The simulation of Th1-Th2 cell differentiation by system dynamic model and stochastic processes

Peisheng Shi¹, Hai Zhang², Zhiguo Zhu³

¹Zymo Research Corporation, United Stated
²³University of Science and Technology of China
¹Email: peishengshi@zymoresearch.com
²Email: sea10351@mail.ustc.edu.cn

Abstract

In this article, we use system dynamical model (base on a set of nonlinear differential equations) and stochastic process model (Master equations of elementary reaction) to simulate the T helper cell differentiation (including Th1-Th2-Th17-Treg), especially the Th1-Th2 differentiations signaling network. We draw a conclusion that the critical trigger factor of naive T helper cells differentiation is the concentration of differentiation induced cytokines. We also compare the result of these two models as well as discussed the advantage and disadvantage of them.

Introduction

Mathematical modeling is a widely used method to simulate the intracellular transduction network of different cells. For the differentiation of cells of immune system, many scholars have made a lot of achievements by different mathematical methods [1,2,3,4,5], system dynamic model is the most popular method in this field[6,7]. Hofer et.al simulate transcriptional pathway of Th2 cell by a mathematical model, he point out that the GATA-3 is a critical gene in differentiation of in Th2 lymphocytes [8]. Bergmann et.al uses the system dynamic model to simulate the Immune response of T helper cells [9]. Gilchrist et.al also use this model defined a key factor (NF-κB) in transcription network of immune cell, especially T lymphocyte [7]. For the first time, Wang et.al considers the process of epigenetic, discuss the effect of gene remodeling to the gene transcription. They build a system dynamic model and describe the re-differentiation behavior of Th1-Th2 lymphocytes and proposed an important conclusion about the equilibrium points of Th cell differentiation [10]. In addition, Mendoza introduce a novel network model to describe the whole intracellular gene network transduction pathway, taking into account of IFN-gamma, IL-4, IL-12, IL-18, IFN-beta, IL-4R, IL-12R, IL-18R,
STAT-1, STAT-6, STAT-4, IRAK, SOCS-1, GATA-3 and other gene loci, and calculate the stable steady states of the Th cell differentiation network[11].

Stochastic process model is used to represent the evolution of some random system over time. There are several (often infinitely many) directions in which the process may evolve. Scientists use a collection of random variables to analysis the intraocular transduction networks and simulate the behavior of different cells [12,13,14,15,16].

Although there are many people use different mathematical models to simulate T helper cell differentiation process, there is no researcher used stochastic process model to simulate T helper cell differentiation process before. For the first time, we use both system biology model and stochastic process model to simulate the T helper cell differentiation, compared the results of these two models, and analysis the advantage and disadvantage of these models.

![Figure 1. Transduction Pathway of Th1-Th2-T17-Treg](image)

**Mathematic model**

**System dynamic model:**

System dynamic model is a very important method in simulation of intracellular network. In the first part of our paper, we follow the method of Wang et.al to simulate the intracellular network of Th cells and discuss the behavior of cell differentiation.[10]

We assume that gene could be transcribed many times in one time iteration. While inhibit factor is located in a certain gene loci, this gene is unable to be transcribed. For example, the influence of GATA-3 to T-bet gene, can be changed by the concentration of STAT-1. While the concentration of STAT-1 is low, GATA-3 tend to combine to
T-bet gene loci, and when the concentration of STAT-1 is high, GATA-3 have less influence to T-bet gene. We assume the total number of receptors keep consistent and the intracellular factor concentration of STAT family protein cannot be influenced by others factors.

\[ [A]\_r \text{ is the concentration of intracellular factor A produced by T helper cell.} [A]\_c \text{ is the concentration of extracellular factor A produced by other cells except T helper cell} \]

\[ [A] = [A]\_c + [A]\_r \]

1. IFN-gamma transcription process

(1) STAT-4a active process:

\[ [IL-12] = [IL-12]\_c \]

\[ [IL-12]\_c \text{ is the concentration of extracellular factor IL-2 produced by other cells except T helper cell.} \]

\[ \frac{d[STAT-4a]}{dt} = k_{IL-12} [IL-12] [IL-12re] [STAT-4u] - r_{IL-12} [STAT-4a] \]

STAT-1a active process:

\[ [IFN-\gamma] = [IFN-\gamma]\_r + [IFN-\gamma]\_c \]

\[ [IFN-\gamma]\_r \text{ is the concentration of IFN-gamma produced by a T-helper cell.} \]

\[ [IFN-\gamma]\_c \text{ is the concentration of extracellular factor IFN-gamma produced by other cells except T helper cell.} \]

\[ \frac{d[STAT-1a]}{dt} = k_{IFN-\gamma} [IFN-\gamma] [IFN-\gammare] [STAT-1u] - r_{IFN-\gamma} [STAT-1a] \]

(2) T-bet gene transcription process

The increase of activated STAT-1 concentration has a positive impact to the length of transcription time of T-bet gene. When T-bet gene remodeling is near complete, the transcription of T-bet gene is faster, when the STAT-1 and T-bet gene fully combined.

\[ \frac{dT\text{-}bet}{dt} = \frac{k_{Slv} [STAT-1a]}{k_{Slm} + [STAT-1a]} \cdot \frac{k_{IG3}}{k_{IG3} + [GATA-3]} - r_{T-bet} [T\text{-}bet] \]

(3) IFN-gamma gene transcription process:
2. IL-4 gene transcription process
   (1) STAT-6α active process
   \[
   [IL-4] = [IL-4]_r + [IL-4]_c
   \]
   \([IL-4]_r\) is the concentration of IL-4 produced by a T-helper cell \([IL-4]_c\) is the concentration of extracellular factor IL-4 produced by other cells except T helper cell.
   \[
   \frac{d[STAT-6\alpha]}{dt} = k_{IL4\alpha}[IL-4]_r[IL-4 re][STAT-6u] - r_{6\alpha}[STAT-6\alpha]
   \]
   (2) GATA-3 gene transcription process:
   \[
   \frac{d[GATA-3]}{dt} = k_{GATA3\alpha} [STAT-6\alpha][GATA-3 re][GATA-3][T bet] - r_{GATA3}[GATA-3]
   \]
   (3) IL-4 gene transcription process:
   \[
   \frac{d[IL-4]}{dt} = k_{IL4\alpha}[GATA-3][IL-4]_r - r_{IL4}[IL-4]_r
   \]

Stochastic process model (Master equation elementary reaction):
There are several important ways of DNA remodeling: DNA methylation, histone acetylation (increased transcription), histone methylation (reduced transcription). Histone acetylation and methylation adjust gene transcription speed by change gene accessibility. Remodeling is mainly regulated by the transcription factor.

1. The produce of IFN-gamma
   This section is about STAT-4 protein activation and nuclear translocation process, assuming the number of intracellular STAT-4 factor and the number of IL-12 receptor keep constantly. IL-12re denote the number of IL-12 receptors (XX cytokine receptors abbreviated as XXre), STAT-4u denote the number of inactivated STAT-4. STAT-4a denotes the number of activated STAT-4:
   \[
   IL-12 + IL-12re \xrightarrow{k_{IL12}} IL-12IL-12re
   \]
   \[
   IL-12IL-12re + STAT-4u \xrightarrow{k_{IL4}} IL-12IL-12re + STAT-4a
   \]
   These two equations represent STAT-1 protein activation process and nuclear translocation process, assuming the intracellular STAT-1 receptor protein and the
number of IFN-g constant, STAT-1u represents an activated STAT-1, STAT-1a represents the activation of STAT-1. We assume that nuclear pore complex operation is very efficiency. The transcription factor in the nucleus is the same with concentration of this factor outside of the nucleus.

\[ IFN - \gamma + IFN - \gamma re \xrightarrow[k_{IFF}]{} IFN - \gamma IFN - \gamma re \]

\[ IFN - \gamma IFN - \gamma re + STAT - 1u \xrightarrow[k_{SI}]{} IFN - \gamma IFN - \gamma re + STAT - 1a \]

The following equations show the transcription and translation process of T-bet. STAT-1 protein triggers T-bet gene remodeling:

\[ STAT - 1a + T - betgene \xrightarrow[k_{SF}]{} STAT - 1T - betgene \]

\[ STAT - 1T - betgene \xrightarrow[k_{fT}]{} STAT - 1T - betgene + T - betmRNA \]

\[ T - betmRNA \xrightarrow[k_{TR}]{} T - bet \]

STAT-1a-inactivite with a certain probability after iteration, it changes into the inactivated STAT-1 again and leave nucleus.

\[ STAT - 1a \xrightarrow[r_{SI}]{} STAT - 1u \]

T-bet mRNA and T-bet degrade in a certain probability:

\[ T - betmRNA \xrightarrow[r_{T} \phi]{} \]

\[ T - bet \xrightarrow[r_{m} \phi]{} \]

The transcription of IFN-gamma can be describe as: there are two kind of proteins can directly combined to the IFN-gamma gene loci, these two factors will cause different degrees of genetic remodeling, T-bet and STAT-4 can be combined to IFN-gamma gene loci at the same time. There is a synergistic effect of gene remodeling when both T-bet and STAT-4 factor combined with gene loci at the same time:

\[ T - bet + IFN - \gamma gene \xrightarrow[k_{TF}]{} T - betIFN - \gamma gene \]

\[ STAT - 4a + IFN - \gamma gene \xrightarrow[k_{SAF}]{} STAT - 4aIFN - \gamma gene \]

\[ T - bet + STAT - 4aIFN - \gamma gene \xrightarrow[k_{TSAF}]{} T - betSTAT - 4IFN - \gamma gene \]

\[ STAT - 4a + T - betIFN - \gamma gene \xrightarrow[k_{SAF}]{} T - betSTAT - 4IFN - \gamma gene \]

STAT-4 inactivates with a certain probability after iteration it changes into the inactivated STAT-4 again and leave nucleus.

\[ STAT - 4a \xrightarrow[r_{sd}]{} STAT - 4u \]

IFN-g transcription speed is different when combining with different transcription factors (different remodeling level infers to different transcription speeds):
INF-gamma mRNA enters the ribosome, trigger the translation process, and produce INF-gamma:

\[ \text{IFN-} \gamma \text{mRNA} \xrightarrow{k_{TR}} \text{IFN-} \gamma \]

INF-gamma and its mRNA inactivates with a certain probability after iteration

\[ \text{IFN-} \gamma \text{mRNA} \xrightarrow{r_{IFN}} \phi \]
\[ \text{IFN-} \gamma \xrightarrow{r_{IFN}} \phi \]

Although the binding site of the T-bet and GATA-3 still remain unknown, they have a negative impact on each other on the transcription process (Wang et al). We assume that the gene could not bind with other transcription factor after binding with a transcription factor. The symbol T\_g denote the T-bet gene.

\[ \text{GATA-} 3 + \text{T-bet} \xrightarrow{k_{GR}} \text{GATA-} 3 \text{T-bet} \]

2. The production of IL-4
This section is about STAT-6 protein activation and nuclear translocation process, assuming the number of intracellular STAT-6 factor and the number of IL-4 receptor keep constantly. IL-4re denote the number of IL-4 receptors (XX cytokine receptors abbreviated as XXre), STAT-4u denote the number of inactivated STAT-6. STAT-6a denotes the number of activated STAT-6

\[ \text{IL-} 4 + \text{IL-} 4 \text{re} \xrightarrow{k_{12,4}} \text{IL-} 4 \text{IL-} 4 \text{re} \]
\[ \text{IL-} 4 \text{IL-} 4 \text{re} + \text{STAT-} 6u \xrightarrow{k_{6a}} \text{IL-} 4 \text{IL-} 4 \text{re} + \text{STAT-} 6a \]

The following equations show the transcription and translation process of GATA-3. STAT-6 protein triggers GATA-3 gene remodeling:

\[ \text{STAT-} 6a + \text{GATA-} 3 \text{gene} \xrightarrow{k_{SG}} \text{STAT-} 6 \text{GATA-} 3 \text{gene} \]
\[ \text{STAT-} 6 \text{GATA-} 3 \text{gene} \xrightarrow{k_{am}} \text{STAT-} 6 \text{GATA-} 3 \text{gene} + \text{GATA-} 3 \text{mRNA} \]
\[ \text{GATA-} 3 \text{mRNA} \xrightarrow{k_{GR}} \text{GATA-} 3 \]
\[ \text{STAT-} 6a \xrightarrow{r_{6a}} \text{STAT-} 6u \]

STAT-6 inactivates with a certain probability after iteration it changes into the inactivated STAT-6 again and leave nucleus.

\[ \text{GATA-} 3 \text{mRNA} \xrightarrow{r_{33}} \phi \]
\[ \text{GATA-} 3 \xrightarrow{r_{am}} \phi \]
The transcription of IL-4, GATA-3 triggers the IL-4 remodeling of IL-4 gene

\[ GATA\cdot 3 + IL\cdot 4\text{gene} \xrightarrow{k_{IL}} GATA\cdot 3IL\cdot 4\text{gene} \]

\[ GATA\cdot 3IL\cdot 4\text{gene} \xrightarrow{k_{IL}} GATA\cdot 3IL\cdot 4\text{gene} + IL\cdot 4mRNA \]

IL-4 mRNA enters the ribosome, trigger the translation process, and produce IL-4:

\[ IL\cdot 4mRNA \xrightarrow{k_{IL}} IL\cdot 4 \]

IL-4 and the mRNA of IL-4 degrade in a certain probability:

\[ IL\cdot 4 \xrightarrow{t_{IL}} \phi \]

\[ IL\cdot 4mRNA \xrightarrow{t_{IL}} \phi \]

Although the binding site of the T-bet and GATA-3 still remain unknown, they have a negative impact on each other on the transcription process (Wang etal). We assume that the gene could not bind with other transcription factor after binding with a transcription factor. The Gg denote the GATA-3 gene.

\[ T\cdot bet + GATA\cdot 3\text{gene} \xrightarrow{k_{Tbet}} T\cdot betGATA\cdot 3\text{gene} \]

**Results and discussion**

**System dynamic model**

We assume that \( f_{Th1} \) represent the influence of Th1 induced cytokine to naive T helper cell as well as \( f_{Th2} \) represent the influence of Th2 induced cytokine to naive T helper cell. \( k_{IL}, k_{IF} \) and \( k_{IL} \) denote the influence of certain cytokines to the differentiation process.

\[ f_{Th1} = k_{IL} [IL\cdot 12] + k_{IF} [IFN\cdot \gamma] \]

\[ f_{Th2} = k_{IL} [IL\cdot 4] \]

\[ \Rightarrow f_{Th1} = k_{IL} [IL\cdot 12_c + [IFN\cdot \gamma]_c + k_{IL} [IL\cdot 12_t] + k_{IF} [IFN\cdot \gamma]_t \]

\[ f_{Th2} = k_{IL} [IL\cdot 4_c] + k_{IL} [IL\cdot 4_t] \]

Because of the concentration of IFN-gamma and IL-4 include the amount of the cytokine outside of the cell, so we choose the critical transcription factor GATA-3 and T-bet to show the differentiation process in the following section.

**System dynamic model:**

In this model, \( [IL\cdot 12_c], [IFN\cdot \gamma]_c, [IL\cdot 4_c] \) is consistent numbers while the value
of $[IL\cdot 12]_T$, $[IFN\cdot \gamma]_T$, $[IL\cdot 4]_T$ can be changed by time or degree of differentiation.

1. The simulation of un-differentiation cell
There are a small amount of cytokines in extracellular environment such as IL-12, IFN-gamma, IL-4 secreted by dendritic cells, monocytes and macrophages when the Th0 cells remain undifferentiated. In this stage, Th0 cells expressing low level IL-4 and IFN-gamma.

2. The simulation of differentiated cell (Th1)
If the concentration of Th1 cytokines satisfy the inequality $f_{Th1} > f_{Th2}$, the IL-12, the Th1 cytokines such as IFN-gamma and IL-12 have a stronger impact than Th1 cytokines, the Th0 cells will increase the expression level of IFN-gamma, form a positive looping, Th0 cell stimulated by Th1 cytokine will differentiate toward Th1 stage.

\[ GATA-3 \quad T-bet \]

Figure 2. Differentiation process of Th1 cell by system dynamic model

In the differentiation process, if put the half differentiated Th1 cell on the Th1-inducing environment, or Th1, Th1 cytokines in the local concentration of sudden changes, there will be two possible cases:

(1) If the differentiation level of T helper cell is higher than a certain threshold, the concentration of Th1 cytokines still satisfy the inequality $f_{Th1} > f_{Th2}$, the direction of differentiation will not change.
\[ f_{Th1} > f_{Th2} \Rightarrow k_{IL\cdot 12}[IL\cdot 12]_c + k_{IFN\cdot \gamma}[IFN\cdot \gamma]_c + k_{IL\cdot 4}[IL\cdot 4]_c + k_{IL\cdot 4}[IL\cdot 4]_r \]
\[ \Rightarrow k_{IFN\cdot \gamma}[IFN\cdot \gamma]_r - k_{IL\cdot 4}[IL\cdot 4]_r > k_{IL\cdot 12}[IL\cdot 12]_c - k_{IL\cdot 12}[IL\cdot 12]_c - k_{IFN\cdot \gamma}[IFN\cdot \gamma]_c \]
Figure 3. Th2 induced cytokines do not change the differentiation of Th1 cell in late phase by system dynamic model

(2) If the differentiation level of T helper cell is lower than a certain threshold, the concentration of Th1 cytokines do not satisfy the inequality $f_{Th1} < f_{Th2}$, the direction of differentiation will change.

$$k_{IFN} [IFN-\gamma] - k_{IL-4} [IL-4]_{Th1} < k_{IL} [IL-12]_{Th1} - k_{IFN} [IFN-\gamma]_{Th1}$$

Figure 4. Th2 induced cytokines trigger the re-differentiation of Th1 cell in early phase by system dynamic model

In different differentiation stage, add equal amount of Th2 cytokines have different effects on half differentiation Th1 cell.

3. The simulation of differentiated cell (Th2)

If the concentration of Th2 cytokines satisfies the inequality $f_{Th1} > f_{Th2}$, Th2 cytokines such as IL-4 have a stronger impact than Th1 cytokines, the Th0 cells will increase the expression level of IFN-gamma, form a positive looping, Th0 cell stimulated by Th1 cytokine will differentiate toward Th2 stage.
In the differentiation process, if put the half differentiated Th2 cell on the Th1-inducing environment, or Th1, Th2 cytokines in the local concentration of sudden changes, there will be two possible cases:

(1) If the differentiation level of T helper cell is higher than a certain threshold, the concentration of Th2 cytokines still satisfy the inequality $f_{th2} > f_{th1}$, the direction of differentiation will not change.

$$k_{\mu} [IL-4]_T - k_{IF} [IFN-\gamma]_T > k_{IL} [IL-12]_C + k_{IF} [IFN-\gamma]_C - k_{\mu} [IL-4]_C$$

(2) If the differentiation level of T helper cell is lower than a certain threshold, the concentration of Th2 cytokines do not satisfy the inequality $f_{th1} < f_{th2}$, the direction of differentiation will change.

$$k_{\mu} [IL-4]_T - k_{IF} [IFN-\gamma]_T < k_{IL} [IL-12]_C + k_{IF} [IFN-\gamma]_C - k_{\mu} [IL-4]_C$$
Figure 7. Th1 induced cytokines trigger the re-differentiation of Th2 cell in early phase by system dynamic model

In different differentiation stage, add equal amount of Th1 cytokines have different effects on half differentiation Th2 cell.

Stochastic process model (Master equation elementary reaction):

Because there are a large number of NK cells, dendritic cells, monocytes and macrophages in vivo environment, all of these cells secrete small amounts of IFN-gamma, IL-2 or IL-4 which can affect differentiation of Th0 cells. We assumed that the Th1, Th2 differentiation-inducing cytokines produced by non-T cells in physiological conditions approximate normal distribution:

\[
[IL-12]_c \sim N([IL-12]_{Cmin}, [IL-12]_{Cmax})
\]

\[
[IFN-\gamma]_c \sim N([IFN-\gamma]_{Cmin}, [IFN-\gamma]_{Cmax})
\]

\[
[IL-4]_c \sim N([IL-4]_{Cmin}, [IL-4]_{Cmax})
\]

%95 Confidence interval is 

\[
[IFN-\gamma]_{Cmin}, [IFN-\gamma]_{Cmax}
\]

\[
[IL-4]_{Cmin}, [IL-4]_{Cmax}
\]

is random variable, different from system biology model

Theoretically speaking, re-differentiation can happen at any stage of differentiation, but in this discussion, the model assumption simplified to the extracellular cytokine concentration fluctuation range at the 95% confidence interval. This means the secretion of other cell differentiation inducing factor satisfied the following requirements:

\[
[IL-12]_{Cmin} < [IL-12]_c < [IL-12]_{Cmax}
\]

\[
[IFN-\gamma]_{Cmin} < [IFN-\gamma]_c < [IFN-\gamma]_{Cmax}
\]
\[
[IL - 4]_{C_{\text{min}}} < [IL - 4]_{C} < [IL - 4]_{C_{\text{max}}}
\]

1. Undifferentiated status
In the induce of extracellular cytokines, the concentration of Th cell cytokine temporarily satisfy the following inequality \( f_{Th1} > f_{Th2} \), in this Th0 cell, the expression of Th1 cytokine will slightly higher than normal Th0 cell, but the differentiation is not completed at this point. The concentration of cytokines may fluctuate in the physiological environment. If the concentration of cytokine changes into \( f_{Th1} < f_{Th2} \) the differentiation direction will change.

Similarly, when the concentration of Th cell cytokine temporarily satisfy the following inequality \( f_{Th1} < f_{Th2} \), in this Th0 cell, the expression of Th2 cytokine will slightly higher than normal Th0 cell, but the differentiation is not completed at this point. The concentration of cytokines may fluctuate in the physiological environment. If the concentration of cytokine changes into \( f_{Th1} > f_{Th2} \) the differentiation direction will change.

![Figure 8](image)

**Figure 8.** Th0 cells by stochastic process model

2. Th1 differentiated status
When the concentration of cytokines meets the following requirement, the influence caused by fluctuation of concentration is smaller than the self-secretion of the Th1 cells. The fluctuation of concentration of extracellular environment cytokine cannot change the direction of Th cell differentiation, at this point, differentiation is complete.

\[
k_{IF} \left[ IFN - \gamma \right]_{I} - k_{IL} \left[ IL - 4 \right]_{I} > k_{IF} \left[ IL - 4 \right]_{C_{\text{max}}} - k_{IL} \left[ IL - 12 \right]_{C_{\text{min}}} - k_{IF} \left[ IFN - \gamma \right]_{C_{\text{min}}}
\]

When the concentration cytokines (IFN-gamma, IL-4) satisfied the following requirement,
is the critical point of differentiation. Differentiation of Th1:

\[ k_{th} [IFN-\gamma]_{T} - k_{IF} [IL-4]_{T} = k_{th} [IL-4]_{C_{\text{max}}} - k_{IL-4} [IL-12]_{C_{\text{min}}} - k_{IF} [IFN-\gamma]_{C_{\text{min}}} \]

3. Th2 differentiated status
When the concentration of cytokines meets the following requirement, the influence caused by fluctuation of concentration is smaller than the self-secretion of the Th2 cells. The fluctuation of concentration of extracellular environment cytokine cannot change the direction of Th cell differentiation, at this point, differentiation is complete.

\[ k_{th} [IL-4]_{T} - k_{IF} [IFN-\gamma]_{T} = k_{th} [IL-4]_{C_{\text{max}}} + k_{IF} [IFN-\gamma]_{C_{\text{max}}} - k_{IL-4} [IL-4]_{C_{\text{min}}} \]

When the concentration cytokines (IFN-gamma, IL-4) satisfied the following requirement,

\[ k_{th} [IL-4]_{T} - k_{IF} [IFN-\gamma]_{T} = k_{th} [IL-4]_{C_{\text{max}}} + k_{IF} [IFN-\gamma]_{C_{\text{max}}} - k_{IL-4} [IL-4]_{C_{\text{min}}} \]

is the critical point of differentiation.
Extracellular cytokine environment determines the ultimate direction of differentiation, the critical point of Th1 differentiation is requirement (1), while critical point of Th2 differentiation is requirement (2)

\[
(1) \quad k_{IF} [IFN - \gamma] - k_{IL-4} [IL-4] = k_{IL} [IL-12]_{C_{max}} - k_{IF} [IFN - \gamma]_{C_{min}} - k_{IL} [IL-12]_{C_{min}} - k_{IF} [IFN - \gamma]_{C_{min}} 
\]

\[
(2) \quad k_{IL-4} [IL-4]_{C_{max}} - k_{IF} [IFN - \gamma]_{C_{max}} + k_{IL} [IL-12]_{C_{max}} - k_{IL-4} [IL-4]_{C_{min}} 
\]

IL-12 have a big impact on the differentiation of Th0 cells, if there is not enough IL-12 cytokine exist in the early stage of Th cell differentiation, Th0 cell cannot differentiate normally. However, if there is not enough IL-12 cytokine exist in the late stage of Th cell differentiation, Th0 cell still can differentiate normally. From this model, we can see that Th cell only produce little cytokine, this amount of cytokine can hardly meet the requirement of \( f_{Th1} > f_{Th2} \). After the differentiation finished, the secretion amount of IFN-gamma is much larger than the amount of IFN-gamma in the early stage, at this time, we have \( [IFN - \gamma]_{C_{max}} \gg [IL-12]_{C_{max}} \). Even though reduce the IL-12 concentration will not change the direction of differentiation.

The delay differential equation is capable of stimulating the oscillation during the
early and middle phase of differentiation, but cannot rationalize the phenomenon that a small number of helper T lymphocytes with the feature of polarization switch to a different differentiation path. For example, it is possible for Th0 cells to differentiate into Th2 even in the culture environment of Th1, and vice versa. But according to the equation, Th0 cells can only differentiate into Th1 cells in the culture environment of Th1, unless the culture environment is changed by adding in a particular type of cytokine in polarization phase; when the differentiation is completed, it is still possible to convert the T lymphocytes (Th1 or Th2) to the opposite type (Th2 or Th1), if a certain kind of cytokine is expressed at a high level. It is not the actual case, however.

In the Master Equation model, when the initial concentrations of $IFN-\gamma$ and $IL-4$ are fixed, Th0 cells differentiate into Th1 or Th2 cells with a certain probability which varies in accordance with the concentration difference. The theoretical simulation here will be compared to experimental result (the proportions of Th1 and Th2 cells will be respectively measured at the end of lab culture). The transformation between Th1 and Th2 is less likely to occur when the concentration difference is large.

**Figure 11.** The differentiation and re-differentiation of Th1 by stochastic process model
Figure 12. The differentiation and re-differentiation of Th2 by stochastic process model

During the early stage of differentiation, conversion of differentiation direction can be caused by the high-level expression of a certain cytokine, or even by some random factor, whereas the probability of dedifferentiation is extremely slim, unless the expression of the corresponding cytokine is remarkably augmented.

References:


