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Abstract. It was proposed new gauge invariant Lagrangian, where the gauge

field interact with the charged electromagnetic fields. Gauge invariance was

archived by replacing of particle mass with new one invariant of the field

FµνF
µν multiplied with calibration constant αg. It was shown that new pro-

posed Lagrangian generates similar Dirac and electromagnetic field equations.

Solution of Dirac equations for a free no massless particle answers to the ’ques-

tion of the age’ why free particle deal in experiments like a de Broil wave.

Resulting wave functions of the new proposed Lagrangian will describe quan-

tized list of bespinor particles of different masses. Finally, it was shown that

renormalization of the new proposed Lagrangian is similar to QED in case

similarity of new proposed Lagrangian to classic QED.

1. Introduction

de Broglie (1924, 1925) formulated the de Broglie hypothesis, claiming that all
matter, not just light, has a wave-like nature. Heisenberg (1925) proposes a quan-
tum mechanics, under the form of a mechanics of matrices. Schrödinger (1926)
publishes his equation that bases quantum mechanics on the solution of a non-
relativistic wave equation. Since relativity theory was already well established
when quantum mechanics was formulated, this may surprise. In fact, for accidental
reasons, the spectrum of the hydrogen atom is better described by a non-relativistic
wave equation than by a relativistic equation without spin, the Klein (1926); Gordon
(1926) equation. Dirac (1928) introduces a relativistic wave equation that incorpo-
rates the spin 1/2 of the electron, which describes much better the spectrum of the
hydrogen atom, and opens the way for the construction of a relativistic quantum
theory. In the two following years, Heisenberg and Pauli lay out, in a series of
articles, the general principles of quantum field theory. First correct calculation
in quantum electrodynamics (Pauli and Weisskopf, 1934) and confirmation of the
existence of divergences, called ultraviolet (UV) since they are due, in this calcu-
lation, to the short-wavelength photons. Landau (1937a,b) publishes his general
theory of phase transitions. At 1947 it was made measurement of the so-called
Lamb shift by Lamb and Retherford (1947), which agrees well with the prediction
of quantum electrodynamics (QED) after cancellation between infinities. At 1949
it was made construction of an empirical general method to eliminate divergences
called renormalization (Dyson, 1952). Yang and Mills (1954) propose a non-Abelian

Date: August 12, 2013.

Key words and phrases. Antigravity; Dirac equation; Gauge invariant; Lorentz gauge; Yang-

Mills Lagrangian .

1



2 YANG-MILLS GAUGE INVARIANT THEORY FOR SPACE CURVED EMF

generalization of Maxwells equations based on non-Abelian gauge symmetries (as-
sociated to non-commutative groups). Maknickas (2010) published its work about
curvature of electromagnetic field as ground idea of gravitational mass. So, all this
basic ideas listed above are incorporated into new proposed model.

2. Description of Model

Mathematically, Yang-Mills theory is an abelian gauge theory with the symmetry
group U(1), where the gauge field interact with the charged spin-1/2 fields. In
special case, the Yang-Mills Lagrangian for a spin-1/2 field interacting with the
electromagnetic field is given by the real part of

(2.1) L = ψ̄(i~c γµDµ −mc2)ψ −
1

4µ0
FµνF

µν

where γµ are Dirac matrices; ψ a bispinor field of spin-1/2 particles (e.g. elec-
tronpositron field); ψ̄ ≡ ψ†γ0, called ”psi-bar”, is sometimes referred to as Dirac
adjoint; Dµ ≡ ∂µ + ie′βνAµ = ∂µ + ieAµ is the gauge covariant derivative; e is
the coupling constant, equal to the electric charge of the bispinor field; A is the
covariant four-potential of the electromagnetic field generated by the electron itself;
Fµν = ∂µAν − ∂νAµ is the electromagnetic field tensor; βν is expressed as follow

βν =

∥

∥

∥

∥

∥

∥

∥

∥

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

∥

∥

∥

∥

∥

∥

∥

∥

(2.2)

If we describe m as space time curvature of electromagnetic field, as mentioned
in (Maknickas, 2010)

R =
24G

c2r3
(M +m) ,(2.3)

m =
αemV

2

(

B2

µ0
− ε0E

2

)

=
αemV

2
FµνF

µν ,(2.4)

V =
4πr3

3
,(2.5)

where r is average radius of field, we could start substituting the definition of Dµ

and m into the Lagrangian

(2.6) L = i~cψ̄γµ∂µψ − eψ̄γµA
µψ −

αemc
2

2
FµνF

µνψ̄ψ −
1

4µ0
FµνF

µν .

where volume multiplier V was neglected. So we have invariant Lagrangian to gauge
transformations, which form a Lie group. Next, we can substitute this Lagrangian
into the Euler-Lagrange equation of motion for a field:

(2.7) ∂µ

(

∂L

∂(∂µψ)

)

−
∂L

∂ψ
= 0

to find the field equations.
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The two terms from this Lagrangian are then

∂µ

(

∂L

∂(∂µψ)

)

= ∂µ
(

i~cψ̄γµ
)

,

∂L

∂ψ
= −eψ̄γµA

µ
−
αemc

2

2
FµνF

µνψ̄.

(2.8)

Substituting these two back into the Euler-Lagrange equation [2.7] results in

(2.9) i~c∂µψ̄γ
µ + eψ̄γµA

µ +
αemc

2

2
FµνF

µν ψ̄ = 0

with complex conjugate

(2.10) i~cγµ∂µψ − eγµA
µψ −

αemc
2

2
FµνF

µνψ = 0.

Bringing the middle term to the right-hand side transforms this second equation
into

(2.11) i~cγµ∂µψ −
αemc

2

2
FµνF

µνψ = eγµA
µψ

The left-hand side is similar to original Dirac equation and the right-hand side
is the interaction with the electromagnetic field.

One further important equation can be found by substituting the Lagrangian
into another Euler-Lagrange equation, this time for the field, Aµ:

(2.12)

(

∂L

∂(∂νAµ)

)

−
∂L

∂Aµ
= 0

The two terms this time are
(

∂L

∂(∂νAµ)

)

=

(

2αemc
2ψ̄ψ +

1

µ0

)

∂ν (∂
µAν − ∂νAµ) ,

∂L

∂Aµ
= −eψ̄γµψ

(2.13)

and these two terms, when substituted back into [2.12] give us

(2.14) ∂νF
νµ =

eψ̄γµψ
(

2αemc2ψ̄ψ + 1
µ0

)

Now, if we impose the Lorenz gauge condition, that the divergence of the four
potential vanishes

(2.15) ∂µA
µ = 0

then we get

(2.16) �Aµ =
eψ̄γµψ

(

2αemc2ψ̄ψ + 1
µ0

)

which is similar to a wave equation of the four potential of the classical Maxwell
equations in the Lorenz gauge.
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3. de Broglie waves

According to Banzaitis and Grabauskas (1975) angular momentum of free parti-
cle during the time is constant. So, we could choose particle moving direction (for
example z) as direction of coordinate system and would get opposite to 3D motion
1D motion. Moreover, motion of free particle do not depend on time. So, we could
solve time independent Dirac [2.11]

(3.1) −i~cγz∂zψ +
αemc

2

2
FµνF

µνψ + eγνAνψ = Eψ

In general FµνF
µν depends on space-time coordinates, but in our case let be con-

stant. Now we could start to investigate homogeneous part of equation

(3.2) −i~cγz∂zψ +
αemc

2

2
FµνF

µνψ = Eψ

in case inhomogeneous equation could be solved using Green function formalism.
After including γz

(3.3) γz =

∥

∥

∥

∥

∥

∥

∥

∥

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

∥

∥

∥

∥

∥

∥

∥

∥

into [3.1], we get four equations for Dirac wave function

−i~c∂zψ3 +
αemc

2

2
FµνF

µνψ1 = Eψ1(3.4)

i~c∂zψ4 +
αemc

2

2
FµνF

µνψ2 = Eψ2(3.5)

−i~c∂zψ1 −
αemc

2

2
FµνF

µνψ3 = Eψ3(3.6)

i~c∂zψ2 −
αemc

2

2
FµνF

µνψ4 = Eψ4(3.7)

So, we get two independent pairs of equations [3.4], [3.6] and [3.5], [3.7] accordantly,
where γ1, γ3 denotes spin mz = 1

2 and γ2, γ4 denotes spin mz = − 1
2 .

Let start to investigate meaning meaning of indexes 1, 3. Equations [3.4], [3.6]
could be rewritten as follow

∂zψ3 =
αemc2

2 FµνF
µν − E

−i~c
ψ1(3.8)

ψ3 = −
i~c∂z

αemc2

2 FµνFµν + E
ψ1(3.9)

Differentiation of [3.9] and inserting into [3.8] gives second order differential equa-
tion for ψ1

(3.10) ∂2zψ1 +
E2 −

α2

em
c4

4 (FµνF
µν)

2

~2c2
ψ1 = 0

Solution of [3.10] is

(3.11) ψ1 = N1 exp (ikz) +N2 exp (−ikz)
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where

(3.12) k =

2

√

E2 −
α2

em
c4

4 (FµνFµν)
2

~c

Now we could express ψ3 from [3.9] as follow

(3.13) ψ3 = 2

√

√

√

√

E − αemc2

2 FµνFµν

E + αemc2

2 FµνFµν
(N1 exp (ikz)−N2 exp (−ikz))

So, we get two independent solutions

(3.14) ψ±k =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

1
0

± 2

√

E−
αemc2

2
FµνFµν

E+αemc2

2
FµνFµν

0

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

N1,2 exp (±ikz)

where N1 and N2 norm multipliers for ψ−k and ψ+k accordantly.
The same way could be found and wave functions ψ2, ψ4. Using this functions

second two independent solutions could be found

(3.15) ψ±k′ =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

0
1
0

± 2

√

E−
αemc2

2
FµνFµν

E+αemc2

2
FµνFµν

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

N1,2 exp (±ik
′z)

General solution is superposition of the corresponding wave functions with the same
k.

Since z range boundaries are in (−∞,+∞), wave functions [3.14] and [3.15] are
defined ∀z just for real k. Thus

(3.16) E2 ≥
α2
emc

4

4
(FµνF

µν)
2

This condition will be true if one of equalities will be true

E ≥
αemc

2

2
FµνF

µν(3.17)

E ≤ −
αemc

2

2
FµνF

µν(3.18)

for a positive FµνF
µν > 0. So we have a gap

(

−αemc2

2 FµνF
µν , αemc2

2 FµνF
µν
)

in

the range (−∞ < E <∞). For a negative FµνF
µν < 0 we obtain the same but

reversed gap, where FµνF
µν < 0 denotes antigravity mass. The negative mass this

time could be interpreted not only as a positron or anti-proton but also antigravity
positron ant antigravity anti-proton. Moreover, every particle describes four com-
ponents field and it easy explain why every particle deal as wave in experiments.

4. General solution

Let rewrite wave function equation using notation /a = γµaµ in units c = 1

(4.1) i~/∂ψ =
αem

2
FµνF

µνψ + e /Aψ
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Solution of this equation could be expressed using Green function described as
follow

(4.2) i~/∂G(x − x′) = δ4(x− x′)

The explicit form of the Green function can be written as a Fourier transform

(4.3) G(x− x′) =
1

(2π)4

∫

d4pĜ(p) exp (i(x− x′)p)

where

(4.4) Ĝ(p) =
/p

p2

The general solution of the inhomogeneous equation [4.1] reads

ψ(x) = φ(x) + e

∫

G(x − x′) /A (x′)ψ(x′)d4x′(4.5)

+ αem

∫

G(x − x′)Fµν (x
′)Fµν (x′)ψ(x′)d4x′(4.6)

On the other hand, using the same Green function formalism could be found and
solutions of [2.16]

(4.7) Aµ(x) = e

∫

K(x− x′) ¯ψ(x′)γµψ(x′)
(

2αemc2ψ̄(x′)ψ(x′) +
1
µ0

)d4x′

where K(x− x′) is a Green function of wave equation

(4.8) �K(x− x′) = δ4(x− x′)

and is known too

(4.9) K(r − r′, t− t′) =
1

8π3(r − r′)

∫ +∞

−∞

dω eiω((r−r′)/c−(t−t′))

For weak enough coupling constants e and αem one can use the perturbation theory

(4.10)



































































ψ(0)(x) = φ(x)

A(0)µ = e

∫

K(x− x′) ¯φ(x′)γµφ(x′)
(

2αemc2φ̄(x′)φ(x′) +
1
µ0

)d4x′

ψ(1)(x) = φ(x) +

∫

G(x − x′)
(

e /A
(0)

(x′) + αemF
(0)
µν F

(0)µν
)

ψ(x′)d4x′

A(1)µ = e

∫

K(x− x′) ¯ψ(1)(x′)γµψ(1)(x′)
(

2αemc2
¯ψ(1)(x′)ψ(1)(x′) + 1

µ0

)d4x′

. . .

So, resulting wave functions will describe quantized list of bespinor particles of
different masses. Quantization of masses ensures due to term Fµν(x)F

µν(x)ψ(x)
inserted into model Lagrangian.
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5. Renormalization

If we choose βν as follow

(5.1) βν =

∥

∥

∥

∥

∥

∥

∥

∥

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∥

∥

∥

∥

∥

∥

∥

∥

we get ’massless’ version of QED with additional term

(5.2) FµνF
µν ∼

1

p2

in momentum space after Fourier transformation of equation [2.14]. The meaning
’massless’ denotes in this case that term mψ = 0. Since Aµ is the same order after
Fourier transformation

(5.3) Aµ
∼

1

p2

too, according to equation [2.16] renormalization is applicable and could be done
using steps descibed in (Soper, 2001).
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6. Conclusions

It was proposed gauge invariant Lagrangian of a fully renormalized quantum
version of Yang-Mills theory of R4 based on Lie group, where the gauge field interact
with the charged spin-1/2 electromagnetic fields. Gauge invariance was archived by
replacing of particle mass with new one invariant of the field FµνF

µν multiplied with
calibration constant αem. It was shown that new proposed Lagrangian generates
similar Dirac and electromagnetic field equations. Solution of Dirac equations for
a free no massless particles answers to the ’question of the age’ why free particle
deal in experiments like a de Broglie waves. The answer is they are space curved
field waves. The negative mass in proposed model could be interpreted not only as
a positron or anti-proton but also antigravity positron and antigravity anti-proton,
where magnetic moment of antigravity positron is less than magnetic moment of
electron to meet condition FµνF

µν < 0 . Resulting wave functions of the new
proposed Lagrangian will describe quantized list of bespinor particles of different
masses. Finally, it was shown that renormalization of the new proposed Lagrangian
is similar to QED in case similarity of new proposed Lagrangian to classic QED.
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117–133, 1926.

P. A. M. Dirac. The quantum theory of the electron. Royal Society of London
Proceedings Serie’s A, 117:610–624, 1928. doi: 10.1098/rspa.1928.0023.

W. Pauli and V. Weisskopf. Über die quantisierung der skalaren relativistischen
wellengleichung. Helv. Phys. Acta, 7:709–731, 1934.

L. D. Landau. Theory of phase transformations. i. Zh. Eksp. Teor. Fiz., 7, 1937a.
L. D. Landau. Theory of phase transformations. i. Zh. Eksp. Teor. Fiz., 7, 1937b.
W. E. Lamb and R. C. Retherford. Fine Structure of the Hydrogen Atom by a Mi-
crowave Method. Physical Review, 72:241–243, August 1947. doi: 10.1103/Phys-
Rev.72.241.

F. J. Dyson. Divergence of perturbation theory in quantum electrodynam-
ics. Phys. Rev., 85:631–632, Feb 1952. doi: 10.1103/PhysRev.85.631. URL
http://link.aps.org/doi/10.1103/PhysRev.85.631.

C. N. Yang and R. L. Mills. Conservation of isotopic spin and isotopic gauge
invariance. The Physical Review, 96, 1954.

A. A. Maknickas. Biefeld - Brown effect and space curvature of electromagnetic
field. ArXiv e-prints, April 2010.

A. Banzaitis and D. Grabauskas. Quantum Mechanic (in Lithuanian). Mokslas,
Vilnius, Lithuania, 1975.

D. E. Soper. Renormalization of Quantum Electrodynamics, 2001. URL
http://physics.uoregon.edu/ soper/QFT/renormalization.pdf.


