# SYMMETRY DISTRIBUTION LAW OF PRIME NUMBERS ON POSITIVE INTEGERS AND RELATED RESULTS 

Yibing Qiu<br>Room607, $12^{\text {th }}$ floor, $3^{\text {rd }}$ block, Zhao Feng Yuan Section, Feng Tai District, Beijing 100040, P.R.CHINA<br>yibing.qiu@hotmail.com


#### Abstract

This article puts forward a new theorem concerns the distribution of prime numbers: Let integer $n \geqslant 4$, there exist two distinct odd primes $p$ and $q$ such that $n-p=q-n$. Proves the theorem establish applied the Congruence theory and the Fermat's method of infinite descent. With the application of the theorem, reaches several results.


Keywords.: Exist two distinct odd prime numbers p and q ; Such that $\mathrm{n}-\mathrm{p}=\mathrm{q}-\mathrm{n}$; Integer $n \geqslant 4$; One necessary and sufficient condition; Chinese remainder theorem; Fermat's method of infinite descent

## 1. Introduction

One classical problem in Number Theory is to understand the distribution of prime numbers, although this problem is still fundamentally unsolved, we have know many valuable results, and a famous in them is Bertrand's Postulate[1], the theorem states that there exists at least a prime $q$ such that $n<q \leqslant 2 n$ for every integer $n \geqslant 1$.It makes a rough description but gives a strict density lower pound of prime numbers distribution. By the theorem, we obtain:

Lemma 1.1. Let integer $n \geqslant 4$, there exists at least an odd prime $q$ such that $n<q<2 n$.

And for the smallest element in all odd primes is 3 that be less than every integer $n \geqslant 4$, combined with Lemma1.1, another deep conclusion reaches:

Lemma1.2.Let integer $n \geqslant 4$,there exist two odd primes $p$ and $q$ such that $3 \leqslant p<n<q<2 n$.

As for the any given two distinct odd primes p and q , if we count from p to q , the number of the counting must be an odd and not less than 3 , assume it equals $2 \mathrm{~d}+1$ with $\mathrm{d} \geqslant 1$, thus, there must exists an integer $\mathrm{n} \geqslant 4$ such that $\mathrm{n}-\mathrm{p}=\mathrm{d} ; \mathrm{q}-\mathrm{n}=\mathrm{d}$, and $\mathrm{n}-\mathrm{p}=\mathrm{q}-\mathrm{n}$. Naturally, a proposition can be brings: for every integer $n \geqslant 4$, there must exist at least two odd primes p and q such that $\mathrm{n}-\mathrm{p}=\mathrm{q}-\mathrm{n}$ with $3 \leqslant \mathrm{p}<\mathrm{n}<\mathrm{q}<2 \mathrm{n}$. The proposition statement means that any two distinct odd primes are symmetrically distributed to an integer $n \geqslant 4$; and for every integer $n \geqslant 4$, there must exist at least two distinct odd primes are symmetrically distributed to the integer.

Since $\mathrm{n}-\mathrm{p}=\mathrm{q}-\mathrm{n} \Leftrightarrow \mathrm{n}=(\mathrm{p}+\mathrm{q}) / 2$, if the proposition statement is true, as a result, the
completeness which contains in the proposition statement, establishes a clear quantity relationship between every integer $n \geqslant 4$ to two distinct odd primes p and q , that every integer $\mathrm{n} \geqslant 4$ can be written as the arithmetic average of two distinct odd primes p and q .

Moreover, in positive integers, the proposition with the following three others is a set of propositions, that contains symmetrical and progressive significance in mathematical logic,
(i) Let $n \geqslant 2$, there exist two distinct odd numbers $a_{1}$ and $a_{2}$ such that $n-a_{1}=a_{2}-n$.
(ii) Let $\mathrm{n} \geqslant 3$, there exist two distinct even numbers $\mathrm{b}_{1}$ and $\mathrm{b}_{2}$ such that $\mathrm{n}-\mathrm{b}_{1}=\mathrm{b}_{2}-\mathrm{n}$.
(iii) Let $\mathrm{n} \geqslant 4$, there exist two distinct odd primes $\mathrm{c}_{1}(\mathrm{p})$ and $\mathrm{c}_{2}(\mathrm{q})$ such that $\mathrm{n}-\mathrm{c}_{1}=\mathrm{c}_{2}-\mathrm{n}$.
(iv) Let $\mathrm{n} \geqslant 5$, there exist two distinct even composites $\mathrm{d}_{1}$ and $\mathrm{d}_{2}$ such that $\mathrm{n}-\mathrm{d}_{1}=\mathrm{d}_{2}-\mathrm{n}$.

The propositions (i), (ii) and (iv), can be proved establish by induction, with regard to the (iii), in this article, proposes the necessary and sufficient condition for the proposition be able to set up, and proves the condition being tenable applied the Congruence Theory and the Fermat's method of infinite descent, then get the proposition statement is true.

Theorem. Let integer $n \geqslant 4$, there exist two distinct odd primes $p$ and $q$ such that

$$
\begin{equation*}
n-p=q-n . \tag{1}
\end{equation*}
$$

## 2. Proof of the Theorem

Proof. Let integer $\mathrm{n} \geqslant 4$, and $\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \ldots, \mathrm{p}_{\mathrm{k}}$ be all odd primes which less than integer $\mathrm{n}(\geqslant 4)$, since $\mathrm{p}_{1}=3, \mathrm{p}_{1}<4 \leqslant \mathrm{n}$, then $\mathrm{k} \geqslant 1$, in positive integers, we have, there always exist k odd integers $\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \ldots, \mathrm{q}_{\mathrm{k}}$ and $\mathrm{n}<\mathrm{q}_{\mathrm{k}}<\ldots<\mathrm{q}_{2}<\mathrm{q}_{1}<2 \mathrm{n}$, such that $\mathrm{n}-\mathrm{p}_{\mathrm{i}}=\mathrm{q}_{\mathrm{i}}-\mathrm{n}$ and $\mathrm{q}_{\mathrm{i}}=2 \mathrm{n}-\mathrm{p}_{\mathrm{i}}$ for all $1 \leqslant i \leqslant k$. Let $P=\left\{p_{1}, p_{2}, p_{3}, \ldots, p_{k}\right\}$ and $Q=\left\{q_{1}, q_{2}, q_{3}, \ldots, q_{k}\right\}, P$ and $Q$ all be non-empty set, which corresponding with one-to-one by equation $n-p_{i}=q_{i}-n$ for all $1 \leqslant i \leqslant k$. If there exist two distinct odd primes p and q such that $\mathrm{n}-\mathrm{p}=\mathrm{q}-\mathrm{n}$, then $\mathrm{p} \in \mathrm{P}$ and $\mathrm{q} \in \mathrm{Q}$. Because every $\mathrm{p}_{\mathrm{i}}$ be odd prime for all $1 \leqslant \mathrm{i} \leqslant \mathrm{k}$, if there exists at least an odd prime q in Q , then odd prime q and another odd prime p among P , which corresponding with the q one-to-one such that $\mathrm{n}-\mathrm{p}=\mathrm{q}-\mathrm{n}$, the Theorem will be set up. Then we get the necessary and sufficient condition for the Theorem can be establish is: for every integer $n \geqslant 4$, there must exists at least one odd prime q among $\mathrm{q}_{\mathrm{i}}$ in the Q for all $1 \leqslant \mathrm{i} \leqslant \mathrm{k}$.

The following part to prove the necessary and sufficient condition statement being tenable, and conclude the Theorem statement is true.

Should proof by contradiction is applied. Suppose there exist some integers ( $\geqslant 4$ ) makes the necessary and sufficient condition statement cannot tenable, $\mathrm{n}_{0}$ is the smallest in them, then every $q_{i}$ in the $Q$ of $n_{0}$ be odd composite for all $1 \leqslant i \leqslant k$. we get $\Omega\left(q_{i}\right) \geqslant 2$ for all $1 \leqslant i \leqslant k$. Let $u_{i}$ be the smallest and $v_{i}$ be the second odd prime divisors of $q_{i}$ for all $1 \leqslant i \leqslant k$, then $3 \leqslant u_{i} \leqslant v_{i}$ and $u_{i} v_{i} \mid q_{i}$ for all $1 \leqslant i \leqslant k$.

Where $n=n_{0}$, we sign $P_{0}=\left\{p_{1}, p_{2}, p_{3}, \ldots, p_{k}\right\}, Q_{0}=\left\{q_{1}, q_{2}, q_{3}, \ldots, q_{k}\right\}, U_{0}=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{k}\right\}$, $\mathrm{V}_{0}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{k}}\right\}$, and there must be $\mathrm{U}_{0} \subseteq \mathrm{P}_{0}, \mathrm{~V}_{0} \subseteq \mathrm{P}_{0}$.

Since $q_{i}=2 n_{0}-p_{i}$ for all $1 \leqslant i \leqslant k$, then $u_{i} v_{i}\left|q_{i} \Rightarrow u_{i} v_{i}\right| 2 n_{0}-p_{i} \Rightarrow 2 n_{0} \equiv p_{i}\left(\bmod u_{i} v_{i}\right) \Rightarrow$ $2 \mathrm{n}_{0} \equiv \mathrm{p}_{\mathrm{i}}\left(\bmod \mathrm{u}_{\mathrm{i}}\right)$ for all $1 \leqslant \mathrm{i} \leqslant \mathrm{k}$. Then we have the system of k congruences

$$
\begin{equation*}
\mathrm{x} \equiv \mathrm{p}_{\mathrm{i}}\left(\bmod \mathrm{u}_{\mathrm{i}}\right) \quad \text { for all } 1 \leqslant \mathrm{i} \leqslant \mathrm{k} . \tag{2}
\end{equation*}
$$

Be solvable and $2 \mathrm{n}_{0}$ is a solution to the system of congruences.
Assume $\mathrm{n}_{0} \equiv \mathrm{r}_{\mathrm{i}}\left(\bmod \mathrm{u}_{\mathrm{i}}\right)$ and $1 \leqslant \mathrm{r}_{\mathrm{i}} \leqslant \mathrm{u}_{\mathrm{i}}$ for all $1 \leqslant \mathrm{i} \leqslant \mathrm{k}$, then $\mathrm{n}_{0}+\mathrm{n}_{0} \equiv \mathrm{r}_{\mathrm{i}}+\mathrm{r}_{\mathrm{i}}\left(\bmod \mathrm{u}_{\mathrm{i}}\right)$ for all $1 \leqslant \mathrm{i} \leqslant \mathrm{k} \Rightarrow 2 \mathrm{n}_{0} \equiv 2 \mathrm{r}_{\mathrm{i}}\left(\bmod \mathrm{u}_{\mathrm{i}}\right)$ for all $1 \leqslant \mathrm{i} \leqslant \mathrm{k}$, and $\mathrm{p}_{\mathrm{i}} \equiv 2 \mathrm{n}_{0}\left(\bmod \mathrm{u}_{\mathrm{i}}\right)$ for all $1 \leqslant \mathrm{i} \leqslant \mathrm{k} \Rightarrow$ $p_{i} \equiv 2 n_{0} \equiv 2 r_{i}\left(\bmod u_{i}\right)$ for all $1 \leqslant i \leqslant k$.

Then we have the system of congruences (2) is equivalent to the system of congruences

$$
\begin{equation*}
x \equiv 2 r_{i}\left(\bmod u_{i}\right) \quad \text { for all } 1 \leqslant i \leqslant k \tag{3}
\end{equation*}
$$

In addition, the system of congruences

$$
\begin{equation*}
y \equiv \mathrm{r}_{\mathrm{i}}\left(\bmod \mathrm{u}_{\mathrm{i}}\right) \quad \text { for all } 1 \leqslant \mathrm{i} \leqslant \mathrm{k} . \tag{4}
\end{equation*}
$$

Be also solvable and $n_{0}$ is a solution to the system of congruences.
By verifying, we have, where $n=4,5,6,7,8$, the Theorem is true, therefore, $n_{0}>8$, then where $\mathrm{n}=\mathrm{n}_{0}$, there $\mathrm{k} \geqslant 3, \mathrm{p}_{\mathrm{k}} \geqslant 7$. moreover, by Bertrand's Postulate, we know there exists at least an odd prime g such that $\mathrm{p}_{\mathrm{k}}<\mathrm{g}<2 \mathrm{p}_{\mathrm{k}}$, and $\mathrm{n}_{0}$ must be such that $\mathrm{p}_{\mathrm{k}}<\mathrm{n}_{0} \leqslant \mathrm{~g}<2 \mathrm{p}_{\mathrm{k}}, 2 \mathrm{p}_{\mathrm{k}}>$ $n_{0}, 4 p_{k}>2 n_{0}$, if $p_{k} \in U_{0}, p_{k} \mid q_{i}, q_{i} \in Q_{0}$, since $p_{k} \geqslant 7$, about the $v_{i}$ which corresponding with $\mathrm{p}_{\mathrm{k}}$, we have $\mathrm{v}_{\mathrm{i}} \geqslant \mathrm{p}_{\mathrm{k}} \geqslant 7>4,2 \mathrm{n}_{0}>\mathrm{q}_{\mathrm{i}}>\mathrm{n}_{0}$, then $\mathrm{v}_{\mathrm{i}} \mathrm{p}_{\mathrm{k}}>4 \mathrm{p}_{\mathrm{k}}>2 \mathrm{n}_{0}>\mathrm{q}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}} \in \mathrm{Q}_{0}$, which contradicts $\mathrm{v}_{\mathrm{i}} \mathrm{p}_{\mathrm{k}} \mid \mathrm{q}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}} \in \mathrm{Q}_{0}$. So we get $\mathrm{p}_{\mathrm{k}} \notin \mathrm{U}_{0}$, and $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \ldots, \mathrm{u}_{\mathrm{k}}\right\} \subseteq\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \ldots, \mathrm{p}_{\mathrm{k}-1}\right\}$, by Pigeonhole Principle, we know, there exist at least two of the same elements in $\mathrm{U}_{0}$.

Since $n_{0}>8, k \geqslant 3, p_{1}=3, p_{2}=5, p_{3}=7$, and $q_{i}=2 n_{0}-p_{i}$ for all $1 \leqslant i \leqslant k$, then $q_{1}-q_{2}=$ $\left(2 \mathrm{n}_{0}-3\right)-\left(2 \mathrm{n}_{0}-5\right)=2, \mathrm{q}_{2}-\mathrm{q}_{3}=\left(2 \mathrm{n}_{0}-5\right)-\left(2 \mathrm{n}_{0}-7\right)=2, \mathrm{q}_{1}-\mathrm{q}_{3}=\left(2 \mathrm{n}_{0}-3\right)-\left(2 \mathrm{n}_{0}-7\right)=4$, we get $q_{1}, q_{2}, q_{3}$ are pairwise relatively prime odd composites, thus $u_{1}, u_{2}, u_{3}$ are pairwise relatively prime, and $u_{1}, u_{2}, u_{3}$ are three distinct odd primes.

Assume there exist $u_{h}=u_{2}$ and $u_{1}, u_{3}, \ldots, u_{h}\left(u_{2}\right), \ldots, u_{k}$ are pairwise relatively prime in $U_{0}$, then there must be $4 \leqslant h \leqslant k$, and $u_{1} u_{3} \ldots u_{h}\left(u_{2}\right) \ldots u_{k}=\left[u_{1}, u_{2}, u_{3}, \ldots, u_{h}, \ldots, u_{k}\right]$. In addition, we have, $2 \mathrm{n}_{0} \equiv \mathrm{p}_{2}\left(\bmod u_{\mathrm{h}}\right), 2 \mathrm{n}_{0} \equiv \mathrm{p}_{\mathrm{h}}\left(\bmod u_{\mathrm{h}}\right), 2 \mathrm{n}_{0} \equiv \mathrm{p}_{2} \equiv \mathrm{p}_{\mathrm{h}}\left(\bmod u_{\mathrm{h}}\right), 2 \mathrm{r}_{2}=2 \mathrm{r}_{\mathrm{h}}$. Then there be $x \equiv p_{2}\left(\bmod u_{2}\right) \Leftrightarrow x \equiv p_{h}\left(\bmod u_{h}\right)$ in (2), $x \equiv 2 r_{2}\left(\bmod u_{2}\right) \Leftrightarrow x \equiv 2 r_{h}\left(\bmod u_{h}\right)$ in (3), and $y \equiv \mathrm{r}_{2}\left(\bmod u_{2}\right) \Leftrightarrow y \equiv \mathrm{r}_{\mathrm{h}}\left(\bmod u_{\mathrm{h}}\right)$ in (4).

By the Chinese Remainder Theorem, we get the set of all solutions to the system of congruences (2) or (3) is:

$$
\begin{align*}
x & \equiv p_{1} U_{1} U_{1}^{-1}+p_{3} U_{3} U_{3}^{-1}+\ldots+p_{h} U_{h} U_{h}^{-1}+\ldots+p_{k} U_{k} U_{k}^{-1}  \tag{5.1}\\
& \equiv 2 r_{1} U_{1} U_{1}^{-1}+2 r_{3} U_{3} U_{3}^{-1}+\ldots+2 r_{h} U_{h} U_{h}^{-1}+\ldots+2 r_{k} U_{k} U_{k}^{-1}\left(\bmod u_{1} u_{3} \ldots u_{h} \ldots u_{k}\right) \tag{5.2}
\end{align*}
$$

In addition, the set of all solutions to the system of congruences (4) is:

$$
\begin{equation*}
\mathrm{y} \equiv \mathrm{r}_{1} \mathrm{U}_{1} \mathrm{U}_{1}^{-1}+\mathrm{r}_{3} \mathrm{U}_{3} \mathrm{U}_{3}^{-1}+\ldots+\mathrm{r}_{\mathrm{h}} \mathrm{U}_{\mathrm{h}} \mathrm{U}_{\mathrm{h}}^{-1}+\ldots+\mathrm{r}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}}^{-1}\left(\bmod \mathrm{u}_{1} \mathrm{u}_{3} \ldots \mathrm{u}_{\mathrm{h}} \ldots \mathrm{u}_{\mathrm{k}}\right) \tag{6}
\end{equation*}
$$

where $u_{1} u_{3} \ldots u_{h} \ldots u_{k}=\left[u_{1}, u_{2}, u_{3}, \ldots, u_{h}, \ldots, u_{k}\right]=u_{i} U_{i}$ for all $1 \leqslant i \leqslant k, i \neq 2$.
And $\mathrm{U}_{\mathrm{i}}{ }^{-1}$ is a unique integer such that

$$
\begin{equation*}
\mathrm{U}_{\mathrm{i}} \mathrm{U}_{\mathrm{i}}^{-1} \equiv 1\left(\bmod \mathrm{u}_{\mathrm{i}}\right) \quad \text { for all } 1 \leqslant \mathrm{i} \leqslant \mathrm{k} . \tag{7}
\end{equation*}
$$

By $2 \mathrm{n}_{0}$ is a solution to the system of congruences (2) or (3), then

$$
\begin{equation*}
2 \mathrm{n}_{0} \equiv \mathrm{p}_{1} \mathrm{U}_{1} \mathrm{U}_{1}^{-1}+\mathrm{p}_{3} \mathrm{U}_{3} \mathrm{U}_{3}^{-1}+\ldots+\mathrm{p}_{\mathrm{h}} \mathrm{U}_{\mathrm{h}} \mathrm{U}_{\mathrm{h}}^{-1}+\ldots+\mathrm{p}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}}^{-1}\left(\operatorname{modu}_{1} \mathrm{u}_{3} \ldots \mathrm{u}_{\mathrm{h}} \ldots \mathrm{u}_{\mathrm{k}}\right) \tag{8}
\end{equation*}
$$

Since $2 \mathrm{n}_{0} \equiv \mathrm{p}_{\mathrm{h}} \equiv \mathrm{p}_{2}\left(\bmod \mathrm{u}_{2}\right), \mathrm{p}_{\mathrm{h}}>\mathrm{p}_{2}$, we get $2\left|\mathrm{p}_{\mathrm{h}}-\mathrm{p}_{2}, \mathrm{u}_{2}\left(\mathrm{u}_{\mathrm{h}}\right)\right| \mathrm{p}_{\mathrm{h}}-\mathrm{p}_{2}$.
Let $p_{h}-p_{2}=2 t$, then $t>0, u_{2}\left(u_{h}\right)\left|2 t, u_{2}\left(u_{h}\right)\right| t$, and

$$
\begin{equation*}
\mathrm{U}_{\mathrm{h}} \mathrm{U}_{\mathrm{h}}^{-1}=\mathrm{U}_{2} \mathrm{U}_{2}^{-1}, \quad \mathrm{p}_{\mathrm{h}} \mathrm{U}_{\mathrm{h}} \mathrm{U}_{\mathrm{h}}^{-1}=\left(\mathrm{p}_{2}+2 \mathrm{t}\right) \mathrm{U}_{2} \mathrm{U}_{2}^{-1}=\mathrm{p}_{2} \mathrm{U}_{2} \mathrm{U}_{2}^{-1}+2 \mathrm{U}_{2} \mathrm{U}_{2}^{-1} \tag{9}
\end{equation*}
$$

Then we have

$$
\begin{gather*}
2 \mathrm{n}_{0} \equiv \mathrm{p}_{1} \mathrm{U}_{1} \mathrm{U}_{1}^{-1}+\mathrm{p}_{2} \mathrm{U}_{2} \mathrm{U}_{2}^{-1}+2 \mathrm{tU}_{2} \mathrm{U}_{2}^{-1}+\mathrm{p}_{3} \mathrm{U}_{3} \mathrm{U}_{3}^{-1}+\ldots+\mathrm{p}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}}^{-1}\left(\bmod \mathrm{u}_{1} \mathrm{u}_{3} \ldots \mathrm{u}_{\mathrm{h}} \ldots \mathrm{u}_{\mathrm{k}}\right)  \tag{10}\\
2 \mathrm{n}_{0} \equiv 2 \mathrm{r}_{1} \mathrm{U}_{1} \mathrm{U}_{1}^{-1}+2 \mathrm{r}_{2} \mathrm{U}_{2} \mathrm{U}_{2}^{-1}+2 \mathrm{r}_{3} \mathrm{U}_{3} \mathrm{U}_{3}^{-1}+\ldots+2 \mathrm{r}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}}^{-1}+2 \mathrm{tU}_{2} \mathrm{U}_{2}^{-1}\left(\operatorname{modu} \mathrm{u}_{1} \mathrm{u}_{2} \mathrm{u}_{3} \ldots \mathrm{u}_{\mathrm{k}}\right)  \tag{11}\\
\mathrm{n}_{0} \equiv \mathrm{r}_{1} \mathrm{U}_{1} \mathrm{U}_{1}^{-1}+\mathrm{r}_{2} \mathrm{U}_{2} \mathrm{U}_{2}^{-1}+\mathrm{r}_{3} \mathrm{U}_{3} \mathrm{U}_{3}^{-1}+\ldots+\mathrm{r}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}}^{-1}+\mathrm{tU}_{2} \mathrm{U}_{2}^{-1}\left(\bmod \mathrm{u}_{1} \mathrm{u}_{2} \mathrm{u}_{3} \ldots \mathrm{u}_{\mathrm{k}}\right)  \tag{12}\\
\mathrm{n}_{0} \equiv \mathrm{r}_{1} \mathrm{U}_{1} \mathrm{U}_{1}^{-1}+\mathrm{r}_{2} \mathrm{U}_{2} \mathrm{U}_{2}^{-1}+\mathrm{r}_{3} \mathrm{U}_{3} \mathrm{U}_{3}^{-1}+\ldots+\mathrm{r}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}}^{-1}+\mathrm{tU}_{2} \mathrm{U}_{2}^{-1}\left(\operatorname{modu}_{2}\right)  \tag{13}\\
\mathrm{n}_{0} \equiv \mathrm{r}_{1} \mathrm{U}_{1} \mathrm{U}_{1}^{-1}+\mathrm{r}_{2} \mathrm{U}_{2} \mathrm{U}_{2}^{-1}+\mathrm{r}_{3} \mathrm{U}_{3} \mathrm{U}_{3}^{-1}+\ldots+\mathrm{r}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}}^{-1}+\mathrm{t}\left(\operatorname{modu}_{2}\right) \tag{14}
\end{gather*}
$$

since $u_{2} \mid t$, then

$$
\begin{equation*}
\mathrm{n}_{0} \equiv \mathrm{r}_{1} \mathrm{U}_{1} \mathrm{U}_{1}^{-1}+\mathrm{r}_{2} \mathrm{U}_{2} \mathrm{U}_{2}^{-1}+\mathrm{r}_{3} \mathrm{U}_{3} \mathrm{U}_{3}^{-1}+\ldots+\mathrm{r}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}}^{-1}+\mathrm{u}_{2}\left(\bmod \mathrm{u}_{2}\right) \tag{15}
\end{equation*}
$$

Assume

$$
\begin{equation*}
\mathrm{n}_{0}=\mathrm{r}_{1} \mathrm{U}_{1} \mathrm{U}_{1}^{-1}+\mathrm{r}_{2} \mathrm{U}_{2} \mathrm{U}_{2}^{-1}+\mathrm{r}_{3} \mathrm{U}_{3} \mathrm{U}_{3}^{-1}+\ldots+\mathrm{r}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}}^{-1}+\mathrm{u}_{2} \tag{16}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathrm{n}_{0}-\mathrm{u}_{2}=\mathrm{r}_{1} \mathrm{U}_{1} \mathrm{U}_{1}^{-1}+\mathrm{r}_{2} \mathrm{U}_{2} \mathrm{U}_{2}^{-1}+\mathrm{r}_{3} \mathrm{U}_{3} \mathrm{U}_{3}^{-1}+\ldots+\mathrm{r}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}}^{-1} \tag{17}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
\mathrm{n}_{0}-\mathrm{u}_{2} \equiv \mathrm{r}_{1} \mathrm{U}_{1} \mathrm{U}_{1}^{-1}+\mathrm{r}_{2} \mathrm{U}_{2} \mathrm{U}_{2}^{-1}+\mathrm{r}_{3} \mathrm{U}_{3} \mathrm{U}_{3}^{-1}+\ldots+\mathrm{r}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}}^{-1}\left(\bmod \mathrm{u}_{1} \mathrm{u}_{2} \mathrm{u}_{3} \ldots \mathrm{u}_{\mathrm{k}}\right) \tag{18}
\end{equation*}
$$

Let $\mathrm{n}_{1}=\mathrm{n}_{0}-\mathrm{u}_{2}$, then we have

$$
\begin{gather*}
\mathrm{n}_{1}=\mathrm{r}_{1} \mathrm{U}_{1} \mathrm{U}_{1}^{-1}+\mathrm{r}_{2} \mathrm{U}_{2} \mathrm{U}_{2}^{-1}+\mathrm{r}_{3} \mathrm{U}_{3} \mathrm{U}_{3}^{-1}+\ldots+\mathrm{r}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}}^{-1}  \tag{19}\\
\mathrm{n}_{1} \equiv \mathrm{r}_{1} \mathrm{U}_{1} \mathrm{U}_{1}^{-1}+\mathrm{r}_{2} \mathrm{U}_{2} \mathrm{U}_{2}^{-1}+\mathrm{r}_{3} \mathrm{U}_{3} \mathrm{U}_{3}^{-1}+\ldots+\mathrm{r}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}}^{-1}\left(\bmod \mathrm{u}_{1} \mathrm{u}_{2} \mathrm{u}_{3} \ldots \mathrm{u}_{\mathrm{k}}\right) \tag{20}
\end{gather*}
$$

and there be $\quad n_{1} \equiv \mathrm{r}_{\mathrm{i}}\left(\bmod \mathrm{u}_{\mathrm{i}}\right) \quad$ for all $1 \leqslant \mathrm{i} \leqslant \mathrm{k}$

Since $u_{i} \mid q_{i}$ and $q_{i}<2 n_{0}$ for all $1 \leqslant i \leqslant k$, then $u_{i} \leqslant \sqrt{q_{i}}<\sqrt{2 n_{0}}<1.42 \sqrt{n_{0}}$ for all $1 \leqslant i$ $\leqslant \mathrm{k}, \mathrm{u}_{2} \leqslant \sqrt{\mathrm{q}_{2}}<\sqrt{2 \mathrm{n}_{0}}<1.42 \sqrt{\mathrm{n}_{0}}$. by $\mathrm{k} \geqslant \mathrm{h} \geqslant 4, \mathrm{n}_{0}>\mathrm{p}_{4}(=11)>9, \sqrt{\mathrm{n}_{0}}>3$,
$\mathrm{n}_{0}=\sqrt{\mathrm{n}_{0}} \sqrt{\mathrm{n}_{0}}>3 \sqrt{\mathrm{n}_{0}}$, then $\mathrm{n}_{0}-\mathrm{u}_{2}>\mathrm{n}_{0}-1.42 \sqrt{\mathrm{n}_{0}}, \mathrm{n}_{0}-1.42 \sqrt{\mathrm{n}_{0}}>3 \sqrt{\mathrm{n}_{0}}-$ $1.42 \sqrt{\mathrm{n}_{0}}=1.58 \sqrt{\mathrm{n}_{0}}>\sqrt{2 \mathrm{n}_{0}}>\mathrm{u}_{\mathrm{i}}$ for all $1 \leqslant \mathrm{i} \leqslant \mathrm{k}$, we get $\mathrm{n}_{0}-\mathrm{u}_{2}>\sqrt{2 \mathrm{n}_{0}}>\mathrm{u}_{\mathrm{i}}$ for all 1 $\leqslant \mathrm{i} \leqslant \mathrm{k}$, and there be $\mathrm{n}_{1}>\mathrm{u}_{\mathrm{i}}$ for all $1 \leqslant \mathrm{i} \leqslant \mathrm{k}$.

As we know, there exist at least three distinct odd primes $u_{1}, u_{2}$ and $u_{3}$ in $U_{0}$, and $n_{1}>u_{i}$ for all $1 \leqslant \mathrm{i} \leqslant \mathrm{k}$, we have, there exist at least three distinct odd primes $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}$ be less than $\mathrm{n}_{1}$. Let $\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \ldots, \mathrm{p}_{\mathrm{s}}$ be all odd primes which less than integer $\mathrm{n}_{1}$, then s not less than three, so there be $3 \leqslant \mathrm{~s} \leqslant \mathrm{k}, \mathrm{p}_{3}(=7) \leqslant \mathrm{p}_{\mathrm{s}} \leqslant \mathrm{p}_{\mathrm{k}}$, and $\mathrm{n}_{1} \geqslant 8$.

Then we get

$$
\begin{array}{cc}
\mathrm{n}_{1} \equiv \mathrm{r}_{\mathrm{i}}\left(\bmod \mathrm{u}_{\mathrm{i}}\right) & \text { for all } 1 \leqslant \mathrm{i} \leqslant \mathrm{~s} \\
2 \mathrm{n}_{1} \equiv 2 \mathrm{r}_{\mathrm{i}}\left(\bmod \mathrm{u}_{\mathrm{i}}\right) & \text { for all } 1 \leqslant \mathrm{i} \leqslant \mathrm{~s} \\
2 \mathrm{n}_{1} \equiv \mathrm{p}_{\mathrm{i}}\left(\bmod \mathrm{u}_{\mathrm{i}}\right) & \text { for all } 1 \leqslant \mathrm{i} \leqslant \mathrm{~s} \tag{24}
\end{array}
$$

by (24), we have, $\mathrm{u}_{\mathrm{i}} \mid 2 \mathrm{n}_{1}-\mathrm{p}_{\mathrm{i}}=\mathrm{q}_{\mathrm{i}}$ for all $1 \leqslant \mathrm{i} \leqslant \mathrm{s}$, and $\mathrm{u}_{\mathrm{i}}<\mathrm{n}_{1}<\mathrm{q}_{\mathrm{i}}=2 \mathrm{n}_{1}-\mathrm{p}_{\mathrm{i}}$ for all $1 \leqslant \mathrm{i} \leqslant \mathrm{s}$, it shows $u_{i}<q_{i}$ and $u_{i} \mid q_{i}$ for all $1 \leqslant i \leqslant s$. then, where $n=n_{1}(\geqslant 8)$, for each odd prime $p_{i}$ which less than $n_{1}$, every $q_{i}=2 n_{1}-p_{i}$ such that $n_{1}-p_{i}=q_{i}-n_{1}$ be odd composite for all $1 \leqslant$ $\mathrm{i} \leqslant \mathrm{s}$. Therefore, $\mathrm{n}_{1}$ also makes the necessary and sufficient condition statement cannot tenable, and $\mathrm{n}_{1}<\mathrm{n}_{0}$, which contradicts the minimality of $\mathrm{n}_{0}$, it is impossible.

To sum up, we must have, there being no any one integer $n \geqslant 4$ makes the necessary and sufficient condition for the Theorem cannot tenable, therefore, we get that there must exists at least one odd prime q in the Q of every one integer $\mathrm{n} \geqslant 4$. Thus, the necessary and sufficient condition for the Theorem being tenable has proved, and we get the Theorem statement is true. This completes the proof of the Theorem.
3. An Equivalent Proposition of the Theorem. Let integer $n \geqslant 4$, there must exists at least one positive integer $d$ with $1 \leqslant d \leqslant n-3$, makes $n-d$ and $n+d$ being odd primes.

In particular, if $\mathrm{d}=1$, then $\{\mathrm{n}-1, \mathrm{n}+1\}$ be twin primes. So the accurate mathematical formulas of $d=f(n, p<n, n-p, \cdots, p \mid n)$ have very important theoretical significance and practical values.

## 4. The Geometric Significance of the Theorem

(i) On real axis, there must exist two distinct odd prime points $p$ and $q$ be symmetrically distributed to every integer point $n \geqslant 4$.
(ii) On real axis, every integer point $n \geqslant 4$ be the midpoint of the line segment that with two distinct odd prime points $p$ and $q$ for endpoints.

## 5. Three Corollaries of the Theorem

Corollary 5.1. Let integer $n \geqslant 4$, and $p_{1}, p_{2}, \ldots, p_{k}$ be all odd primes which less than $n$, then the equation $n-p_{i}=x_{i}-n$ has no solution, which every $x_{i}$ be odd composite for all $1 \leqslant i \leqslant k$.

Proof. The proof of the Corollary 5.1 is the same as the proof of the Theorem.

Corollary 5.2. Every integer $n \geqslant 2$ can be written as the arithmetic average of two primes.

Proof. By the Theorem, if integer $\mathrm{n} \geqslant 4$, there exist two distinct odd primes p and q such that $\mathrm{n}-\mathrm{p}=\mathrm{q}-\mathrm{n}$, and $\mathrm{n}-\mathrm{p}=\mathrm{q}-\mathrm{n} \Leftrightarrow \mathrm{n}=(\mathrm{p}+\mathrm{q}) / 2$, then we get: Every integer $\mathrm{n} \geqslant 4$ can be written as the arithmetic average of two distinct odd primes.

Moreover, there being $3=(3+3) / 2$ and $2=(2+2) / 2$, the further results can be reached:
Every integer $\mathrm{n} \geqslant 3$ can be written as the arithmetic average of two odd primes.
Every integer $\mathrm{n} \geqslant 2$ can be written as the arithmetic average of two primes.
This completes the proof.

Corollary 5.3. (Goldbach conjecture [2]) Every even number $2 n \geqslant 4$ can be written as the sum of two primes.

Proof. Let even number $2 \mathrm{n} \geqslant 8$, then $\mathrm{n} \geqslant 4$, by the results in the proof of the Corollary 5.2, there exist two distinct odd primes p and q such that $\mathrm{n}=(\mathrm{p}+\mathrm{q}) / 2$ for every integer $\mathrm{n} \geqslant 4$, and $2 \mathrm{n}(\geqslant 8)=2 \cdot \mathrm{n}(\geqslant 4)=2 \cdot(\mathrm{p}+\mathrm{q}) / 2=\mathrm{p}+\mathrm{q}$, one result reached:
Every even number $2 n \geqslant 8$ can be written as the sum of two distinct odd primes.
According to the same principle, by the conclusions of the Corollary 5.2, two results can be getting:
Every even number $2 \mathrm{n} \geqslant 6$ can be written as the sum of two odd primes .
Every even number $2 n \geqslant 4$, or every even composite can be written as the sum of two primes. This completes the proof.

## References

[1] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Number, Fifth Edition, Oxford Science Publications, Oxford University Press, Oxford, 1980.
[2] M. B. Nathanson. Elementary Methods in Number Theory, Springer--Verlag, Beijing, 2003.

