 b-1$, there are 6 cases as follows:
when $n_{0}^{2}=36 d_{0}^{2}-12 d_{0}+1, \quad m=6 c$ or $m=6 c+4$,
when $n_{0}^{2}=36 d_{0}^{2}-48 d_{0}+16, \quad m=6 c+1$ or $m=6 c-1$,
when $n_{0}^{2}=36 d_{0}^{2}, \quad m=6 c+1$ or $m=6 c-1$,
when $n_{0}^{2}=36 d_{0}^{2}-36 d_{0}+9, \quad m=6 c+4$ or $m=6 c+2$,
when $n_{0}^{2}=36 d_{0}^{2}+12 d_{0}+1, \quad m=6 c+4$ or $m=6 c$,
when $n_{0}^{2}=36 d_{0}^{2}-24 d_{0}+4, \quad m=6 c+1$ or $m=6 c+3$.
When $n_{0}^{2}+m=(3 h+1)^{2}-(3 e)^{2}$, let

$$
n_{0}^{2}+m_{0}=3 a_{0}+1=\left(3 h_{0}+1\right)^{2}-\left(3 e_{0}\right)^{2}=A
$$

Where, m_{0} is the minimum of m.
Then the equation $n_{0}^{2}+m_{0}+m=\left[3\left(h_{0}+\Delta_{h}\right)+1\right]^{2}-\left[3\left(e_{0}+\Delta_{e}\right)\right]^{2}$ has integer solutions for any m.

There is

$$
\Delta_{h}=\frac{1}{3}\left[-3 h_{0}-1 \pm \sqrt{\left(3 h_{0}+1\right)^{2}+\left(9 \Delta_{e}^{2}+18 e_{0} \Delta_{e}+m\right)}\right]
$$

$\therefore\left(3 h_{0}+1\right)^{2}+\left(9 \Delta_{e}^{2}+18 e_{0} \Delta_{e}+m\right)$ is a square number.
Then let

$$
\begin{gathered}
\left(3 h_{0}+1\right)^{2}+\left(9 \Delta_{e}^{2}+18 e_{0} \Delta_{e}+m\right)=f^{2} \\
\left(3 h_{0}+1\right)^{2}=B
\end{gathered}
$$

There is

$$
\Delta_{e}=\frac{1}{3}\left[-3 e_{0} \pm \sqrt{9 e_{0}^{2}-m-B+f^{2}}\right]
$$

$\therefore 9 e_{0}^{2}-m-B+f^{2}$ is also a square number.
Then, there is $9 e_{0}^{2}-m-B+f^{2}=\delta_{c_{0}+c}^{2}$ for arbitrary continuous m.
And there is

$$
\left|\delta_{c_{0}+c}^{2}-\delta_{c_{0}}^{2}\right|=\Delta m=6 c
$$

It is easy to see that $6 c$ are not all the difference between square numbers. This is also in contradiction with the difference between square numbers $\delta_{m_{0}+m}^{2}-\delta_{m_{0}}^{2}$.

When $n_{0}^{2}+m=(3 e)^{2}-(3 h+1)^{2}$, let

$$
n_{0}^{2}+m_{0}=3 a_{0}-1=\left(3 e_{0}\right)^{2}-\left(3 h_{0}+1\right)^{2}=A
$$

Where, m_{0} is the minimum of m.
Then the equation $n_{0}^{2}+m_{0}+m=\left[3\left(e_{0}+\Delta_{e}\right)\right]^{2}-\left[3\left(h_{0}+\Delta_{h}\right)+1\right]^{2}$ has integer solutions for any m.

There is

$$
\Delta_{h}=\frac{1}{3}\left[-3 h_{0}-1 \pm \sqrt{\left(3 h_{0}+1\right)^{2}+\left(9 \Delta_{e}^{2}+18 e_{0} \Delta_{e}-m\right)}\right]
$$

$\therefore\left(3 h_{0}+1\right)^{2}+\left(9 \Delta_{e}^{2}+18 e_{0} \Delta_{e}-m\right)$ is a square number.
Then let

$$
\begin{gathered}
\left(3 h_{0}+1\right)^{2}+\left(9 \Delta_{e}^{2}+18 e_{0} \Delta_{e}-m\right)=f^{2} \\
\left(3 h_{0}+1\right)^{2}=B
\end{gathered}
$$

There is

$$
\Delta_{e}=\frac{1}{3}\left[-3 e_{0} \pm \sqrt{9 e_{0}^{2}+m-B+f^{2}}\right]
$$

$\therefore 9 e_{0}^{2}+m-B+f^{2}$ is also a square number.
Then, there is $9 e_{0}^{2}+m-B+f^{2}=\delta_{c_{0}+c}^{2}$ for arbitrary continuous m.
And there is

$$
\left|\delta_{c_{0}+c}^{2}-\delta_{c_{0}}^{2}\right|=m=6 c
$$

It is easy to see that $6 c$ are not all the difference between square numbers. This is also in contradiction with the difference between square numbers $\delta_{m_{0}+m}^{2}-\delta_{m_{0}}^{2}$.

It is now obvious that the theorem holds.
There is at least one prime between positive integers n^{2} and $(n+1)^{2}$.
This completes the proof.

4. Proof of the sum and number formulae of primes between two positive integers

Theorem2: The sum formula $\sigma(\alpha, \beta)$ and number formula $\pi(\alpha, \beta)$ of primes between positive integers α and β, where $\beta>\alpha$.

Proof.
According to the Lemma for equation reconstruction of prime sequence, any prime could be expressed as $3 a \pm 1$, where $\alpha<p<\beta$. And

$$
3 a \pm 1=\left|(3 h+1)^{2}-(3 e)^{2}\right|
$$

Then

$$
\frac{\alpha \mp 1}{3}<a<\frac{\beta \mp 1}{3}
$$

\therefore The equation $3 a \pm 1=\left|(3 h+1)^{2}-(3 e)^{2}\right|$ does not have integer solutions for all primes $3 a \pm 1$ between α and β, while the equation $3 a \pm 1=\left|(3 h+1)^{2}-(3 e)^{2}\right|$ has integer solutions for composite numbers.
\therefore The sum formula $\sigma(\alpha, \beta)$ of primes between positive integers α and β is

$$
\sigma(\alpha, \beta)=\sum_{a_{1}}^{a_{n}}\left(3 a_{i} \pm 1\right)-\sum_{h_{1}}^{h_{n}} \sum_{e_{1}}^{e_{n}}\left|\left(3 h_{i}+1\right)^{2}-\left(3 e_{i}\right)^{2}\right|
$$

Where, $a_{1}=\left[\frac{\alpha \mp 1}{3}\right]+1, \quad a_{n}=\left[\frac{\beta \mp 1}{3}\right], 3 a_{1} \pm 1=\left|\left(3 h_{1}+1\right)^{2}-\left(3 e_{1}\right)^{2}\right|$,
$3 a_{n} \pm 1=\left|\left(3 h_{n}+1\right)^{2}-\left(3 e_{n}\right)^{2}\right|$.
And $\left|\left(3 h_{i}+1\right)^{2}-\left(3 e_{i}\right)^{2}\right| \neq\left|\left(3 h_{j}+1\right)^{2}-\left(3 e_{j}\right)^{2}\right|$. if $\left|\left(3 h_{i}+1\right)^{2}-\left(3 e_{i}\right)^{2}\right|=\left|\left(3 h_{j}+1\right)^{2}-\left(3 e_{j}\right)^{2}\right|$, it could only take one of $\left(h_{i}, e_{i}\right)$ and $\left(h_{j}, e_{j}\right)$ in the calculations.

And there are $3 a+1=\left(3 h_{2}+1\right)^{2}-9 e_{2}^{2}, \quad 3 a-1=9 e_{1}^{2}-\left(3 h_{1}+1\right)^{2}$.
\therefore The number formula $\pi(\alpha, \beta)$ of primes between positive integers α and β is

$$
\pi(\alpha, \beta)=\sum_{a_{1}}^{a_{n}}\left(3 a_{i}+1\right)-\sum_{h_{1}}^{h_{n}} \sum_{e_{1}}^{e_{n}}\left(9 h_{i}^{2}+6 h_{i}-9 e_{i}^{2}\right)+\left|\sum_{a_{1}}^{a_{n}}\left(3 a_{i}-1\right)-\sum_{h_{1}}^{h_{n}} \sum_{e_{1}}^{e_{n}}\left(9 e_{i}^{2}-9 h_{i}^{2}-6 h_{i}\right)\right|
$$

It could also be written as

$$
\pi(\alpha, \beta)=\sum_{a_{1}}^{a_{n}}\left(3 a_{i} \pm 1\right)-\sum_{h_{1}}^{h_{n}} \sum_{e_{1}}^{e_{n}}\left|9 h_{i}^{2}+6 h_{i}-9 e_{i}^{2}\right|+2 n
$$

5. Proof of the upper and lower limit formula of number of primes between two positive

integers

Theorem3: The upper and lower limit formula of number $\pi(\alpha, \beta)$ for primes between positive integers α and β, where $\beta>\alpha$.

Proof.
Using the same method as in the proof of Theorem1, for α, there are 3 cases: $\alpha=3 \varphi-1$,
$\alpha=3 \varphi$ and $\alpha=3 \varphi+1$.

Let when φ is a even, $\varphi=2 \gamma$. Let when φ is odd, $\varphi=2 \gamma-1$.
Then,
Case $\alpha=3 \varphi-1$:
when $\varphi=2 \gamma, \quad \alpha=6 \gamma-1$,
when $\varphi=2 \gamma-1, \quad \alpha=6 \gamma-4$.

Case $\alpha=3 \varphi$:
when $\varphi=2 \gamma, \alpha=6 \gamma$,
when $\varphi=2 \gamma-1, \quad \alpha=6 \gamma-3$.

Case $\alpha=3 \varphi+1$:
when $\varphi=2 \gamma, \quad \alpha=6 \gamma+1$,
when $\varphi=2 \gamma-1, \alpha=6 \gamma-2$.
\because Any prime could be expressed as $6 b \pm 1$.
\therefore Just consider only a situation that $\alpha+\Delta$ could be expressed as $6 b \pm 1$, while the rest are composite numbers. Where $\alpha+\Delta<\beta$.

Because of $\alpha+\Delta$ corresponding to be expressed as $6 b+1$ and $6 b-1$, there are 6 cases as follows:
when $\alpha=6 \gamma-1, \Delta=6 \delta+2$ or $\Delta=6 \delta$,
when $\alpha=6 \gamma-4, \Delta=6 \delta+5$ or $\Delta=6 \delta+3$,
when $\alpha=6 \gamma, \Delta=6 \delta+1$ or $\Delta=6 \delta+5$,
when $\alpha=6 \gamma-3, \Delta=6 \delta+4$ or $\Delta=6 \delta+2$,
when $\alpha=6 \gamma+1, \Delta=6 \delta$ or $\Delta=6 \delta+4$,
when $\alpha=6 \gamma-2, \Delta=6 \delta+3$ or $\Delta=6 \delta+1$.

Let $\Delta=6 \delta+\chi$, then it could be marked
when $\alpha=6 \gamma-1,\left(\chi_{1}, \chi_{2}\right)=(2,0)$,
when $\alpha=6 \gamma-4, \quad\left(\chi_{1}, \chi_{2}\right)=(5,3)$,
when $\alpha=6 \gamma,\left(\chi_{1}, \chi_{2}\right)=(1,5)$,
when $\alpha=6 \gamma-3,\left(\chi_{1}, \chi_{2}\right)=(4,2)$,
when $\alpha=6 \gamma+1,\left(\chi_{1}, \chi_{2}\right)=(0,4)$,
when $\alpha=6 \gamma-2, \quad\left(\chi_{1}, \chi_{2}\right)=(3,1)$.
Using the same method as in the proof of Theorem1, there are
When $\alpha+\Delta=(3 h+1)^{2}-(3 e)^{2}$, let

$$
\alpha+\Delta_{0}=3 a_{0}+1=\left(3 h_{0}+1\right)^{2}-\left(3 e_{0}\right)^{2}=A
$$

Where, Δ_{0} is the minimum of Δ.
If $\alpha+\Delta$ is a composite number, the equation $\alpha+\Delta_{0}+\Delta=\left[3\left(h_{0}+\Delta_{h}\right)+1\right]^{2}-\left[3\left(e_{0}+\Delta_{e}\right)\right]^{2}$ has integer solutions.

There is

$$
\Delta_{h}=\frac{1}{3}\left[-3 h_{0}-1 \pm \sqrt{\left(3 h_{0}+1\right)^{2}+\left(9 \Delta_{e}^{2}+18 e_{0} \Delta_{e}+\Delta\right)}\right]
$$

$\therefore\left(3 h_{0}+1\right)^{2}+\left(9 \Delta_{e}^{2}+18 e_{0} \Delta_{e}+\Delta\right)$ is a square number.
Then let

$$
\begin{gathered}
\left(3 h_{0}+1\right)^{2}+\left(9 \Delta_{e}^{2}+18 e_{0} \Delta_{e}+\Delta\right)=f^{2} \\
\left(3 h_{0}+1\right)^{2}=B
\end{gathered}
$$

There is

$$
\Delta_{e}=\frac{1}{3}\left[-3 e_{0} \pm \sqrt{9 e_{0}^{2}-\Delta-B+f^{2}}\right]
$$

$\therefore 9 e_{0}^{2}-\Delta-B+f^{2}$ is also a square number.
And $\Delta_{\text {max }} \leq \beta-\alpha$
\therefore The number of Δ that make $\alpha+\Delta$ be expressed as $6 b+1$ is $\left[\frac{\beta-\alpha+\chi_{1}-1}{6}\right]$.
The number of Δ that make $9 e_{0}^{2}-\Delta-B+f^{2}$ be square number and be divided evenly by 6 is $\left[\sqrt{\frac{\beta-\alpha+\chi_{1}-1}{6}}\right]$.

The number of Δ that make Δ_{e} be positive integers is $\left[\frac{1}{3} \sqrt{\frac{\beta-\alpha+\chi_{1}-1}{6}}\right]$.
But this Δ could not make Δ_{h} be positive integers.
\therefore The number of primes be expressed as $6 b+1$ between α and β is

$$
\left[\frac{\beta-\alpha+\chi_{1}-1}{6}\right]-\left[\frac{1}{3} \sqrt{\frac{\beta-\alpha+\chi_{1}-1}{6}}\right]-1 \leq \pi(\alpha, \beta) \leq\left[\frac{\beta-\alpha+\chi_{1}-1}{6}\right]
$$

When $\alpha+\Delta=(3 e)^{2}-(3 h+1)^{2}$, let

$$
\alpha+\Delta_{0}+\Delta=3 a_{0}-1=\left(3 e_{0}\right)^{2}-\left(3 h_{0}+1\right)^{2}=A
$$

Where, Δ_{0} is the minimum of Δ.
If $\alpha+\Delta$ is a composite number, the equation $\alpha+\Delta_{0}+\Delta=\left[3\left(e_{0}+\Delta_{e}\right)\right]^{2}-\left[3\left(h_{0}+\Delta_{h}\right)+1\right]^{2}$ has integer solutions.

There is

$$
\Delta_{h}=\frac{1}{3}\left[-3 h_{0}-1 \pm \sqrt{\left(3 h_{0}+1\right)^{2}+\left(9 \Delta_{e}^{2}+18 e_{0} \Delta_{e}-\Delta\right)}\right]
$$

$\therefore\left(3 h_{0}+1\right)^{2}+\left(9 \Delta_{e}^{2}+18 e_{0} \Delta_{e}-\Delta\right)$ is a square number.
Then let

$$
\begin{gathered}
\left(3 h_{0}+1\right)^{2}+\left(9 \Delta_{e}^{2}+18 e_{0} \Delta_{e}-\Delta\right)=f^{2} \\
\left(3 h_{0}+1\right)^{2}=B
\end{gathered}
$$

There is

$$
\Delta_{e}=\frac{1}{3}\left[-3 e_{0} \pm \sqrt{9 e_{0}^{2}+\Delta-B+f^{2}}\right]
$$

$\therefore 9 e_{0}^{2}+\Delta-B+f^{2}$ is also a square number.

And $\Delta_{\text {max }} \leq \beta-\alpha$
\therefore The number of Δ that make $\alpha+\Delta$ be expressed as $6 b-1$ is $\left[\frac{\beta-\alpha+\chi_{2}+1}{6}\right]$.
The number of Δ that make $9 e_{0}^{2}+\Delta-B+f^{2}$ be square number and be divided evenly by
6 is $\left[\sqrt{\frac{\beta-\alpha+\chi_{2}+1}{6}}\right]$.
The number of Δ that make Δ_{e} be positive integers is $\left[\frac{1}{3} \sqrt{\frac{\beta-\alpha+\chi_{2}+1}{6}}\right]$.
But this Δ could not make Δ_{h} be positive integers.
\therefore The number of primes be expressed as $6 b+1$ between α and β is

$$
\left[\frac{\beta-\alpha+\chi_{2}+1}{6}\right]-\left[\frac{1}{3} \sqrt{\frac{\beta-\alpha+\chi_{2}+1}{6}}\right]-1 \leq \pi(\alpha, \beta) \leq\left[\frac{\beta-\alpha+\chi_{2}+1}{6}\right]
$$

\therefore The upper and lower limit of number $\pi(\alpha, \beta)$ for primes between positive integers α and β is

$$
\begin{gathered}
\pi(\alpha, \beta) \leq\left[\frac{\beta-\alpha+\chi_{1}-1}{6}\right]+\left[\frac{\beta-\alpha+\chi_{2}+1}{6}\right] \\
\pi(\alpha, \beta) \geq\left[\frac{\beta-\alpha+\chi_{1}-1}{6}\right]+\left[\frac{\beta-\alpha+\chi_{2}+1}{6}\right]-\left[\frac{1}{3} \sqrt{\left.\frac{\beta-\alpha+\chi_{1}-1}{6}\right]-\left[\frac{1}{3} \sqrt{\frac{\beta-\alpha+\chi_{2}+1}{6}}\right]-2}\right.
\end{gathered}
$$

This completes the proof.

References

1. Vinogradov Ivan Matveevich: Elements of Number Theory. State izdatelstvo technical and theoretical literature (1952). (Qiu Guangming Translate, Harbin Institute of Technology Press (2011))
2. Pan Chengdong, Pan Chengbiao: Elementary proof of the prime number theorem. Shanghai Science and Technology Press (1988).
3. Wang Yuan. Dictionary of Mathematics. Science Press of China (2010).
