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Abstract

It is shown a.o. that a gauge invariant scalar (classical and quantum
theoretical) electrodynamical field is a trivial field theory; in fact, it is
shown that a non-zero scalar gauge field will not be charge/mass conser-
vating, unless it is zero.

The classical action of a flux of charged and neutral particles is cal-
culated. It is shown that this action is a spinor field Ψ which satisfies
2Ψ = 0, i.e.: the action of neutral and charged currents of particles
spreads at the speed of light, a result which was already shown in [3] by
other means. The fact that both solutions differ only by a constant factor
γ0, suggests that electromagnetic and gravitational field are of the same
nature.

Now, why is the gravitational force so much weaker than electromag-
netic one? A hint can perhaps be given with [4].

1 Preliminaries

In the appendix of [3] I proved that the space of (complex valued) tempered
distributions S ′(R4) is the toplogical direct sum S ′(R4) = range(2) ⊕ ker(2),
where ker(2) is the subspace {T ∈ S ′(R4)|2T = 0} and range(2) is its com-
plementary subspace. The elements of ker(2) are (generalized) plane waves.

2 Gauge invariance

In classical electrodynamics the gauge invariance is stated as the invariance of
field equations w.r.t. the addition Aµ 7→ Aµ + ∂µΛ, where Λ is an arbitrary
function on R4, in quantum electrodynamics it is the invariance of the state
transformation Φ 7→ eiΛΦ (see e.g.: [2, II-18.10] and [6, Ch. 7]).

Both statements have in common that they don’t define exactly as to what
set of functions for Λ they refer to, and that will show up to be relevant, but to
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make a point, let us demand the Λ to be (3 times continuously differentiable)
real-valued, scalar functions of utmost polynomial growth. (It will be shown
in the next section, below, that in practically all physically relevant situations
the 4-vector current components jµ and with them also the Λ are supposed to
be infinitely differentiable functions of utmost polynomial growth; given that,
there is no big loss of generality to impose that condition on Λ.)

So, the Λ are elements of S ′R(R4). Then F := 2Λ and jµ := ∂µF , with (0 ≤
µ ≤ 3), are tempered distributions, and, if the jµ are supposed to be currents,
then they must obey the charge/mass conservation principle, i.e.: ∂0j0 + · · ·+
∂3j3 = 0 must hold. Then (∂2

1 + · · ·+ ∂2
3)F = 0, which implies F ≡ Const, and

therefore jµ = ∂µF ≡ 0 for all µ.
As to classical electrodynamics, the conclusion therefore is not the gauge

invariance, but: In order that mass/charge conservation holds, the 4-vector
current j must not contain any non-zero additive part (∂0F, · · · , ∂3F ) for some
(non-constant) real-valued function F. Now, given that the jµ are continously
differentiable (on the simply connected region R4, a necessary and sufficient
condition for the existence of F with ∂µF = jµ is that the matrix (∂µjν)0≤µ,ν≤3

is to be such that ∂mujν = ∂νjµ for µ 6= ν, (which amounts to (∂µjν)0≤µ,ν≤3

being symmetrical). This is a special case of Poincaré’s lemma (see e.g.: [1,
Sec. 2-12 to 2-13]). The proof is uncomplicated: Because ∂µ∂νF = ∂ν∂µF , the
condition is necessary, and, the other way round, given the symmetry, the path
integration of jµ along a path from start to end point is dependent only of the
two points, and the existence of such F follows.

Armed with that, the goal then is to exclude from j just that additive part,
that spoils charge/mass conservation, and to see, what that rest then is.

To do so, let j be an arbitrary quadrupel of (real-valued) functions on
R4. Then the matrix jµν := (∂µjν)µ,ν splits into the sum of a symmet-
ric matrix (gµν)µν , which is defined by gµν := 1

2 (jµν + jνµ) for µ 6= ν and
g00 = · · · = g33 = 0, and the matrix (hµν) := (jµν − gµν). (gµν) then
is symmetric with zero diagonal elements, wheras (hµν) is anti-symmetric in
its off-diagonal elements. Let’s tweak the terminology and call (hµν) ”skew-
symmetric” for short. Integrating these matrices in each of the four components
then gives us two continuously differentiable quadruples of functions g and h,
such that j = g + h, where (∂µgν) is symmetric and (∂µhν) is skew-symmetric
(in the above defined sense).

So, we arrive at a convenient classification: If the jµ are continuously dif-
ferentiable, in order that the current is charge/energy conserving, the matrix
(∂µjν) must be skew-symmetric.

Let’s now work out, to what degree that condition also is sufficient: If
(∂µjν) is skew-symmetric, then (γµ∂µγνjν) is symmetric. That is, the quadru-
ple (γ0j0, · · · , γ3j3) can be integrated w.r.t. the (Lorentz invariant) differential
1-form

d :=
∑

0≤µ≤3

(∂/∂(γµxµ))d(γµxµ).
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The result is a spinor-valued function Ψ on R4 which satisfies: (∂/∂(γµxµ))Ψ =
γµjµ, (0 ≤ µ ≤ 3). Then the charge conservation for the 4-vector current
(γ0j0, · · · , γ3j3) holds, if and only if 2Ψ = (∂2/∂(γ0x0)2−· · ·−∂2/∂(γ3x3)2)Ψ ≡
0.

But wait: The jµ were supposed to be scalar (real-valued) functions, and
this makes (γ0j0, · · · , γ3j3) to be a charged current. Its neutral counterpart
is (γ0γ0j0, · · · , γ3γ0j3), and, because that is a constant factor γ0 away from
the charged current, it is likewise integrable w.r.t. the above Lorentz invariant
differential form, and the integral is Ψγ0. And again, 2Ψ ≡ 0 is enforced by
the mass conservation.

It is clear, what the result means: Every 4-vector current (be it neutral or
charged) is the source of a zero-mass action field at every space-time coordinate
x ∈ R4, spreading (as a wave) at the speed of light. And this action field in turn
exactly determines the state of the current j at its retarded times (by calculating
its Lorentz invariant gradient). That is exactly the relativistic extension of the
conception of the gravitational field in classical mechanics.

The equation 2Ψ = 0 in itself has a physical meaning: it says that the
”emission” of Ψ by the 4-current j does not change anything for j, which means
two things: Firstly, the emission of Ψ is gratis, and, secondly, the self-interaction,
i.e. the interaction of j with is own emitted field Ψ is zero.

3 Why 4-vector currents are supposed to be smooth
functions

In quantum theory it is often lectured that the concept of indistinguishability
of spacially separated masses or charges was a new quantum theoretical concept
in physics.

I beg to differ: That conception already is the heart of the mechanics of
fluids, in which the singular molecules loose their singular state and instead, the
superposition of all states results into the fluidal state (see [3, Introduction]).
The concept of current densities j in classical electrodynamics is exactly that
of a fluid of charges in motion, and the basic law that drives the dynamics the
fluidal mechanics is the mass/charge conservation. In particular, the momentum
density of the fluid is to be defined not as the momentum of n particles passing a
point at some time t, but as the negative flux of energy through an infinitesimally
small surface containing that point at some time t.

In other words, in order to get at the energy and momentum density of that
fluid, we have to take the Fourier transform of j. And because the Fourier
transform is an isomorphism on the space of tempered distributions on R4, that
space is a convenient space to base discussions on.

In particular, the Fourier transform of j is a 4-vector ĵ ∈ S ′(R4), which is
j in terms of energy and momentum coordinates. Of this ĵ we can make three
restrictions:

First, we demand that the (absolute) value of energy of ĵ is to be bounded
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above by a constant E0 > 0. That means that ĵ has compact support in R4,
i.e. it vanishes outside a closed and bounded set X ⊂ R4, and therefore j is an
infinitely differentiable quadrupel of functions on R4 itself.

Second, the fluid is made of particles that at least have the rest energy of the
electron, which is |qe| > 0. So, the support of the ĵµ does neither contain the
light cone {(p0, · · · , p3) ∈ R4|p2

0− · · ·− p2
3 = 0}, nor the zero-energy hyperplane

{(p0, · · · , p3) ∈ R4|p0 = 0}. The support of the ĵµ therefore is contained in
4 disjoint (bounded) regions: the interior of the forward and backward light
cones, and the two spacelike regions of the upper and lower hemisphere, i.e.
of positive and negative parity. In particular, the jµ are contained in range2,
which means that the Aµ := 2−1jµ are well-defined.

Third, in many situations - but maybe not all - as a theory of fluids, one
would demand smoothness of the ĵµ. And, given that the ĵµ are n-times contin-
uously differentiable, the jµ go to zero with n-th order as |x| → ∞. (In general,
as the Fourier inverses of tempered distributions with compact support, the jµ

have a polynomial growth as |x| → ∞.)

4 Remark on Dirac Distributions

One might object that, restricting to j as continuous functions, will exclude
Dirac distributions. Frankly put, Dirac distributions appear to be inappropriate
in the context of the j:

In a fluid j, a single particle can be traced by picking its particular time
path λ : R 3 x0 7→ R3, and if one associates a mass/charge with that particle,
it’s giving us its kinetic parameters. (In particular, the square of the energy
momentum can be calculated, something which is not possible with Dirac dis-
tributions, and so forth.) But the path R 3 x0 7→ j(x0, λ(x0)) ∈ R4, which is
what one gets by applying the Dirac distribution δ(· − x) to j, has a different
physical meaning as the (statistic) superposition of the particles along the cho-
sen path: that physical model is in essence the infinitesimal limit of a lattice
theory.

However, there is a connection between the two different conceptions: It’s
Feynman’s path integration: Suppose we have a huge set of particles and un-
derstand their mutual interaction, their forces will superimpose, these will make
it into a superimposed motion of the particles, and we should end up with a
dynamics of the fluid (which is just j). The application of path integration to
classical physics is not a new idea, let alone to Feynman himself: see e.g [5].

5 Conclusion

In all, we saw that the covariant Maxwell equations extend extend the original
ones beyond a theory of charges to a relativistic theory of neutral masses either.
Its general solution is a spinor-valued action function Ψ, which is the integral of
the 4-vector current j, taken w.r.t. the Lorentz metrics, and satisfies 2Ψ ≡ 0.
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Also, the neutral action function differs from the neutral one by just a constant
factor γ0.

Now we have already a physical concept for the field equation 2Ψ = 0,
namely that of the electromagnetic field. So, why invent new, different ones
which follow the same equation and hence wouldn’t be distinguishable from the
electromagnetic field?

Much speaks in favour of a generalized, more abstract view of the covari-
ant Maxwell equations as the underlying field theory for any Lorentz invariant
theory of matter. That way, every physical theory would finally have to make
it into that equation, in order to become Lorentz invariant. (And, at the same
time, it would contribute to the overall mass.) Interestingly, the general, covari-
ant Maxwell equations solve in terms of 4 × 4-matrix functions, which means
their solution has place for 4 ”orthogonal” components, each of which is allowed
to come with its own coupling force. The relative strength of these forces then
decides over the relative contribution to the overall mass. And we currently
have 4 such theories: the nuclear, strong SU(3)-theory, the U(2)-theory of weak
interactions, the electrodynamics, which proved to be a U(2)-theory either, plus
the theory of gravitation, which we based on the absolute value of energy of the
three others. (Hence gravitation will be a U(1)-theory. We took its necessary
U(1)-dimension from the electromagnetic U(2)-symmetry, where we used the
isomorhism U(2) ∼= SU(2)⊕ U(1), albeit we could have taken that deliberately
from the weak theory, either.)

It is known that the coupling forces of the 4 theories are temperature depen-
dent, that they appear to converge towards eachother at high temperature, and
that at low temperatures the relation of electromagnetic force by gravitational
force is extremely high (approx. 1036).

This makes gravitational waves very difficult to discover, especially since
at high temperatures, the electromagnetic action field (of the charges in the
environment) will hide the gravitational, neutral one. For now one cannot even
exclude the possibility of mistaking gravitational waves with electromagnetic
ones.
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