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Abstract: The General Grand Unification Model (GGU-model) solves

a problem personally presented to this author, in 1979, by John A.

Wheeler. It is a cosmogony that yields “A Theory of Everything”

for any descriptive cosmology. Relative to modes of human compre-

hension, it satisfies a logical unification for any collection of physical

laws and theories [1]. The original concepts were presented in a series

of abstracts from 1981 - 1984. Since that time, considerable modifi-

cation has taken place. This includes modifications and refinements

to the results and methods presented in [6]. Attempts are made in

[4] to illustrate a cosmology’s descriptive content - its developmental

paradigm - associated with a sequence of (physical) events. This arti-

cle exams the rational development of a cosmology as represented by

a developmental paradigm, where a cosmology is generated by asso-

ciated substratum processes. In this paper, a definition for a refined

developmental paradigm is formalized and a new method to obtain

a corresponding ultraword is established. The notion of the “logic-

system signature” for a logic-system generated by a scientific theory

consequence operator SN (in any of its forms) [5] is detailed. It is

shown that the extended standard part operator, ′
St, is a finite con-

sequence operator. The rationality of the design being displayed as a

universe develops is formally defined.

1. Informal Developmental Paradigms.

A descriptive cosmology is any cosmology that can be represented via a comprehen-

sible language, diagrams, images, or any digitized virtual reality sensory impressions.

Physical science is fundamentally based upon such descriptions as representations for

physical events. A comprehensible description is also termed as a “design.” Further,

descriptions that detail the conjoining of physical-systems carry this design feature.

All of these descriptive modes are termed a “language” that is informally presented

using a symbolically represented “alphabet.” A nonempty “alphabet” A is considered

as a finite or denumerable set. The informal language L generated from A [7] has the
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property that |L| = |
⋃
{An | (n ∈ IN)∧ (n > 0)}|. The denumerable language L can be

considered as informally presented and then the following defined sequences embedded

as sequences into the G-structure [7], or you can begin with members of E = L and

construct these developmental paradigms. These developmental paradigms yield the

quasi-physical event sequences. The former method is used in what follows. Further,

for simplicity, consider a “beginning” frozen segment F [7]. These frozen segments

correspond to the notion of a “frozen-frame” in [4].

[Note: Although the following is still viable, the concept of the developmental

paradigm is refined in Herrmann [D] and it is now based more clearly upon the finite and

hyperfinite.] The idea is to employ the notion of “finite” choice to characterize, at least,

partially the developmental paradigms for nonempty countable D ⊂ L. Let IN denote

the natural numbers. For each a, b ∈ IN, a ≤ b, [a,b] = {x | (a ≤ x ≤ b) ∧ (x ∈ IN)}

and, as usual, symbol f|A denotes the restriction of the function f to a subset A of its

domain.

Definition 1.1. (1) For 1 ∈ IN, let Y1 = {f ∈ D[0,1] | (f(0) = F) ∧ (f(1) ∈ D)}.

(2) Assume that Yn has been defined. Let Yn+1 = {f ∈ D[0,n+1] | (f|[0,n] ∈

Yn) ∧ (f(n + 1) ∈ D)}.

(3) Define Y =
⋃
{Yn | n ∈ IN}.

(4) The actual developmental paradigms DP for a particular F are DP = {f ∈ DA |

(A = IN)∧(f(0) = F)∧(∀n((n > 0)∧(n ∈ A) → (f|[0,n] ∈ Y}. Note: For A = IN, n > 0,

if f ∈ DA, then f|[0,n] ∈ Y if and only if f|[0,n] ∈ Yn.

All of this is extended to the hyperfinite when embedded into the nonstandard

structure. In [4], a “master” event sequence is used in an attempt to model Defini-

tion 1.1 in a reasonably comprehensible manner using various constructive illustrations.

Notice that such a master event sequence is a member of DP under Definition 1.1. Ob-

viously, Definition 1.1 is not the only way to obtain developmental paradigms. Indeed,

a simple induction proof shows that {f ∈ DA | (A = IN) ∧ (f(0) = F)} = DP. Clearly,

DP ⊂ {f ∈ DA | (A = IN) ∧ (f(0) = F)}. Let d ∈ {f ∈ DA | (A = IN) ∧ (f(0) = F)}.

Then d(0) = F, and d(1) ∈ D imply d|[0, 1] ∈ D[0,1] and d|[0, 1] ∈ Y1. Suppose that

d|[0,n] ∈ Yn. Then d|[0,n + 1] means that d|[0,n] and d|n + 1 and d(n + 1) ∈ D. Thus,

since d|[0,n + 1] ∈ D[0,n+1], d(0) = F, d|[0,n] ∈ Yn, it follows that d|[0,n + 1] ∈ Yn+1.

Therefore, by induction for each n > 0, n ∈ IN, d|[0,n] ∈ Yn, and d(0) = F. Hence,

d ∈ DP.

If Definition 1.1 is restricted to the “potential” infinite, then step (3) and (4) are

not included. This somewhat constructive way to define the DP is used to indicate

that, at the least, major portions of the basic definition can be obtained via finite
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choice. This type of finite characterization, when extended to the NSP world, allows for

further interesting observations. For example, the event hyperfinite sequences can have

ultranatural events not merely associated with nonstandard primitive time but also can

have them at standard moments of primitive time. This additional property has not

been discussed in [4]. Moreover, this possibility also leads to ultrawords and ultimate

ultrawords to which ultralogics can be applied since such developmental paradigms can

be considered as of the d′ type discussed in section 9.1 in [7].

2. Refined Developmental Paradigms.

The following conventions are used. With certain exceptions, each member of the

informal set-theory employed is represented by Roman fonts. In most cases, natu-

ral numbers, integers and rational numbers and sequences of these are represented by

math-italics in both the informal and formal structures. The illustrations in [4] for gen-

erating event sequences using Definition 1.1 do not correspond to the actual technical

definition that appears in Chapter 7 in [7] except under a specific restriction. (Note:

The structure here employed for what follows is the Extended Grundlegend Structure

(EGS) Y1 as defined in [9, p. 70, 82]. The ground set for the standard superstructure

is the set of atoms A1 ∪A, A1 ∩A = ∅, where A1 is isomorphic to the natural numbers

and A is isomorphic to the real numbers IR, and, hence, the set A is usually denoted by

IR.) Definition 1.1 and these illustrations if restricted to a small primitive time interval

[a, b) do correspond to those used in [7]. In that case, the actual complete develop-

mental paradigm would be a countable collection of such developmental paradigms for

each [a, b). This would technically require that, for applications such as discussed in

[4], an additional collection of ultimate ultrawords be considered via Theorem 7.3.4

in [7]. However, the complete developmental paradigm as the denumerable union of

denumerably many sets can also be considered as a denumerable sequence in primitive

“time” when the Axiom of Choice is assumed. In this case, the complete developmental

paradigm can be generated by a basic ultraword and the ultralogic ∗S.

The method devised in Chapter 7 of [7] to analyze a developmental paradigm is

significant and should be used since it yields the greatest control and, in the EGS,

displays the ultranatural events. Requiring that the denumerable union of denumer-

ably many objects be denumerable is not necessary if the notion of the developmental

paradigm is simply defined via different denumerable sets of primitive identifiers. These

notions are now formalized within the standard EGS.

It can be assumed that what follows is the result of an embedding into the standard

superstructure of the informal objects. Let Z denote the integers and consider Z× IN.
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Definition 2.1. For each (i, j), (p,m) ∈ Z× IN, where (a, b) = {{a}, {a, b}}, let � be

defined as follows:

(1) if i < p, then (i, j) ≺ (p,m).

(2) If i = p and j < m, then (i, j) ≺ (p,m), and

(3) (i, j) = (p,m) if and only if i = p and j = m.

The binary relation � yields a simple order in Z × IN.

The intervals [a, b) employed in [9, p. 61] may be replaced with the following

specifically defined intervals. Consider nonzero K ∈ IN. When (i, j) appears as a

subscript, it is often written as ij. For each i ∈ Z, let ci = i/K. For the rational

numbers Q and each i ∈ Z, let [ci, ci+1) = {x | (x ∈ Q) ∧ (ci ≤ x < ci+1)}. For such

i ∈ Z, partition [ci, ci+1), in the same manner as done in [9, p. 61], by a denumerable

increasing sequence of partition points tij , j ∈ IN, such that ti0 = ci, tij ∈ [ci, ci+1)

and limj→∞ tij → ci+1. For various i ∈ Z, the set of rational numbers {tij | j ∈ IN}

models a “primitive (time) interval.” For example, let tij = (1/K)(i + 1 − 1/2j). For

applications, one might employ a finite sequence {[0, c1) . . . , [cj, cj+1)} of such intervals

or partition [0,+∞), (−∞, 0), or (−∞,+∞) using collections of such intervals. If the

collection of primitive intervals is nonempty and finite, then there are denumerably

many partition points. If the collection of primitive intervals is infinite, then, using

the Axiom of Choice, there are denumerably many partition points. If tij , tpm are any

of these constructed partition points, then tij ≤ tpm (the standard rational number

simple order) if and only if (i, j) � (p,m).

By construction, r ∈ Q is a partition point if and only if r corresponds to a frozen

segment Fr. A major aspect associated with applications is the difference between

primitive and observer time. All of the results in [7] that deal with developmental

paradigms are relative to countably many collections of frozen segments. Although for

certain applications the actual physical events may be repeated relative to primitive

time, the construction of the developmental paradigm allows IN to be mapped bijectively

onto [a, b). Only intervals of the form [a, b) are considered in [7]. Then, for a countable

collection of such partitioned intervals, there is an ultimate ultraword that generates, for

each [a, b) interval, the appropriate ultraword from which each interval’s developmental

paradigm is obtained.

For this refined approach, the use of the IN notation can be retained under the view

that there is a bijection from the set of all partition points onto IN. However, it is a

rather trivial matter to re-express each developmental paradigm and its standard frozen

segments in terms of the appropriate denumerable subsets of Z× IN that correspond to

the partition points tij . If this correspondence is employed, then each frozen segment
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Fij corresponds to the partition point tij . The order ≤D defined on a developmental

paradigm D is the simple order induced by � when the developmental paradigm is

properly defined. The “equality” =D is set equality. The use of this refined partition

point notion yields certain more detailed characteristics for event sequence behavior

for the General Grand Unification model (GGU-model) [4, 8].

Example 2.2. As an example of the refined use, as in [7], let only members of [ci, ci+1)

be considered. In general, let informal D denote the range for a developmental paradigm

for a specific primitive time interval. [Note: In [7], the range of a general development

paradigm range is denoted by d.] Then an embedded standard developmental paradigm

is sequentially presented by considering a defining bijection f : ({i}×IN) → D. Bijections

such as this model how members of D may be “grouped together.” (Note: D now

denotes the range.) Each member d(k) = F of D contains a symbol that corresponds to

the k (since Q is denumerable) and further corresponds under f to a specific moment

(i, j) in primitive time. This is a refinement of the construction in [9, p. 61]. Hence,

for any j ∈ IN, and any p ∈ IN, such that j < p, f(i, j) <D f(i, p) and f(i, p) 6= f(i, j).

Using EGS and *-transfer, this yields that for ν ∈ ∗
IN − IN and for ∗f and each

n ∈ IN, ∗f(i, n) = f(i, n) 6= ∗f(i, ν), f(i, n) ∗<D
∗f(i, ν), and ∗f(i, ν) ∈ ∗D − D. In

this application, such objects as ∗f(i, ν) are ultranatural events.

Now consider a partition of (−∞, 0) and assume that the developmental paradigm

D is determined by a bijection f : (Z<0 × IN) → D. Let i ∈ Z<0. Then for any j ∈ Z<0

such that i < j, f(i, n) <D f(j, n), f(i, n) 6= f(j, n) for each n ∈ IN. By *-transfer, let

i = ν ∈ ∗Z<0 − Z<0. It follows that ∗f(ν, n) ∗< ∗D
∗f(j, n), ∗f(ν, n) 6= ∗f(j, n) for

each j ∈ Z<0 and n ∈ ∗
IN. (Note: It is customary to express such relations as ∗< ∗D as

< ∗D.) Hence, for each n ∈ ∗
IN, ∗f(ν, n) ∈ ∗D−D since IN ⊂ ∗

IN. Each of the ∗f(ν, n)

members of ∗D −D is called an initial member.

Let λ ∈ ∗
IN − IN. Note that D ⊂ D2 = { ∗f(x, y) | (x ∈ ∗Z<0) ∧ (ν ≤ x) ∧ (y ∈

∗
IN)∧ (y ≤ λ)} ⊂ ∗D and D2 is hyperfinite. For certain applications, one can consider

various initial members as corresponding to the same ultranatural event. For the case

of the partitioning of [0,+∞), the same analysis yields members of ∗D − D that are

termed the final members in ∗D. For this and other intervals, various members of

D2 can be specialized in the sense that they are only members of D2 because of the

identifying *-primitive time identifiers. The *-general description ∗f(x, y) ∈ D2 can

otherwise be composed of members of L.

The result of applying ∗S to an appropriate ultraword yields a hyperfinite set

D′
1 that contains the embedded developmental paradigm D for interval [a, b) or for

intervals such as (−∞, 0), (−∞,+∞), [0,+∞). Theorems such as 10.1.1 in [7] are

independent from the actual type of partitioning used. They only employ the fact that
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D is denumerable.

Example 2.3. Although for this refined definition and its applications a superstructure

constructed using the set Q as atoms can be used, the superstructure using the reals

IR as atoms [9, p. 61] is still employed due to other types of applications. Using the

finite power set operator, a finite nonempty collection of finite subsets of IR is a member

of R as is the set theoretic union of such a collection. This yields that the union of

a nonempty hyperfinite collection of hyperfinite subsets of ∗
IR is a member of ∗R.

Consider the standard set C =
⋃
{[ci, ci+1) | i ∈ Z}, where each tij , j ∈ IN, is as

defined previously. The informal set D is denumerable.

For the embedded D, let f :C → D be a defining bijection. Using D, the informal

set M is constructed as done is in [9, p. 66] and embedded into the superstructure. From

the definition of S [9, p. 65], it follows that for the set theoretic union D1 having two

or more members of a nonempty finite collection of finite subsets of D, there is a word

w ∈ M−D and D1 ⊂ S({w}). Hence, by *-transfer, for any hyperfinite union F, with two

or more members, of hyperfinitely many hyperfinite subsets of ∗(f [C ]) = ∗f [ ∗C ] = ∗D,

there exists an ultraword w′ ∈ ∗M − ∗D such that F ⊂ ∗S({w′}). The members of
∗S({w′}) have the same properties described in Theorem 10.1.1 [9, p. 89]. [The method

used here to obtain w′ for this specific type of developmental paradigm is distinct from

that used in [9, p.67].]

In particular, consider λ < 0 < γ, λ, γ ∈ ∗Z − Z and let F be the (internal)

hyperfinite union of the hyperfinite collection of hyperfinite sets [ck, ck+1), λ ≤ k ≤ γ,

where each ∗tij has the property that 0 ≤ j ≤ ni ∈ ∗
IN − IN. Then ∗f [F ] exists, is

hyperfinite and D ⊂ ∗f [F ] ⊂ ∗D. Thus, there exists an ultraword W ∈ ∗M − ∗D

such that D ⊂ ∗f [F ] ⊂ ∗S({W}).

3. Formalizing Examples 2.2 and 2.3.

Recall that the informal general language L is denoted by W in [9, p. 7]. (The

term informal signifies that general ZFC-set-theory is being used and objects are not

considered as members of a superstructure [7].) The set of individuals (atoms, ground

set) for the standard superstructure is the set of real numbers IR. (This could be

changed to the set of rational numbers. However, usually, for the GGU-model, IR is an

appropriate set of individuals [9, p. 70.)

For the remainder of this article, the usual notation for developmental paradigms

as slightly modified, is used. For example, dq denotes the range for a developmental

paradigm. Objects in the standard superstructure model M1 = 〈R,∈,=〉 are consid-

ered as isomorphically embedded into the superstructure Y = 〈Y,∈,=〉. Objects in the

nonstandard model ∗M1 = 〈 ∗R,∈,=〉 are also members of superstructure Y [9. pp.
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22-23]. Since L is denumerable, there is a bijection i: L → IN, where IN is the set of

natural numbers. For ∅ 6= H ⊂ i[L], n ∈ IN, Hn = H [0,n] denotes a set of all functions

on [0, n] into H termed here as partial sequences. Let P =
⋃
{(i[L])n | n ∈ IN}. For

any w ∈ L, an equivalence relation is defined relative to how w can be formed via

the juxtaposition (join) operator [9, pp. 10 - 11.] This equivalence relation separates

P into a collection E of equivalences classes. There is a bijection θ: i[L] → E, where

θ(i(w)) = [f0]. In the usual manner, both i and θ are extended to set and relation

maps.

All members of informal set-theory with constant names that correspond to mem-

bers produced by the composition Θ = (θ ◦ i) are denoted by the same constant but

are written in bold font. All other members of Y are displayed using math-italics. For

example, if C is a consequence operator defined on L, then Θ(C) = C is a consequence

operator defined on E. The natural numbers, integers and rational numbers and sets of

these entities, except for special notation, for the informal model and standard model

are identified and represented by math-italics.

Rather than work in the informal model and map all of the material to M1 via i

or Θ, what follows is usually discussed in terms of informal set-theory or the standard

model M1, where the embedding is not stated specifically. GGU-model primitive time

is merely defined as a sequence of rational numbers.

For four sets of integers Zq , q = 1, 2, 3, 4, the set of rational numbers Q and for each

i ∈ Zq, the map tq:Zq×IN → Q takes each j ∈ IN and yields a basic collection of rational

numbers contained in [ci, ci+1) = {x | (ci ≤ x < ci+1) ∧ (x ∈ Q)}, where i ∈ Z and

ci+1 ∈ Q, and similar elementary intervals. Let Rq = {tq(i, j) | (i ∈ Zq)∧(j ∈ IN)} ⊂ Q.

Each member X of a developmental paradigm dq contains a unique rational number

identifier taken from Rq. This identifier is a member of the word X. Hence, there

is a bijection Fq:Rq → dq. The values of this bijection, in other articles, are often

denoted by Fq
r or Fq(tq(i, j)). For the collections of integers, Zq , q = 1, 2, 3, 4, and

for the GGU-model, it is convenient to consider basic intervals as partitioning the four

rational number intervals q = 1 = [0, b], (0 < b), where [cm, cm+1) and [cm−1, b] are

employed, and q = 2 = [0,+∞), q = 3 = (−∞, 0] and q = 4 = (−∞,+∞). (Note:

The intervals could be real number intervals. However, it appears to be sufficient to

consider but the rational numbers.)

Recall that, for various i ∈ Zq, j varies over the entire set IN and yields a strictly

increasing sequence of rational numbers tq(i, j) ∈ [ci, ci+1) (and in similar elementary

intervals) such that limj→∞ tq(i, j) = ci+1 = tq(i + 1, 0). For each i ∈ Zq , let each

tq(i, j) in Rq correspond to Fq(tq(i, j)) ∈ L and the collection of all such Fq(tq(i, j)) is

a developmental paradigm or, when applied to physical-systems, the collection forms an

7



event sequence. Informal development paradigms dq correspond to dq in the standard

model. Each Fq(tq(i, j)) is distinct in, at least, one identifying feature - primitive time.

An obvious composition yields a bijection fq = Fq ◦ tq :Zq × IN → dq, q = 1, 2, 3, 4.

(Unless otherwise stated, in all that follows in this article q = 1, 2, 3, 4, respec-

tively.) In [9, p. 42], it is mentioned that Wj is used to generate specific members

of each developmental paradigm d and j, as part of the word, is an identifier and can

be altered. This should be done for each of the refined developmental paradigms de-

fined on the q-intervals. There are symbols in our language for the rational numbers

and these correspond to the abstracted notion in the standard model. Hence, each

W
q

tq(i,j) = Wq
r is the embedded statement: This|||description|||is|||named|||dtq(i, j)e|||.

Descriptions are members of a general language L that not only contains words, in

the usual sense, but abstractions of the notion of images and digitized forms of human

sensory information. For (n,m) 6= (r, s), the actual event to which xWq

tq(m,n) corre-

sponds can be an identical event to which xWq

tq(r,s) corresponds. The range of tq is a

denumerable set of rational numbers Rq.

The basic construction uses the lexicographic simple order � as defined on Zq ×IN

and yields an order preserving injection into the set of all rational numbers Q, where Q

carries its standard simple order ≤. Trivially, there is an order preserving bijection from

Zq × IN onto Rq. For an informal developmental paradigm dq, there exists a set F ′(dq)

of all the finite subsets of dq of two or more members. For each Gq ∈ F ′(dq), first list

the members of finite Gq from left-to-right without requiring any specific order. For

the next construction, a formal language that is isomorphic to the informal language

is employed.

Each ∧ [resp. Fq(tq(i, j))] corresponds to a specific |||and||| [resp. a propositional

atom that corresponds to a specific word] when embedded. This eliminates confu-

sion when |||and||| appears in an Fq(tq(i, j)). Each word is re-expressed by placing ∧

between each pair that appear in this first word-form. For example, in terms of proposi-

tional atoms if Gq = {Fq(10/3),Fq(7/8),Fq(100/23)}, then such a word formed by this

construction is w = Fq(10/3) ∧ Fq(7/8) ∧ Fq(100/23) ∈ L. Constructions of this form

are consistent with the methods used in informal word theory. For each Gq, let wq be

one of these constructions and let the injection G:F ′(dq) → L map each Gq ∈ F ′(dq)

to wq. Let denumerable set Dq = {wq | (G(Gq) = wq) ∧ (Gq ∈ F ′(dq))}.

For the logic-system S [7, pp. 65-66], each ∧ is interpreted as the |||and||| and

members of dq are propositions. This corresponds to the above construction. For any

wq = Fq(r) ∧ · · · ∧ Fq(s) ∈ Dq, and the corresponding finite consequence operator, S,

{Fq(r), . . . ,Fq(s)} ⊂ S({wq}). In what follows, although it may not be stated formally,

each of the of the standard elements, sets, and relations contained in a formal first-
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order statement are members of a specific transitive superstructure set Xp. Hence, all

*-transferred elements, sets and relations are members of ∗Xp. There are various ways

to obtain “ultrawords” [7]. The following method does not specifically use a concurrent

relation to obtain ultrawords. Throughout the following, the composition f q = Fq ◦ tq

is employed. [Note: The followed method employing *consequence operators of the

type ∗S, although still viable, is being replaced by the ultra-logic-system approach as

described in referencs [D] and [E].]

Theorem 3.1. Consider primitive time interval 1 = [0, b], b > 0. It can al-

ways be assumed that interval 1 is partitioned into two or more intervals [c0, c1), . . .

[cm−1, cm], cm = b, m > 1, m ∈ Z. Let d1 be a developmental paradigm defined on

R1 ⊂ [0, b]. For each infinite λ ∈ IN∞ = ∗
IN − IN, there is a wλ ∈ ∗D1 and an hyper-

finite d1
λ ⊂ ∗d1 such that d1 ⊂ d1

λ ⊂ ∗S({w1
λ}). Further, x ∈ d1

λ if and only if there

exist an i ∈ ∗Z≥0, 0 ≤ i ≤ m, and j ∈ ∗
IN, 0 ≤ j ≤ λ, such that x = ∗f1(i, j).

Proof. Since for each i, 0 ≤ i < m, i ∈ Z, m ∈ Z≥0, the non-negative integers,

limj→∞ t1(i, j) = ci+1 = t1(i + 1, 0), then {f1(i, j) | (i ∈ Z) ∧ ( 0 ≤ i < m) ∧ (j ∈

IN)} ∪ {f1(m, 0)} = d1. For each n ∈ IN, let H(m,n) = {f1(i, j) | (0 ≤ i < m) ∧ (0 ≤

j ≤ n) ∧ (i ∈ Z) ∧ (j ∈ IN)} ∪ {f1(m, 0)}. Then H(m,n) = d1
n ∈ F ′(d1). Further, there

is a w1 ∈ D1, denoted by w1
n, such that H(m,n) ⊂ S({w1

n}). Consequently, for fixed

nonnegative m ∈ Z,

∀y((y ∈ IN) → ∃x((x ∈ D1) ∧ (H(m, y) ∈ F ′(d1))∧

(H(m, y) ⊂ S({x})))), (1)

holds in M1 and, hence, the *-transfer of (1) holds in ∗M1. This yields

∀y((y ∈ ∗
IN) → ∃x((x ∈ ∗D1) ∧ ( ∗H(m, y) ∈ ∗F ′( ∗d1))∧

( ∗H(m, y) ⊂ ∗S({x})))), (2)

Since the union of two hyperfinite sets is hyperfinite, then, for any y ∈ ∗
IN, there

is a w1
y ∈ ∗D1 such that ∗H(m, y) = { ∗ f1(i, j) | (0 ≤ i < m) ∧ (0 ≤ j ≤ y) ∧ (i ∈

∗Z) ∧ (j ∈ ∗
IN)} ∪ { ∗ f

1(m, 0)} = d1
y ∈ ∗F ′( ∗d1), d1

y ⊂ ∗d1, and d1
y ⊂ ∗S({w1

y}).

Notice that if i ∈ Z and 0 ≤ i ≤ m, then i ∈ ∗Z. Also each member of ∗F ′( ∗d1) is

hyperfinite.

Consider any λ ∈ IN∞. Then the above *-transferred statement holds for y = λ.

However, if n ∈ IN, then n < λ implies ∗ f1(i, n) = f1(i, n), 0 ≤ i < m and ∗ f1(m, 0) =

f1(m, 0). Hence, d1 ⊂ d1
λ. From the definition of H(m,n), x ∈ d1

λ if and only if there

exist an i, 0 ≤ i ≤ m, and j ∈ ∗
IN, 0 ≤ j ≤ λ, such that x = ∗ f1(i, j). This completes

the proof.
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In the next results, for q = 2, 3, 4, ordered subscript notation is employed and,

although the proofs are but modifications of that for Theorem 4.1, separate theorems

are presented.

Theorem 3.2. Consider primitive time interval 2 = [0,+∞). Interval 2 is partitioned

into intervals [ci, ci+1), i ∈ Z≥0. Let d2 be a developmental paradigm defined on R2.

For each infinite λ ∈ IN∞ and ν ∈ Z≥0
∞ = ∗Z≥0 − Z≥0, there is a w2

νλ ∈ ∗D2 and an

hyperfinite d2
νλ ⊂ ∗d2 such that d2 ⊂ d2

νλ ⊂ ∗S({w2
νλ}). Further, x ∈ d2

νλ if and only

if there exist an i ∈ ∗Z≥0, 0 ≤ i ≤ ν, and j ∈ ∗
IN, 0 ≤ j ≤ λ, such that x = ∗ f2(i, j).

Proof. The convergence requirement implies that {f2(i, j) | (i ∈ Z≥0)∧(j ∈ IN)} =

d2. For each m ∈ Z≥0 and n ∈ IN, let H(m,n) = {f2(i, j) | (0 ≤ i ≤ m) ∧ (0 ≤ j ≤

n)∧ (i ∈ Z)∧ (j ∈ IN)}. Then H(m,n) = d2
mn ∈ F ′(d2). Further, there is a w2

mn ∈ D2,

such that H(m,n) ⊂ S({w2
mn}). Hence,

∀y∀x((y ∈ Z≥0) ∧ (x ∈ IN) → ∃z((z ∈ D2)∧

(H(y, x) ∈ F ′(d2)) ∧ (H(y, x) ⊂ S({z})))), (3)

holds in M1, hence, the *-transfer of (3) holds in ∗M1. This yields

∀y∀x((y ∈ ∗Z≥0) ∧ (x ∈ ∗
IN) → ∃z((z ∈ ∗D2)∧

( ∗H(y, x) ∈ ∗F ′( ∗d2)) ∧ ( ∗H(y, x) ⊂ ∗S({z})))). (4)

The conclusions follow as in Theorem 3.1 and this completes the proof.

Theorem 3.3. Consider primitive time interval 3 = (−∞, 0]. Interval 3 is partitioned

into intervals [ci, ci+1), . . . , [c−2, c−1), [c−1, c0], i ∈ Z≤0, i < −2. Let d3 be a develop-

mental paradigm defined on R3. For each infinite λ ∈ IN∞ and µ ∈ Z≤0
∞ = ∗Z≤0−Z≤0,

there is a w3
µλ ∈ ∗D3 and an hyperfinite d3

µλ ⊂ ∗d3 such that d3 ⊂ d3
µλ ⊂ ∗S({w3

µλ}).

Further, x ∈ d3
µλ if and only if there exist an i ∈ ∗Z≤0, µ ≤ i and j ∈ ∗

IN, 0 ≤ j ≤ λ,

such that x = ∗f3(i, j).

Theorem 3.4. Consider primitive time interval 4 = (−∞,+∞). Interval 4 is parti-

tioned into intervals [ci, ci+1), i ∈ Z. Let d4 be a developmental paradigm defined on

R4. For each λ ∈ IN∞, ν ∈ Z≤0
∞ = ∗Z≤0−Z≤0 and γ ∈ Z≥0

∞ = ∗Z≥0 −Z≥0, there is a

w4
νγλ ∈ ∗D4 and an hyperfinite d4

νλγ ⊂ ∗d4 such that d4 ⊂ d4
νγλ ⊂ ∗S({w4

νγλ}). Fur-

ther, x ∈ d4
νγλ if and only if there exist an i ∈ ∗Z, ν ≤ i ≤ 0, and k ∈ ∗Z, 0 ≤ k ≤ γ,

and j ∈ ∗
IN, j ≤ λ such that x = ∗ f4(i, j) or x = ∗ f4(k, j).

Proof. The convergence requirement implies that {f4(i, j) | (i ∈ Z≤0) ∧ (j ∈

IN)} ∪ {f4(k, j) | (k ∈ Z≥0) ∧ (j ∈ IN)} = d4. For m ∈ Z≤0, p ∈ Z≥0 and n ∈ IN, let
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H(m, p, n) = {f4(i, j) | (i ≥ m) ∧ (i ∈ Z≤0) ∧ (j ≤ n) ∧ (j ∈ IN)} ∪ {f4(k, j) | (k ≤

p) ∧ (k ∈ Z≥0) ∧ (j ∈ IN) ∧ (j ≤ n)}. Then H(m, p, n) ∈ F ′(d4). Further, there is a

w4
mpn ∈ D4 such that H(m, p, n) ⊂ S({w4

mpn}). Expressing these conclusions formally

yields the results and this completes the proof.

It is useful to investigate the actual objects contained in ∗S({x}), where x is any

of the ultrawords determined by the above theorems. This has been done for ultrawords

generated in a slightly different manner and the result is stated in Theorem 10.1.1 in

[7]. However, substitute Dq for Mdq
− dq throughout that proof. Then, for each of

the four types of intervals, the value of ∗(H · · ·) for specific members of ∗Zq × ∗
IN is

a hyperfinite developmental paradigm. The members of a developmental paradigm dq

are considered as propositional atoms and three informal sets that correspond to the
∗A, Qq , dq are shown to be disjoint in the altered proof for Theorem 10.1.1 [7]. This

yields the following theorem.

Theorem 3.5 For each q = 1, 2, 3, 4, let wq ∈ ∗Dq be an ultraword that exists

by Theorem 3.q and let dq be the corresponding developmental paradigm and dq the

corresponding hyperfinite set, where dq ⊂ ∗dq and dq ⊂ dq. Then ∗S({wq}) = ∗A ∪

Qq ∪dq, where for internal hyperfinite dq, dq ⊂ dq ⊂ ∗dq and internal Qq is composed

of hyperfinite (≥ 1) conjunctions (i.e. i(|||and|||) ) of distinct members of dq and wq ∈

Qq . Further, each member of dq and no other member is used to form the hyperfinite

conjunctions in Qq and members of dq are the only members of ∗S({wq}) without a

special conjuction and wq is a hyperfinite conjuction, without repetition, of the members

of dq. Moreover, ∗A, Qq and dq are mutually disjoint.

Each of the above five theorems is applicable to “instructions or rules.” For this

case, in the W statement the word “description” is replaced with the phrase “instruc-

tion” or a similar term.

4. Logic-System Signatures.

In formal logic, a certain amount of mental activity must be done before a formal

proof is presented. For example, in most cases of interest, one needs to select finitely

many well-formed formulas (wwfs) from potentially-infinite collections of wwfs. This is

an acceptable process as modeled by a finite choice function. Further, such things as

whether a variable is free or bound may need to be determined and when generalization

is appropriate. Of course, there is also the mental activity required just to represent a

collection of symbols in the proper form. When a formal deduction is presented, none of

this mental activity is presented, although it might be discussed in an external manner

using a metalanguage. Thus, not exhibiting such mental activity in the final product is
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a basic mathematical approach. In what follows, such external mental activity is also

required and not represented in the final results.

For a given nonempty language L, science-community scientific theories are dis-

cussed in [5]. One considers an implicit or explicit general rules of reference RI(L) that

generates a finite consequence operator SN that represents a particular scientific theory.

For each X ⊂ L, even with the realism relation RN(X) = SN(X) − X applied, there is

a vast amount of extraneous “deduction” where the deduced members of RN(X) are

used to obtain the actual “descriptions, words or images” as a subset of RN(X) that

can be perceived. The term “perceived” often means “to become aware of, through

application of a set of defined human or machine sensory apparatus.”

The actual set P ⊂ L that constitutes what is termed here as “perceived” or “ob-

served” should be explicitly defined by a science-community for a specific scientific the-

ory or physical law. Hence, for each X ⊂ P, PX = P∩SN(X) = PN(X) is the “deduced”

perceived entities. Further, if a statistical statement is included that implies that

members of PX only have a certain probability of being perceived, then the ultralogic

investigated in [5] is coupled with the PX images. A “signature” is an entity that sig-

nifies the presence of a specific process or object. The operator PN, defined on the set

of all subsets of P, P(P), is a finite consequence operator.

The notion of the J-relation as defined in [5] is now modified. Certain members

of X may need to be tagged if they are also members of PX. These members of X

are considered as not being altered by the physical processes involved. The modified

J′-binary relation behaves like an identity relation for members of X except that the

second coordinate is the same as the first coordinate with one additional fixed symbol

attached to each member and the symbol does not appear in any of the perceived

members of P. This symbol would not affect the actual “meaning” of any perceived

member of L except that the symbol indicates that no change has been made in the

expression denoted by the symbol by the physical processes being modeled. Note that,

in what follows, physical laws are considered as producing a theory via a collection of

rules of inference.

For a given nonempty X ⊂ P, a “behavior-signature” (BX-signature) and the

“theory (or physical law)-signature” (RI(PN)-signature) are determined by PN. Note:

In many of these investigations, the customary notation for “n-tuples” is employed

where the actual definition may require the more formal definition by the ordered pair

concept and induction or functions defined on various [1, n], n > 0, n ∈ IN.

Definition 4.1. Given perceived P ⊂ L and a nonempty finite {x1, . . . , xn} =

X ⊂ P. If PN(X) − X 6= ∅, define a behavior-signature (a logic-system) as BX =

{(x1, . . . , xn, xn+1) | xn+1 ∈ PN(X) − X}. Define the theory-signature to be the
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unification RI(PN) =
⋃
{BX | (∅ 6= X ∈ F(P)}, where F is the finite power set operator.

The set RI(PN) can also be considered a logic-system.

Definition 4.1 is equivalent to the rules of inference RI∗(PN) as defined in [2, p.

204]. The difference is that the definition in [2] has the finite subsets of P, more or

less, gathered together relative to cardinality and R1 = ∅. Hence, Theorem 2.4 in [2]

applies. Thus, the finite consequence operator generated by RI(PN) is PN. Although

only objects different from members of X are used to obtain BX, X ⊂ PN(X). From a

physical observation point of view, the behavior and theory signatures represent the

results produced by physical law and accepted physical theories, where all extraneous

information is eliminated.

The behavior-signatures are a more refined notion in that they are more specifically

associated with deductive thought. When the realism relation is applied to PN(X), then

X is removed. This does not remove the tagged members of PN(X). The statements

of the physical laws, logical axioms and other extraneous material not considered as

members of P are now removed as “deduced” entities. Assume that SN models a

physical theory in that the theory processes are defined on all nonempty subsets of a

language L1 ⊂ L and the theory faithfully predicts the behavior of entities as they are

described by members of L1. Let P ⊂ L1. Hence, PN affects specific perceived objects

X ⊂ P and yields perceived objects that may or may not differ in some describable

sense from the original X ⊂ P. The relation {(X,PN(X)−X) | (X ⊂ P)∧ (PN(X) 6= ∅)}

is contained in a “physical process relation” (See added reference (A).) Indeed, physical

science-communities attempt to show that it is equal to the physical process relation.

There is a type of converse to Definition 4.1. Rather than starting with the

SN, one can use observations and consider selecting a nonempty finite observation

{x1, . . . , xn} = X ⊂ P. Assume physical processes applied to X yields a perceived

X′ ⊂ P. For each X, X′, let B′
X = {(x1, . . . , xn, xn+1) | xn+1 ∈ X′}. One considers a

“unification”
⋃
{B′

X | (∅ 6= X ∈ F(L)} = RI′. However, due to the general logic-system

algorithm, even if one considers the finite logic-systems B′
X as separately applied, there

are examples where the results need not be the same as those obtain by application

of RI′. This fact can have significance for empirical science, where only such behavior-

signatures are used to establish a rational theory SN. There are various reasons for this

such as not knowing which objects in X are actually altered by the physical processes.

One approach to correct this problem is to analyze carefully the data produced, alter

how the data are expressed and produce a collection of behavior-signatures that do

correspond to those obtained from the corresponding RI′. In this case, the RI′ can be

consider as a representation for a physical law. Of course, these signature ideas may be

applied to other appropriate “natural” laws that may not be considered as satisfying
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the strict definition for what constitutes a physical law.

5. The Extended Standard Part Operator.

One of the most significant operators used within nonstandard analysis is the

“standard part operator,” st:G(0) → IR, where G(0) is the set of all “finite” (“lim-

ited”) hyperreal numbers [3, p. 17]. It is a point function that is defined in [3]

via a set function extension. (Note: The term “subparticle” has now been re-

placed by the more description term “properton.”) Although there are other pro-

cedures that lead to the standard real values, for properton representations of the form

(a1, a2, a3, a4, . . .) = (k, λ, a3, a4, . . .) [9, p. 99], the standard part is st((k, λ, a3 , · · ·)) =

(0, 0, st(a3), st(a4), · · ·)). [Note: In nonstandard analysis, there are two (isomorphic)

ways to define n-tuples. One of these, that can be used for the formal definition for

subparticle representation, where there are finitely many or denumerable many coor-

dinates, is via the usual set of all functions f from the indexing set ∅ 6= A ⊂ IN to
⋃
{Ai | i ∈ A} such that f(i) ∈ Ai, where A1 = A2 = ∗

IN, Ai = G(0), i ≥ 3.] For a

given application, let SP denote that set of all properton representations.

It is the application of the st operator to collections of propertons that yields

physical reality. For st, let the corresponding set operator defined on each subset of SP

be denoted by St. That is, for any A ⊂ SP, St(A) = {st(x) | x ∈ A}. The operator st

has the property that it is (composition) idempotent on members of G(0). Let X ⊂ SP.

If X = ∅, then St(∅) = {st(y) | y ∈ ∅} = ∅ = St(St(X)). Suppose X 6= ∅. Then

St(St(X)) = St({st(x) | x ∈ X}) = {st(st(x)) | x ∈ X} = {st(x) | x ∈ X} = St(X).

Hence, St is idempotent on P(SP).

For each X ∈ P(SP), let ′
St(X) = X ∪ St(X). The map St is closed under

union. Hence, ′
St(′St(X)) = ′

St(X ∪ St(X)) = (X ∪ St(X)) ∪ (St(X ∪ St(X))) =

(X∪St(X))∪(St(X)∪St(St(X))) = (X∪St(X))∪(St(X)∪St(X)) = ′
St(X). It follows

that, for each X ∈ P(SP), (2, 3) X ⊂ ′
St(′St(X)) = ′

St(X) ⊂ SP. For X ∈ P(SP),

let F(X) denote the set of all finite subsets of X and x ∈ ′
St(X) = X ∪ St(X). Since

st is a point map from which St is defined, then there exists {z0} ∈ P(X) such that

x ∈ {z0} ∪ St({z0}) ⊂
⋃
{F ∪ St(F ) | F ∈ F(X)} =

⋃
{′St(F ) | F ∈ F(X)} ⊂

X ∪ St(X) = ′
St(X). Thus (4) ′

St(X) =
⋃
{′St(F ) | F ∈ F(X)}. Hence, for SP, ′

St

satisfies axioms 2, 3, 4 in [9, p. 12] for the finite consequence operator. This operator

is equivalent to a general logic-system [2]. Notice that for each ∅ 6= Y ∈ P(SP) such

that for each f ∈ Y and i ≥ 3, f(i) ∈ G(0) − IR the corresponding realism relation

R(Y ) = ′
St(Y ) − Y = St(Y ). As modeled by *-linear transformations [7, p. 4, last

paragraph], among other procedures, such Y are precisely those used for a major step

in GGU-model physical-entity generation. The operator ′
ST can also be used for the

GID-model interpretation [4].
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6. The Formal Measurement of Intelligence.

General logic-systems can yield a measure for intelligence via the seventh Thur-

stone [8] factor - “Reasoning” ability. What follows is one measure, among others, for

the ability to reason.

Definition 6.1 Intelligence, for GID-model, is the application of rules specified

by an algorithm that, for a given logic-system, yields distinct deductive conclusions or

a specific conclusion. This application is measured over a specific time interval. The

measure itself is the number of rationally produced distinct conclusions that can be

obtained during that time interval or whether the final conclusion is the one specified.

Intelligence, as measured by Definition 6.1, has significant meaning via comparison.

For this illustration, consider the consequence operator S. Application of informal S to

wq yields in finitely many sets a deduced finite set. Let agent A be a standard agent

that can perform only finitely many [i.e. n] deductions over a time internal of length

ci+1 − ci. This is generalized to a set of “superagents” A where for each n ∈ IN, n > 0,

there is a member of A that can use S and deduce n distinct members of dq during this

time interval. Hence, for any n ∈ IN, n > 0, there is a superagent An that can obtain

n distinct deductions over time period ci+1 − ci.

Formally characterizing the “number” of distinct deductions that a superagent

can make, this number can be compared with hyperfinite set of deductions. Consider

the λ in Theorems 3.q. There exists a superagent agent H that can deduce λ + 1

distinct members of dq. If one does not include the notion of superagents, then assume

that an agent H exists that can do hyper-deduction. In mathematical logic, one can

assign the superagent notion to such statements as “for the formal predict logic and

any n ∈ IN, n > 0, there are well-formed formulas (formal theorems) that require n or

more steps to deduce.” (There are multi-universe models that do allow for superagents

to exist in the sense that deductions can be continued via other agents indefinitely.

Thus, in this case, a superagent is a finite collection of agents or, depending upon the

cosmology, a single agent.) Definition 6.1 can be interpreted as follows: For an agent

H that can do hyper-deduction, agent H is, in general, infinitely more intelligent than

standard agent A ∈ A and, in general, can obtain conclusions that A cannot.

In general, the type of behavior being described in this section takes on various

names that are often interpretation dependent. The process represented by informal S

or any other informal logic-system is termed as a rational or an intelligent process.

The results of the step-by-step process carry a rational or intelligent design since

intuitively a describable algorithm for deduction that includes a choice or search step

is being modeled. The notion of a signature is also employed.

15



The process represented by ∗S or any other formal hyper-logic-system is termed

as an hyper-rational, hyper-intelligent or high-intelligence process. The results

of the step-by-step process carry a hyper-rational or hyper-intelligent design since,

via the techniques of nonstandard analysis, a corresponding describable algorithm for

a type of deduction that includes a choice or search step is being modeled. The notion

of a hyper-signature is also employed in this case.

This article has presented the developmental paradigm portion of the GGU-model.

The model shows how a universe develops via an hyper-rationally design so as to satisfy

a unification of the internal processes. A refined approach that more clearly displays

this hyper-rational design is to appear [D]. The GGU-model processes are detailed in

[E].

As shown in [G], the internal processes that govern our universe are not repre-

sentable via a universal Turing machine as has been claimed. Thus, they cannot be

completely represented via any computer simulation. This does not alter the results

presented here and elsewhere relative to the GGU-model.
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