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Abstract

Quantum Chromodynamics (QCD), as a part of the Standard Model of
particle physics, is the most successful theory of the strong interaction at
present. However, as shown by the author, it predicts a colour dependence
of the electric charge of the quarks. This colour dependence is consistent
with all that we know of QCD for three colours and for arbitrary number
of colours; except that it brings about a direct conflict with the experimen-
tally well-known coulomb interaction of the electric charges of quarks and
leptons. This leads directly to QCD predicting ”naked” colour interaction in
electrodynamics at large distances. This is completely unacceptable and is
thus a major crisis for QCD. Note that this crisis cannot be swept aside, as
the issue of the ”naked” colour is as fundamenatal a prediction of QCD as
that of the asypmtotic freedom was.
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The theory of Quantum Chromodynamics (QCD), in the Standard Model,
with the group structure SU(3)c⊗SU(2)L⊗U(1)Y , has been very successful
for the description of hadrons at high energies [1].

As free colour has not been detected, we confine colour in a baryon and
meson as a colour singlet state arising in 3c × 3c × 3c = 1 + 8 + 8 + 10.
3c × 3c = 1 + 8 These hadrons are specified by their baryon number B,
electric charge Q, strangeness S etc. Clearly we demand that these quantum
numbers be colour-independent too.

In QCD the baryon number of each quark is 1

3
where the 3 stands for

the three colours. Hence for SU(Nc) QCD the baryon number of a quark is
1

Nc
. For a meson the baryon number is 1

3
− 1

3
= 0 while that of a baryon is

1

3
+ 1

3
+ 1

3
= 1. Question: are these baryon numbers colour-independent?

Note that the set of rational numbers Q = [ 0, a
b
; a, b ∈ Z, b 6= 0 ] where

Z is a set of integers, is a group under the binary operation of addition.
Here the identity element is 0. Clearly this 0 is a neutral element as to the
operation of addition of the set of rational numbers. Hence as baryon number
1

3
is a rational number, the meson baryon number 0 is a genuine colour-

independent quantum number. However for the same reason the baryon
number B=1 for the baryons cannot be treated as colour-independent. The
colour independence of its additive quantum numbers will depend upon the
fact that it belongs to the above set of Q, and that it has its own structure
as being a group under addition, with one element, which is its identity, and
which should be treated as its neutral element - and which is 0 as above.

Note however that the set of rational numbers Q0, which is the above set
Q minus 0, is a group under the binary operation of multilication. Herein
the identity element, as the neutral element of this group, is 1. Hence if this
1 arises out of a multiplicative operation like Nc ×

1

NC
then this would be

colour-independent under multication of the quantum numbers. ( And which
the above baryon number of proton in QCD is not! ).

We may point out, that it is important to distiguish between the terms
”colour-neutral” and ”colour-independent”. We call the positronium e+e−

as being electric charge-neutral as to the QED interaction. In the same
manner we say that the colour singlet state above is colour-neutral as to the
QCD interaction. As to the corresponding quantum numbers, the electric
charge of positronium is 0 and hence the state of positronium is charge-
independent. Similarly the baryon number of a meson is 0 and hence it is
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colour-independent. What about the baryon number B=1 for baryons? We
know a six-quark system breaks up into two independent systems of three-
quarks each. As B=1 arises from three coloured baryon numbers 1

Nc
of the

quarks, so in contrast to the what was expected, B=1 should be viewed as
the MAXIMUM coloured baryon number allowed in hadrons in QCD.

To understand how this maximum colour in baryon number of one may
manifest itself physically, we look into the structure of the electric charge of
quarks and leptons for the SM group SU(N)c⊗SU(2)L⊗U(1)Y for arbitrary
Nc and which is the group to study QCD for arbitrary number of colour. This
has been done by the author in Ref. [2,3]. Given the significance of these
results for our purpose here, we give the relevant details of the electric charge
[2,3] in an Appendix below, herewith.

The author has derived the expression of the electric charge in this model
as below [2,3]. Surprisingly it has colour quantum number sitting inside the
electric charge, which though is a property of QED:

Q(u) =
1

2
(1 +

1

Nc

)

Q(d) =
1

2
(−1 +

1

Nc

) (1)

where 1

Nc
= B, the baryon number. And hence the charge of proton is (

for Nc = 3 below ):

Q(p) =
1

2
(−1 +

1

Nc

) +
1

2
(1 +

1

Nc

) +
1

2
(1 +

1

Nc

)

=
1

2
+

1

2
(
1

Nc

+
1

Nc

+
1

Nc

)

=
1

2
+

1

2
B (2)

where B=1 as above is maximum colour-dependent and hence surprisingly
the electric charge of the proton is colour-dependent too. ( For the pion for
example for π+, Q = (1

2
+ 1

2Nc
) − (−1

2
) + 1

2Nc
) = 1 is colour-independent as

the colour cancels out ).
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Now as in QED U(1)em is long ranged, the coulomb interaction between
two isolated protons at a distance r is proportional to the product of the
charges

Q1Q1 = (
1

2
+

1

2
B)(

1

2
+

1

2
B)

=
1

4
+

1

2
B +

1

4
B2 (3)

This is coloured and so at a distance there is explicit colour dependence
in coulomb interaction for the protons in QCD. Thus there is ”naked” colour
here ( we borrow the term from cosmology where there may be a ”naked”
singularity ). This is most amazing and exteremely puzzling! Hence surpris-
ingly, an electron will see a proton as having a charge of only 1/2. This is an
explicit example of the effect of ”naked” colour discussed above

Note that the colour-neutrality of the singlet state in QCD is not guar-
anteeing its colour-indepedence of the quark charges as to its behaviour in
the QED interactions. This is, because it is the relevant quantum num-
bers and their colour dependence, which runs across to QED in the process
of the Spontaneous Symmetry Breaking of SU(Nc) ⊗ SU(2)L ⊗ U(1)Y →

SU(Nc) ⊗ U(1)em . It was the anomaly cancellation [2] which surprisingly
brought colour dependence into the electric charge ( a property of QED )
in the first place. It is the same anomaly which again is raising its head to
bring about these puzzling ”naked” colour effects through the electric charge
quantum numbers which is cutting across the boudaries of QCD to QED.

Let us put the issue more directly and simply as follows. Imagine an in-
coming beam of electrons interacting with u- and d- quarks inside the baryons
in deep inelastic scattering. As the colour dependent electric charge of the
quarks in eqn.(1) is a sum of two terms, the first one is colour independent
and the second one colour dependent, and as the the electric charge of elec-
tron is immune to the colour degree of freedom; it will see the u- and the
d- quarks as having charges 1/2 and -1/2 respectively. This is disastrously
against experiment which sees u- and d- quarks as having charges 2/3 and
-1/3 respectively. This QCD prediction of the electric charge of the quarks
is dead against experiments!

One possibility is that one may cast doubts on the validity and/or rele-
vance of the above colour dependent electric charge of quarks in QCD and
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hope that it may be that somehow the electric charge in the SM be inde-
pedent of colour - that is it be always 2/3 and -1/3 for u- and d- quarks
respectively, for any arbitrary Nc. This was precisly what was done by Wit-
ten and collaborators [4,5] in a study of QCD for arbitary number of colours.
They reasoned that it was possible to ignore electrodynamics of the quark
charges as this was much weaker than the colour charge. In such a limit the
baryons have finite size but the mass going as NC . However we find that
if we take Witten fixed charges 2/3 and -1/3, then it is disastrous for the
whole concept of the study of QCD for large number of colours [2]. With
these fixed charges for the quarks, the Coulomb self energy of this composite
proton would go as Nc

2 and this will add to the proton mass and mess up
the whole QCD analysis. Though Witten had actually ignored this fact, the
above problem was clearly demonstrated in ref [2] by the author. Hence we
can not take fixed charges 2/3 and -1/3 for arbitrary number of colours. It
was also shown that if we take the correct colour dependent charges of quarks
as given above, then the proton charges for any arbitrary Nc comes out to
be always unity ( and neutron always neutral ). In Ref. [2] it was exten-
sively discussed as to why the colour dependent charges of quarks shown here,
are the correct charges to take for a study of QCD for arbitrary number of
colours, and not the rigid and colour-independent quark charges of 2/3 and
-1/3 as done by Witten et. al. [4,5].

Thus the problem of the ”naked” colour for the electromagnetic effects of
proton is real and cannot be dispensed with. For quantum chromodynamics,
the most successful model of the strong interaction, this is a crisis of the most
serious magnitude. We would like to point out that as shown here, the issue
of ”naked” colour in QCD is a fundamental prediction of QCD - actuallly as
fundamental as that of the asymptotic freedom in it! One, the asymptotic
freedom, proved to be a blessing for the theory of QCD; and the other one,
that of the ”naked” colour in it, is proving to be a ”curse”. And how to get
around it? - that is the big question now!
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Appendix

To demostrate charge quantization as an intrinsic property of the SM, the
complete machinery which makes the SM as what it fully is, is required. As
demanded by the SM, one takes the repetitive structure for each generation
of the fermions. Let us start by looking at the first generation of quarks
and leptons (u, d, e,ν ) and assign them to SU(Nc) ⊗ SU(2)L ⊗ U(1)Y
representation as follows [2,3].

qL =
(

u

d

)

L

, (Nc, 2, Yq)

uR; (Nc, 1, Yu)

dR; (Nc, 1, Yd)

lL =
(

ν

e

)

; (1, 2, Yl)

eR; (1, 1, Ye) (4)

Nc = 3 corresponds to the Standard Model case. To keep things as general
as possible this brings in five unknown hypercharges.

Let us now define the electric charge in the most general way in terms of
the diagonal generators of SU(2)L ⊗ U(1)Y as

Q′ = a′I3 + b′Y (5)

We can always scale the electric charge once as Q = Q′

a′
and hence (b = b′

a′
)

Q = I3 + bY (6)

In the SM SU(Nc) ⊗ SU(2)L ⊗ U(1)Y is spontaniously broken through
the Higgs mechanism to the group SU(Nc) ⊗ U(1)em . In this model the
Higgs is assumed to be doublet φ with arbitrary hypercharge Yφ. The isospin
I3 = −1

2
component of the Higgs develops a nonzero vacuum expectation

value < φ >o. Since we want the U(1)em generator Q to be unbroken we
require Q < φ >o= 0. This right away fixes b in (3) and we get

Q = I3 + (
1

2Yφ

)Y (7)
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Next requiring that in electrodynamics, the left-handed and the right-
handed electric charges of a particle be equal and also by demanding that
the triangular anomaly cancels (to ensure renormaligability of the theory) (
see [2,3] for details); one obtaines all the unknown hypercharge in terms of
the unknown Higgs hypercharge Yφ. Ultimately Yφ is cancelled out and one
obtains the correct charge quantization as follows.

qL =
(

u

d

)

L

, Yq =
Yφ

Nc

,

Q(u) =
1

2
(1 +

1

Nc

), Q(d) =
1

2
(−1 +

1

Nc

)

uR, Yu = Yφ(1 +
1

Nc

), Q(uR) =
1

2
(1 +

1

Nc

)

dR, Yd = Yφ(−1 +
1

Nc

), Q(dR) =
1

2
(−1 +

1

Nc

)

lL =
(

ν

e

)

, Yl = −Yφ, Q(ν) = 0, Q(e) = −1

eR, Ye = −2Yφ, Q(eR) = −1 (8)

A repetitive structure gives charges for the other generation of fermions
also [2,3].
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