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                                          Abstract 
This article puts forward a new theorem concerns the distribution of prime numbers: Let 
integer n≥4, there exist two distinct odd primes p and q such that n﹣p＝q﹣n. Proves the 
theorem establish applied the Congruence theory and the Fermat's method of infinite 
descent. With the application of the theorem, reaches several results. 
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1. Introduction 
          

        As we all know, the smallest element in all odd primes is 3 that less than every integer n≥4, 
 and by Bertrand's Postulate [1], we have there exists at least a prime q such that n＜q＜2n 

for every integer n≥4. Combined above, a deep conclusion reaches: 
 

Lemma  Let integer n≥4, there exist two odd primes p and q such that 3≤p＜n＜q＜2n.  
            

For the any given two distinct odd primes p and q, if we count from p to q, the number of 
the counting must be an odd and not less than 3, assume it equals 2d+1 with d≥1, thus, 
there must exists an integer n≥4 such that n﹣p＝d; q﹣n＝d, and n﹣p＝q﹣n. Naturally, 
a proposition can be brings: for every integer n≥4, there must exist at least two odd primes 
p and q such that n﹣p＝q﹣n with 3≤p＜n＜q＜2n. The proposition statement means that 
any two distinct odd primes are symmetrically distributed to an integer n≥4; and for every 
integer n≥4, there must exist at least two distinct odd primes are symmetrically distributed 
to the integer.  

Since n﹣p＝q﹣n ⇔ n＝(p﹢q)/2, if the proposition statement is true, as a result, the 
completeness which contains in the proposition statement, establishes a clear quantity 
relationship between every integer n≥4 to two distinct odd primes p and q, that every 
integer n≥4 can be written as the arithmetic average of two distinct odd primes p and q.  

            Moreover, in positive integers, the proposition with the following three others is a set of 
propositions, that contains symmetrical and progressive significance in mathematical logic, 

             ( i ) Let n≥2, there exist two distinct odd numbers a1 and a2 such that n﹣a1＝ a2﹣n.  
            ( ii ) Let n≥3, there exist two distinct even numbers b1 and b2 such that n﹣b1＝b2﹣n.  
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           (iii) Let n≥4, there exist two distinct odd primes c1(p) and c2(q) such that n﹣c1＝c2﹣n. 
( iv) Let n≥5, there exist two distinct even composites d1 and d2 such that n﹣d1＝d2﹣n. 

The propositions (i), (ii) and (iv), can be proved establish by induction, with regard to the 
(iii), in this article, proposes the necessary and sufficient condition for the proposition be 
able to set up, and proves the condition being tenable applied the Congruence Theory and 
the Fermat's method of infinite descent, then get the proposition statement is true.  

        
Theorem.  Let integer n≥4, there exist two distinct odd primes p and q such that 

                                              
                                        n﹣p＝q﹣n.                             (1) 
                                   
                                

2. Proof of the Theorem 
        
Proof . Let integer n≥4,and p1,p2, p3,…,pk be all odd primes which less than integer n(≥4), 
since p1＝3, p1＜4≤n, then k≥1, in positive integers, we have, there always exist k odd 
integers q1,q2,q3,…,qk and n＜qk＜…＜q2＜q1＜2n, such that n﹣pi＝q i﹣n and qi＝2n﹣pi 
for all 1≤i≤k. Let P＝｛p1,p2,p3,…,pk｝and Q＝｛q1,q2,q3,…,qk｝, P and Q all be non-empty 
set, which corresponding with one-to-one by equation n﹣pi＝qi﹣n for all 1≤i≤k. If there 
exist two distinct odd primes p and q such that n﹣p＝q﹣n, then p∈P and q∈Q. Because 
every pi be odd prime for all 1≤i≤k, if there exists at least an odd prime q in Q, then odd 
prime q and another odd prime p among P, which corresponding with the q one-to-one such 
that n﹣p＝q﹣n, the Theorem will be set up. Then we get the necessary and sufficient 
condition for the Theorem can be establish is: for every integer n≥4, there must exists at 
least one odd prime q among qi in the Q for all 1≤i≤k.  

The following part to prove the necessary and sufficient condition statement being 
tenable, and conclude the Theorem statement is true.  
  Should proof by contradiction is applied.  Suppose there exist some integers (≥4) 
makes the necessary and sufficient condition statement cannot tenable, n0 is the smallest in 
them, then every qi in the Q of n0 be odd composite for all 1≤i≤k. we get Ω(qi)≥2 for all 
1≤i≤k. Let ui be the smallest and vi be the second odd prime divisors of qi for all 1≤i≤k, 
then 3≤ui≤vi  and uivi︱qi  for all 1≤i≤k. 

Where n＝n0, we sign P0＝｛p1,p2,p3,…,pk｝, Q0＝｛q1,q2,q3,…,qk｝, U0＝｛u1,u2,u3,…,uk｝, 
V0＝｛v1,v2,v3,…,vk｝, and there must be U0⊆P0 , V0⊆P0. 
  Since qi＝2n0﹣pi for all 1≤i≤k, then uivi∣qi ⇒uivi∣2n0﹣pi ⇒2n0≡pi(mod uivi) ⇒ 

2n0≡pi(mod ui)  for all 1≤i≤k. Then we have the system of k congruences                                                                                                                                                                                                                                                                                        
                                  
                            x≡pi (mod ui)           for all 1≤i≤k.                     (2)  
                                      

Be solvable and 2n0 is a solution to the system of congruences. 
           Assume n0≡ri(mod ui) and 1≤ri≤ui for all 1≤i≤k, then n0﹢n0≡ri﹢ri (mod ui) for all 

1≤i≤k  ⇒ 2n0≡2ri (mod ui) for all 1≤i≤k, and pi≡2n0(mod ui) for all 1≤i≤k  ⇒  
pi≡2n0≡2ri (mod ui) for all 1≤i≤k. 

Then we have the system of congruences (2) is equivalent to the system of congruences 
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                   x≡2ri(mod ui )          for all 1≤i≤k.                     (3) 
                         
In addition, the system of congruences   
                        

y≡r i (mod ui )       for all 1≤i≤k.                     (4) 
                                 
         Be also solvable and n0 is a solution to the system of congruences. 

  By verifying , we have, where n＝4, 5,6,7,8,  the Theorem is true, therefore, n0＞8, then 
where n= n0, there k≥3, pk≥7. moreover, by Bertrand's Postulate, we know there exists at 
least an odd prime g such that pk＜g＜2pk , and n0 must be such that pk＜n0≤g＜2pk, 2pk＞ 

         n0, 4pk＞2n0, if pk∈U0 , pk∣qi , qi∈Q0 , since pk≥7, about the vi which corresponding with 
pk, we have vi≥pk≥7＞4, 2n0＞qi＞n0,  then vipk＞4pk＞2n0＞qi, qi∈Q0, which 
contradicts vipk︱qi , qi∈Q0. So we get pk ∉U0 , and｛u1,u2,u3,…,uk｝⊆｛p1,p2,p3,…, pk-1｝, 

         by Pigeonhole Principle, we know, there exist at least two of the same elements in U0.  
Since n0＞8, k≥3, p1＝3, p2＝5, p3＝7, and qi＝2n0﹣pi  for all 1≤i≤k, then q1﹣q2＝

(2n0﹣3)﹣(2n0﹣5)＝2,q2﹣q3＝(2n0﹣5)﹣(2n0﹣7)＝2, q1﹣q3＝(2n0﹣3)﹣(2n0﹣7)＝4, 
we get q1, q2,q3 are pairwise relatively prime odd composites, thus u1, u2, u3 are pairwise 
relatively prime, and u1, u2, u3 are three distinct odd primes. 

Assume there exist uh＝u2 and u1,u3,…,uh (u2),…,uk are pairwise relatively prime in U0, 
then there must be 4≤h≤k, and u1u3…uh(u2)…uk＝[u1,u2,u3,…,uh,…,uk]. In addition, we 
have, 2n0≡p2( mod uh ), 2n0≡ph( mod uh ), 2n0≡p2≡ph( mod uh ), 2r2＝2rh. Then there be 
x≡p2( mod u2 ) ⇔ x≡ph( mod uh ) in (2),  x≡2r2( mod u2) ⇔ x≡2rh( mod uh ) in (3), 
and y≡r2( mod u2) ⇔ y≡rh( mod uh)  in (4). 
  By the Chinese Remainder Theorem, we get the set of all solutions to the system of 
congruences (2) or (3) is: 

                                               
             x≡p1U1U1

-1＋p3U3U3
-1＋…＋phUhUh

-1＋…＋pkUkUk
-1                                (5.1) 

                                       
         ≡2r1U1U1

-1＋2r3U3U3
-1＋…＋2rhUhUh

-1＋…＋2rkUkUk
-1 (mod u1u3…uh…uk)  (5.2) 

                                                
         In addition, the set of all solutions to the system of congruences (4) is: 
          
             y≡r1U1U1

-1＋r3U3U3
-1＋…＋rhUhUh

-1＋…＋rkUkUk
-1 (mod u1u3…uh…uk )       (6) 

         where u1u3…uh…uk＝[u1,u2,u3,…,uh,…,uk]＝ui U i for all 1≤i≤k, i≠2. 
And U i

-1
 is a unique integer such that 

                              
 U iU i 

-1≡1(mod ui)      for all 1≤i≤k.                  (7) 
                                    
         By 2n0 is a solution to the system of congruences (2) or (3), then   

 
   2n0≡p1U1U1

-1＋p3U3U3
-1＋…＋phUhUh

-1＋…＋pkUkUk
-1(modu1u3…uh…uk)      (8)    

                   
         Since 2n0≡ph≡p2 (mod u2), ph＞p2, we get 2∣ph﹣p2, u2(uh)∣ph﹣p2.  
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Let ph﹣p2＝2t, then t＞0, u2 (uh)∣2t, u2 (uh)∣t, and  
 

UhUh
-1＝U2U2

-1,  phUhUh
-1＝(p2＋2t )U2U2

-1＝p2U2U2
-1＋2tU2U2

-1         (9) 
          
         Then we have   

 
 2n0≡p1U1U1

-1＋p2U2U2
-1＋2tU2U2

-1＋p3U3U3
-1＋…＋pkUkUk

-1(mod u1u3…uh…uk)  (10) 
                                 
          2n0≡2r1U1U1

-1＋2r2U2U2
-1＋2r3U3U3

-1＋…＋2rkUkUk
-1＋2tU2U2

-1(modu1u2u3…uk)  (11) 
                       

n0≡r1U1U1
-1＋r2U2U2

-1＋r3U3U3
-1＋…＋rkUkUk

-1＋tU2U2
- 1(mod u1u2u3…uk)    (12) 

                                  
                  n0≡r1U1U1

-1＋r2U2U2
-1＋r3U3U3

-1＋…＋rkUkUk
-1＋tU2U2

-1(modu2)       (13) 
                  
            n0≡r1U1U1

-1＋r2U2U2
-1＋r3U3U3

-1＋…＋rkUkUk
-1＋t ( modu2 )        (14) 

              
since u2∣t, then 

             
           n0≡r1U1U1

-1＋r2U2U2
-1＋r3U3U3

-1＋…＋rkUkUk
-1＋u2( mod u2)        (15) 

Assume                  
n0＝r1U1U1

-1＋r2U2U2
-1＋r3U3U3

-1＋…＋rk UkUk
-1＋u2           (16) 

         Then 
       n0﹣u2＝r1U1U1

-1＋r2U2U2
-1＋r3U3U3

-1＋…＋rkUkUk
-1               

 (17) 
         Moreover 

n0﹣u2≡r1U1U1
-1＋r2U2U2

-1＋r3U3U3
-1＋…＋rkUkUk

-1 (mod u1u2u3…uk )    (18) 
         

Let n1＝n0﹣u2, then we have 
  

       n1＝r1U1U1
-1＋r2U2U2

-1＋r3U3U3
-1＋…＋rkUkUk

-1                     
 (19) 

                
n1≡r1U1U1

-1＋r2U2U2
-1＋r3U3U3

-1＋…＋rkUkUk
-1 (mod u1u2u3…uk )         (20) 

                                 
and there be               n1≡ri (mod ui)   for all 1≤i≤k                   (21) 
                                

Since ui∣qi and qi＜2n0 for all 1≤i≤k, then ui≤ qi ＜ 2n0  ＜1.42 n0  for all 1≤i
≤k, u2≤ q2＜ 2n0  ＜1.42 n0  . by k≥h≥4, n0＞p4 (＝11)＞9, n0  ＞3,       
n0＝ n0  n0  ＞3 n0  , then n0﹣u2＞n0﹣ 1.42 n0  , n0﹣1.42 n0  ＞3 n0  ﹣
1.42 n0  ＝1.58 n0  ＞ 2n0  ＞ui for all 1≤i≤k, we get n0﹣u2＞ 2n0  ＞ui for all 1
≤i≤k, and there be n1＞ui for all 1≤i≤k.  

As we know, there exist at least three distinct odd primes u1,u2 and u3 in U0, and n1＞ui 
for all 1≤i≤k, we have, there exist at least three distinct odd primes u1,u2,u3 be less than n1. 
Let p1, p2, p3,…,ps be all odd primes which less than integer n1, then s not less than three, so 
there be 3≤s≤k, p3 (＝7)≤ps≤pk, and n1≥8.   

Then we get  
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  n1≡ri(mod ui)   for all 1≤i≤s                    (22) 
                                        

  2n1≡2ri(mod ui)  for all 1≤i≤s                    (23) 
                         

                                2n1≡pi ( mod ui)  for all 1≤i≤s                    (24) 
                                        
         by (24), we have, ui∣2n1﹣pi＝qi for all 1≤i≤s, and ui＜n1＜qi＝2n1﹣pi for all 1≤i≤s, 

it shows ui＜qi and ui∣qi for all 1≤i≤s. then, where n＝n1(≥8), for each odd prime pi 
which less than n1, every qi＝2n1﹣pi such that n1﹣pi＝qi﹣n1 be odd composite for all 1≤
i≤s. Therefore, n1 also makes the necessary and sufficient condition statement cannot 
tenable, and n1＜n0, which contradicts the minimality of n0, it is impossible. 
  To sum up, we must have, there being no any one integer n≥4 makes the necessary and 
sufficient condition for the Theorem cannot tenable, therefore, we get that there must exists 
at least one odd prime q in the Q of every one integer n≥4. Thus, the necessary and 
sufficient condition for the Theorem being tenable has proved, and we get the Theorem 
statement is true.  This completes the proof of the Theorem.                       □ 

                        
                         

        3. An Equivalent Proposition of the Theorem. Let integer n≥4, there must exists at least 
one positive integer d with 1≤d≤n﹣3, makes n﹣d and n + d being odd primes. 

                                   
                    In particular, if d＝1, then｛n﹣1 , n﹢1｝be twin primes. So the accurate mathematical  

formulas of d＝f ( n, p＜n, n﹣p ,…, p|n ) have very important theoretical significance and 
practical values. 

                                
                                
                  4. The Geometric Significance of the Theorem  

              
(i) On real axis, there must exist two distinct odd prime points p and q be symmetrically di-  

stributed to every integer point n≥4. 
 

         (ii) On real axis, every integer point n≥4 be the midpoint of the line segment that with two 
distinct odd prime points p and q for endpoints.   
 

            
 
       5. Three Corollaries of the Theorem 
                     

Corollary 5.1. Let integer n≥4, and p1, p2,… ,pk  be all odd primes which less than n, then  
the equation n﹣pi＝xi﹣n has no solution, which every xi be odd composite for all 1≤i≤k.  
 
Proof．The proof of the Corollary 5.1 is the same as the proof of the Theorem.          □ 

                      
Corollary 5.2. Every integer n≥2 can be written as the arithmetic average of two primes. 
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Proof． By the Theorem , if integer n≥4 , there exist two distinct odd primes p and q such  
that n﹣p＝q﹣n, and n﹣p＝q﹣n ⇔ n＝( p﹢q )/2, then we get: Every integer n≥4 can 
be written as the arithmetic average of two distinct odd primes. 

 Moreover, there being 3＝(3﹢3)/2 and 2＝(2﹢2)/2, the further results can be reached: 
Every integer n≥3 can be written as the arithmetic average of two odd primes. 
Every integer n≥2 can be written as the arithmetic average of two primes. 
This completes the proof .                                                   □  
       
Corollary 5.3. (Goldbach conjecture [2])  Every even number 2n≥4 can be written as the 
sum of two primes. 
 
Proof．Let even number 2n≥8 , then n≥4 , by the results in the proof of the Corollary 5.2,  
there exist two distinct odd primes p and q such that  n＝( p﹢q ) /2 for every integer n≥4,  
and 2n (≥8)＝2·n (≥4)＝2·(p﹢q) / 2＝p﹢q, one result reached: 

 Every even number 2n≥8 can be written as the sum of two distinct odd primes. 
  According to the same principle, by the conclusions of the Corollary 5.2, two results can 
be getting: 
Every even number 2n≥6 can be written as the sum of two odd primes . 

 Every even number 2n≥4,or every even composite can be written as the sum of two primes. 
This completes the proof.                                                    □ 
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