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Abstract. In the sixties Ogievetskĭı and Polubarinov proposed the concept of notoph, whose
helicity properties are complementary to those of photon. Later, Kalb and Ramond (and others)
developed this theoretical concept. And, at the present times it is widely accepted. We analyze
the quantum theory of antisymmetric tensor fields with taking into account mass dimensions
of notoph and photon. It appears to be possible the description of both photon and notoph
degrees of freedom on the basis of the modified Bargmann-Wigner formalism for the symmetric
second-rank spinor.

Next, we proceed to derive equations for the symmetric tensor of the second rank on the
basis of the Bargmann-Wigner formalism in a straightforward way. The symmetric multispinor
of the fourth rank is used. It is constructed out of the Dirac 4-spinors. Due to serious problems
with the interpretation of the results obtained on using the standard procedure we generalize it,
and we obtain the spin-2 relativistic equations, which are consistent with the general relativity.
The importance of the 4-vector field (and its gauge part) is pointed out.

Thus, we present the full theory which contains the photon, the notoph (the Kalb-Ramond
field) and the graviton. The relations of this theory with the higher spin theories are established.
In fact, we deduced the gravitational field equations from relativistic quantum mechanics.
The relations of this theory with scalar-tensor theories of gravitation and f(R) are discussed.
We estimate possible interactions, fermion-notoph, graviton-notoph, photon-notoph, and we
conclude that they will be probably seen in experiments in the next few years.

PACS number: 03.65.Pm , 04.50.-h , 11.30.Cp

1. Introduction.
In the series of the papers [1, 2, 3, 4, 5], cf. with Refs. [6, 7, 8], we tried to find connection between
the theory of the quantized antisymmetric tensor (AST) field of the second rank (and that of
the corresponding 4-vector field) with the 2(2s+1) Weinberg-Tucker-Hammer formalism [9, 10].

Several previously published works [11, 12, 13, 14, 15, 16], introduced the concept of the
notoph (the Kalb-Ramond field) which is constructed on the basis of the antisymmetric tensor
“potentials”. It represents itself the non-trivial spin-0 field. The well-known textbooks [17, 18,
19, 20] did not discuss the problems, whether the massless quantized AST field and the quantized
4-vector field are transverse or longitudinal fields (in the sense if the helicity h = ±1 or h = 0)?
can the electromagnetic potential be a 4-vector in a quantized theory (cf. Ref. [9b,p.251])? how
should the massless limit be taken? and many other fundamental problems of the physics of
bosons. In my opinion, the most rigorous works are refs. [22, 9, 23, 21], but it is not easy to
extract corresponding answers even from them.



First of all, we note that 1) “...In natural units (c = h̄ = 1) ... a lagrangian density,
since the action is dimensionless, has dimension of [energy]4”; 2) One can always renormalize
the lagrangian density and “one can obtain the same equations of motion... by substituting
L → (1/MN )L, where M is an arbitrary energy scale”, cf. [2]; 3) the right physical dimension
of the field strength tensor Fµν is [energy]2; “the transformation Fµν → (1/2M)Fµν [which was
regarded in Ref. [5]] ... requires a more detailed study ... [because] the transformation above
changes its physical dimension: it is not a simple normalization transformation”. Furthermore,
in the first papers on the notoph [12, 13, 14]1 the authors used the normalization of the 4-vector
Fµ field2 to [energy]2 and, hence, the antisymmetric tensor “potentials” Aµν , to [energy]1. We
try to discuss these problems on the basis of the generalized Bargmann-Wigner formalism [22].
Thus, the Proca and Maxwell formalisms are generalized, see, e. g., Ref. [24].

In the Sections 3 and 4 we consider the spin-2 equations. The general scheme for derivation
of higher-spin equations has been given in [22]. A field of the rest mass m and the spin s ≥ 1

2
is represented by a completely symmetric multispinor of rank 2s. The particular cases s = 1
and s = 3

2 have been considered in the textbooks, e. g., Ref. [17]. The spin-2 case can also be
of some interest because we can believe that the essential features of the gravitational field are
obtained from transverse components of the (2, 0)⊕ (0, 2) representation of the Lorentz group.
Nevertheless, questions of the redundant components of the higher-spin relativistic equations
are not yet understood in detail [25].

In the last Sections we discuss the questions of interactions.

2. Photon-Notoph Equations.
For spin 1 we start from3

[γαβpαpβ +Apαpα +Bm2]Ψ = 0 , (1)

where pµ = −i∂µ and γαβ are the Barut-Muzinich-Williams covariantly - defined 6× 6 matrices,∑
µ γµµ = 0. The determinant of [γαβpαpβ + Apαpα + Bm2] is of the 12th order in pµ. If we

are interested in solutions with E2 − p2 = m2, c = h̄ = 1, they can be obtained on using the
constraints in the above equation:

B

A+ 1
= 1 ,

B

A− 1
= 1 . (2)

We may also have the tachyonic solutions, etc. The particular cases are:

• A = 0, B = 1 ⇔ we have the Weinberg’s equation for s = 1 with 3 solutions E =
+

√
p2 +m2, 3 solutions E = −

√
p2 +m2, 3 solutions E = +

√
p2 −m2 and 3 solutions

E = −
√

p2 −m2. Tachyonic solutions have been reformulated in various ways, for instance,
as the ones leading to the spontaneous symmetry breaking, and to the non-zero quantum
vacuum.

• A = 1, B = 2 ⇔ we have the Tucker-Hammer equation for s = 1. The solutions are with
E = ±

√
p2 +m2 only.

Thus, the addition of the Klein-Gordon equation to (3) may change the physical content even
on the free level.

1 It is also known as the longitudinal Kalb-Ramond field, but the consideration of Ogievetskĭı and Polubarinov
permits to study the m→ 0 procedure.
2 It is well known that it is related to the third-rank antisymmetric field tensor.
3 In the classic works on this formalism the authors worked in the Euclidean metrics. However, there is no any
problem to write the equations and other formulas in the pseudo-Euclidean metrics accustomed today; just change
the sign of pµpµ, and other products.



What are the corresponding equations for the antisymmetric tensor field? They can be the
Proca equations in the massive case, and the Maxwell equations in the massless case. We have
shown in Refs. [1, 2] that one can obtain four different equations for antisymmetric tensor fields
from the Weinberg’s 2(2s + 1)− component formalism. First of all, we note that Ψ is, in fact,
bivector, Ei = −iF4i, Bi = 1

2εijkFjk,, or Ei = −1
2εijkF̃jk, Bi = −iF̃4i, or their combinations.

One can separate the four cases:

• Ψ(I) =
(

E + iB
E− iB

)
, P = −1, where Ei and Bi are the components of the tensor.

• Ψ(II) =
(

B− iE
B + iE

)
, P = +1, where Ei, Bi are the components of the tensor.

• Ψ(III) = Ψ(I), but (!) Ei and Bi are the corresponding vector and axial-vector components
of the dual tensor F̃µν .

• Ψ(IV ) = Ψ(II), where Ei and Bi are the components of the dual tensor F̃µν .

The mappings of the WTH equations are:

∂α∂µF
(I)
µβ − ∂β∂µF

(I)
µα +

A− 1
2

∂µ∂µF
(I)
αβ −

B

2
m2F

(I)
αβ = 0 , (3)

∂α∂µF
(II)
µβ − ∂β∂µF

(II)
µα − A+ 1

2
∂µ∂µF

(II)
αβ +

B

2
m2F

(II)
αβ = 0 , (4)

∂α∂µF̃
(III)
µβ − ∂β∂µF̃

(III)
µα − A+ 1

2
∂µ∂µF̃

(III)
αβ +

B

2
m2F̃

(III)
αβ = 0 ,

(5)

∂α∂µF̃
(IV )
µβ − ∂β∂µF̃

(IV )
µα +

A− 1
2

∂µ∂µF̃
(IV )
αβ − B

2
m2F̃

(IV )
αβ = 0 . (6)

In the Tucker-Hammer case (A = 1, B = 2) we can recover the Proca theory from (??):

∂α∂µFµβ − ∂β∂µFµα = m2Fαβ , (7)

(Aν = 1
m2∂αFαν should be substituted in Fµν = ∂µAν − ∂νAµ, and the result is multiplied by

m2).
We also noted that the massless limit of this theory does not coincide with the Maxwell theory

in some cases, while it contains the latter as a particular case. In [3, 5, 30] we showed that it is
possible to define various massless limits for the Duffin-Kemmer-Proca theory. Another one is the
Ogievetskĭı-Polubarinov notoph (which is also called the Kalb-Ramond field), Ref. [12] in the US
literature. The transverse components of the AST field can be removed from the corresponding
Lagrangian by means of the “new gauge transformation” Aµν → Aµν + ∂µΛν − ∂νΛµ, with the
vector gauge function Λµ.

The second (II) case is

∂α∂µFµβ − ∂β∂µFµα = [∂µ∂µ −m2]Fαβ . (8)

So, on the mass shell we have [∂µ∂µ −m2]Fαβ = 0, and, hence,

∂α∂µFµβ − ∂β∂µFµα = 0 , (9)

which rather corresponds to the Maxwell-like case. However, if we calculate dispersion relations
for the second case, Eq. (9), it appears that the equation has solutions even if m 6= 0.



Now we are interested in the parity-violating equations for antisymmetric tensor fields.
We investigate the most general mapping of the Weinberg-Tucker-Hammer formulation to the
antisymetric tensor field formulation too. Instead of Ψ(I−IV ) we shall try to use now

Ψ(A) =
(

E + iB
B + iE

)
=

1 + γ5

2
Ψ(I) +

1− γ5

2
Ψ(II) . (10)

As a result, the equation for the AST fields is

∂α∂µFµβ − ∂β∂µFµα =
1
2
(∂µ∂µ)Fαβ + [−A

2
(∂µ∂µ) +

B

2
m2]F̃αβ . (11)

Of course, Ψ(A)′ =
(

B− iE
E− iB

)
= −iΨ(A), and the equation is unchanged. The different choice

is

Ψ(B) =
(

E + iB
−B− iE

)
=

1 + γ5

2
Ψ(I) − 1− γ5

2
Ψ(II) . (12)

Thus, one has

∂α∂µFµβ − ∂β∂µFµα =
1
2
(∂µ∂µ)Fαβ + [

A

2
(∂µ∂µ)− B

2
m2]F̃αβ . (13)

Of course, one can also use the dual tensor (Ei = −1
2εijkF̃jk and Bi = −iF̃4i) and obtain

analogous equations:

∂α∂µF̃µβ − ∂β∂µF̃µα =
1
2
(∂µ∂µ)F̃αβ + [−A

2
(∂µ∂µ) +

B

2
m2]Fαβ ,

(14)

∂α∂µF̃µβ − ∂β∂µF̃µα =
1
2
(∂µ∂µ)F̃αβ + [

A

2
(∂µ∂µ)− B

2
m2]Fαβ .

(15)

They are connected with (11,13) by the dual transformations.
The states corresponding to the new functions Ψ(A), Ψ(B) etc are not the parity eigenstates.

So, it is not surprising that we have Fαβ and its dual F̃αβ in the same equations. In total we
have already eight equations.

One can also consider the most general case

Ψ(W ) =
(
aF4i + bF̃4i + cεijkFjk + dεijkF̃jk

eF4i + fF̃4i + gεijkFjk + hεijkF̃jk

)
. (16)

So, we shall have dynamical equations for Fαβ and F̃αβ with additional parameters a, b, c, d, . . . ∈
C. We have a lot of antisymmetric tensor fields here. However,

• the covariant form preserves if there are some restrictions on the parameters, only.
Alternatively, we have some additional terms of ∂2

4 or ∇2;
• both Fµν and F̃µν are present in the equations;
• under the definite choice of a, b, c, d . . . the equations can be reduced to the above equations

for the tensor Hµν and its dual:

Hµν = c1Fµν + c2F̃µν +
c3
2
εµναβFαβ +

c4
2
εµναβF̃αβ ; (17)



• the parity properties of Ψ(W ) are very complicated.

Anther way of constructing the equations of high-spin particles has been given in [22, 17].4

Bargmann and Wigner claimed explicitly that they constructed (2s + 1) states.5 Below we
present the standard Bargmann-Wigner formalism for the spin s = 1 (and turn to the standard
pseudo-Euclidean metric):

[iγµ∂µ −m]αβ Ψβγ = 0 , (18)

[iγµ∂µ −m]γβ Ψαβ = 0 , (19)

If one has
Ψ{αβ} = (γµR)αβAµ + (σµνR)αβFµν , (20)

with6

R = eiϕ
(

Θ 0
0 −Θ

)
Θ =

(
0 −1
1 0

)
(25)

in the spinorial representation of γ-matrices, we obtain the Duffin-Kemmer-Proca equations:

∂αFαµ =
m

2
Aµ , (26)

2mFµν = ∂µAν − ∂νAµ . (27)

In order to obtain these equations one should add the equations (18,19) and compare functional
coefficients at the corresponding commutators, see Ref. [17]. After the corresponding re-
normalization Aµ → 2mAµ (or Fµν → (1/2m)Fµν), we obtain the standard textbook set:

∂αFαµ = m2Aµ , (28)
Fµν = ∂µAν − ∂νAµ . (29)

It gives the equation (7) for the antisymmetric tensor field. Of course, one can investigate
other sets of equations with different normalization of the Fµν and Aµ fields. Are all these
sets of equations equivalent? As we see, to answer this question is not trivial. It was argued
that the physical normalization is such that in the massless limit the zero-momentum field
functions should vanish in the momentum representation (there are no massless particles at
rest). Moreover, we advocate the following approach: the massless limit can and must be taken
in the end of all calculations only, i. e., for physical quantities.

How can one obtain other equations following from the Weinberg-Tucker-Hammer approach?
The recipe for the third equation is simple: use, instead of (σµνR)Fµν , another symmetric matrix
(γ5σµνR)Fµν .

4 On can also obtain the s = 0 Kemmer equations on using the Bargmann-Wigner procedure. One should use
the antisymmetric second-rank multispinor in this case.
5 The Weinberg-Tucker-Hammer theory has essentially 2(2s+ 1) components.
6 The reflection operator R has the properties

RT = −R , R† = R = R−1 , (21)

R−1γ5R = (γ5)T , (22)

R−1γµR = −(γµ)T , (23)

R−1σµνR = −(σµν)T . (24)



After taking into account the above observations let us repeat the procedure of derivation of
the Proca equations from the Bargmann-Wigner equations for a symmetric second-rank spinor.
However, we now use

Ψ{αβ} = (γµR)αβ(camAµ + cfFµ) + (σµνR)αρ(cAm(γ5)ρβAµν + cF IρβFµν) , (30)

with the same R and Θ as above. Matrices γµ are again chosen in the Weyl (spinorial)
representation, i.e., γ5 is assumed to be diagonal. Constants ci are some numerical dimensionless
coefficients. The properties of the reflection operator R are necessary for the expansion (30) to
be possible in such a form, i.e., in order to have the γµR, σµνR and γ5σµνR to be symmetric
matrices.

The substitution of the above expansion into the Bargmann-Wigner equations, Ref. [17], gives
us the new Proca-like equations:

cam(∂µAν − ∂νAµ) + cf (∂µFν − ∂νFµ) = icAm
2εαβµνA

αβ + 2mcFFµν , (31)

cam
2Aµ + cfmFµ = icAmεµναβ∂

νAαβ + 2cF∂νFµν . (32)

In the case ca = 1, cF = 1
2 and cf = cA = 0 they are reduced to the ordinary Proca equations.7

In the general case we obtain dynamical equations which connect the photon, the notoph and
their potentials. The divergent (in m → 0) parts of field functions and those of dynamical
variables should be removed by corresponding gauge (or Kalb-Ramond gauge) transformations.
It is well known that the notoph massless field is considered to be the pure longitudinal field
after one takes into account ∂µA

µν = 0. Apart from these dynamical equations we can obtain
a number of constraints by means of the subtraction of the equations of the Bargmann-Wigner
system (instead of the addition as for (31,32)). They read

mca∂
µAµ + cf∂

µfµ = 0 , (33)

mcA∂
αAαµ +

i

2
cF εαβνµ∂

αF βν = 0, (34)

that suggests F̃µν ∼ imAµν and fµ ∼ mAµ, as in [12].
Thus, after the suitable choice of the dimensionless coefficients ci the Lagrangian density for

the photon-notoph field can be proposed:

L = LProca + LNotoph = −1
8
FµF

µ − 1
4
FµνF

µν +

+
m2

2
AµA

µ +
m2

4
AµνA

µν , (35)

The limit m→ 0 may be taken for dynamical variables, in the end of calculations only.
Furthermore, it is logical to introduce the normalization scalar field ϕ(x), and consider the

expansion:
Ψ{αβ} = (γµR)αβ(ϕAµ) + (σµνR)αβFµν . (36)

Then, we arrive at the following set

2mFµν = ϕ(∂µAν − ∂νAµ) + (∂µϕ)Aν − (∂νϕ)Aµ , (37)

∂νFµν =
m

2
(ϕAµ) , (38)

7 We still note that the division by m in the first equation is not the well-defined operation in the case if someone
is interested in the subsequent limiting procedure m→ 0. Probably, in order to avoid this obscure point one may
wish to write the Dirac equations in the form [(iγµ∂µ)/m− I]ψ(x) = 0, which follows straightforwardly in the
derivation of the Dirac equation on the basis of the Ryder relation [7] and the Wigner rules for the boosts of the
field functions from the zero-momentum frame.



which in the case of the constant scalar field ϕ = 2m can also be reduced to the system of the
Proca equations. The additional constraints are

(∂µϕ)Aµ + ϕ(∂µAµ) = 0 , (39)

∂µF̃
µν = 0 . (40)

At the moment it is not yet obvious, how can we account for other equations in the
(1, 0) ⊕ (0, 1) representation, e.g. [7b], rigorously. For instance, one can wish to seek the
generalization of the Proca equations on the basis of the introduction of two mass parameters
m1 and m2. But, when we apply the BW procedure to the Dirac equations we cannot obtain
new physical content. Another equation in the (1/2, 0) ⊕ (0, 1/2) representation was discussed
in Ref. [26]. It has the form: [

iγµ∂µ −m1 − γ5m2

]
Ψ(x) = 0 . (41)

The Bargmann-Wigner procedure for this system of equations (which include the γ5 matrix in
the mass term) yields:

. 2m1F
µν + 2im2F̃

µν = ϕ(∂µAν − ∂νAµ) + (∂µϕ)Aν − (∂νϕ)Aµ , (42)

∂νFµν =
m1

2
(ϕAµ), (43)

with the constraints

(∂µϕ)Aµ + ϕ(∂µAµ) = 0 , (44)

∂νF̃µν =
im2

2
(ϕAµ) . (45)

In general, we can now use the four different mass parameters in the equations which are
analogous to (18,19). However, the equality of mass factors8 (m(1)

1 = m
(2)
1 and m

(1)
2 = m

(2)
2 ) is

obtained as necessary conditions in the process of calculations in the system of the Dirac-like
equations.

In fact, the results of this paper develop the old results of Ref. [12]. According to [12,
Eqs.(9,10)] we proceed in constructing the “potentials” for the notoph as follows:9

Aµν(p) = N
[
ε(1)µ (p)ε(2)ν (p)− ε(1)ν (p)ε(2)µ (p)

]
. (46)

We use explicit forms for the polarization vectors (e.g., Refs. [21] and [5, formulas(15a,b)])
boosted to the momentum p:

εµ(0,+1) = − 1√
2


0
1
i
0

 , εµ(0, 0) =


0
0
0
1

 , εµ(0,−1) =
1√
2


0
1
−i
0

 , (47)

and (p̂i = pi/|p|, γ = Ep/m), Ref. [21, p.68] or Ref. [19, p.108],

εµ(p, σ) = Lµ
ν(p)εν(0, σ) , (48)

L0
0(p) = γ , Li

0(p) = L0
i(p) = p̂i

√
γ2 − 1 , (49)

Li
k(p) = δik + (γ − 1)p̂ip̂k . (50)

8 Here, the superscripts (1) and (2) refers to the first and the second equations, respectively, in the modified
Bargmann-Wigner system.
9 The notation is that of Ref. [12] here.



N , the normalization factor, should be taken into account for possible analyses of propagators
and massless limits. After substitutions in the definition (46) one obtains

Aµν(p) =
iN2

m


0 −p2 p1 0
p2 0 m+ prpl

p0+m
p2p3

p0+m

−p1 −m− prpl
p0+m 0 − p1p3

p0+m

0 − p2p3

p0+m
p1p3

p0+m 0

 , (51)

i.e., it coincides with the longitudinal components of the antisymmetric tensor obtained in
Refs. [7a,Eqs.(2.14,2.17)] and [5, Eqs.(17b,18b)] within the normalization and different forms
of the spin basis. The Aµν(p) potential reduces to zero in the limiting case (m → 0) under
appropriate choice of the normalization N = mα, α > 1/2. If N =

√
m this reduction of the

non-transverse state occurs if a s = 1 particle moves along with the third axis OZ.10 It is also
useful to compare Eq. (51) with the formula (B2) in Ref. [8] in order to think about correct
procedures for taking the massless limits.

Next, the Tam-Happer experiments [27] on two laser beams interaction did not find
satisfactory explanation in the framework of the ordinary QED (at least, their explanation
is complicated by huge technical calculations). On the other hand, in Ref. [28] a very interesting
model has been proposed. It is based on gauging the Dirac field on using the coordinate-
dependent parameters αµν(x) in

ψ(x) → ψ′(x′) = Ωψ(x) , Ω = exp
[
i

2
σµναµν(x)

]
, (52)

and, thus, the second “photon” was introduced. The compensating 24-component (in general)
field Bµ,νλ reduces to the 4-vector field as follows (the notation of [28] is used here):

Bµ,νλ =
1
4
εµνλσaσ(x) . (53)

As readily seen, after comparison of these formulas with those of Refs. [12, 13, 14], the second
photon is nothing more than the Ogievetskĭı-Polubarinov notoph within the normalization.
Parity properties are dependent not only on the explicit forms of the momentum-space
field functions of the (1/2, 1/2) representation, but also on the properties of corresponding
creation/annihilation operators. Helicity properties depend on the normalization.

3. The Standard Bargmann-Wigner Formalism Applied for Spin 2.
In this Section we use the commonly-accepted procedure for the derivation of higher-spin
equations [22]. We begin with the equations for the 4-rank symmetric spinor:

[iγµ∂µ −m]αα′ Ψα′βγδ = 0 , (54)
[iγµ∂µ −m]ββ′ Ψαβ′γδ = 0 , (55)

[iγµ∂µ −m]γγ′ Ψαβγ′δ = 0 , (56)

[iγµ∂µ −m]δδ′ Ψαβγδ′ = 0 . (57)

The massless limit (if one needs) should be taken in the end of all calculations.
We proceed expanding the field function in the set of symmetric matrices (as in the spin-1

case, cf. Ref. [5]). In the beginning let us use the first two indices:11

Ψ{αβ}γδ = (γµR)αβΨµ
γδ + (σµνR)αβΨµν

γδ . (58)

10 But, even in this case we cannot have a good behaviour of the 4-vector fields/potentials in the massless limit
in the instant form of the relativistic dynamics, cf. [8].
11 The matrix R can be related to the CP operation in the (1/2, 0)⊕ (0, 1/2) representation.



We would like to write the corresponding equations for functions Ψµ
γδ and Ψµν

γδ in the form:

2
m
∂µΨµν

γδ = −Ψν
γδ , (59)

Ψµν
γδ =

1
2m

[
∂µΨν

γδ − ∂νΨµ
γδ

]
. (60)

Constraints (1/m)∂µΨµ
γδ = 0 and (1/m)εµν

αβ ∂µΨαβ
γδ = 0 can be regarded as the consequence of

Eqs. (59,60).
Next, we present the vector-spinor and tensor-spinor functions as

Ψµ
{γδ} = (γκR)γδG

µ
κ + (σκτR)γδF

µ
κτ , (61)

Ψµν
{γδ} = (γκR)γδT

µν
κ + (σκτR)γδR

µν
κτ , (62)

i. e., using the symmetric matrix coefficients in indices γ and δ. Hence, the total function is

Ψ{αβ}{γδ} = (γµR)αβ(γκR)γδG
µ

κ + (γµR)αβ(σκτR)γδF
µ

κτ +
+ (σµνR)αβ(γκR)γδT

µν
κ + (σµνR)αβ(σκτR)γδR

µν
κτ , (63)

and the resulting tensor equations are:

2
m
∂µT

µν
κ = −G ν

κ , (64)

2
m
∂µR

µν
κτ = −F ν

κτ , (65)

T µν
κ =

1
2m

[∂µG ν
κ − ∂νG µ

κ ] , (66)

R µν
κτ =

1
2m

[∂µF ν
κτ − ∂νF µ

κτ ] . (67)

The constraints are re-written to

1
m
∂µG

µ
κ = 0 ,

1
m
∂µF

µ
κτ = 0 , (68)

1
m
εαβνµ∂

αT βν
κ = 0 ,

1
m
εαβνµ∂

αR βν
κτ = 0 . (69)

However, we need to make symmetrization over these two sets of indices {αβ} and {γδ}.
The total symmetry can be ensured if one contracts the function Ψ{αβ}{γδ} with antisymmetric
matrices R−1

βγ , (R−1γ5)βγ and (R−1γ5γλ)βγ , and equate all these contractions to zero (similar to
the s = 3/2 case considered in Ref. [17, p. 44]. We obtain additional constraints on the tensor
field functions:

G µ
µ = 0 , G[κ µ] = 0 , Gκµ =

1
2
gκµG ν

ν , (70)

F µ
κµ = F µ

µκ = 0 , εκτµνFκτ,µ = 0 , (71)
Tµ

µκ = Tµ
κµ = 0 , εκτµνTκ,τµ = 0 , (72)

F κτ,µ = Tµ,κτ , εκτµλ(Fκτ,µ + Tκ,τµ) = 0 , (73)
R µν

κν = R µν
νκ = R νµ

κν = R νµ
νκ = R µν

µν = 0 , (74)

εµναβ(gβκRµτ,να − gβτRνα,µκ) = 0 εκτµνRκτ,µν = 0 . (75)



Thus, we encountered with the well-known difficulty of the theory of spin-2 particles in the
Minkowski space. We explicitly showed that all field functions become to be equal to zero. Such
a situation cannot be considered as a satisfactory one (because it does not give us any physical
information), and it can be corrected in several ways.12

4. The Generalized Bargmann-Wigner Formalism for Spin 2.
We shall modify the formalism in the spirit of Ref. [30]. The field function (58) is now presented
as

Ψ{αβ}γδ = α1(γµR)αβΨµ
γδ + α2(σµνR)αβΨµν

γδ + α3(γ5σµνR)αβΨ̃µν
γδ , (76)

with

Ψµ
{γδ} = β1(γκR)γδG

µ
κ + β2(σκτR)γδF

µ
κτ + β3(γ5σκτR)γδF̃

µ
κτ , (77)

Ψµν
{γδ} = β4(γκR)γδT

µν
κ + β5(σκτR)γδR

µν
κτ + β6(γ5σκτR)γδR̃

µν
κτ , (78)

Ψ̃µν
{γδ} = β7(γκR)γδT̃

µν
κ + β8(σκτR)γδD̃

µν
κτ + β9(γ5σκτR)γδD

µν
κτ . (79)

Hence, the function Ψ{αβ}{γδ} can be expressed as a sum of nine terms:

Ψ{αβ}{γδ} = α1β1(γµR)αβ(γκR)γδG
µ

κ + α1β2(γµR)αβ(σκτR)γδF
µ

κτ +

+ α1β3(γµR)αβ(γ5σκτR)γδF̃
µ

κτ + +α2β4(σµνR)αβ(γκR)γδT
µν

κ +

+ α2β5(σµνR)αβ(σκτR)γδR
µν

κτ + α2β6(σµνR)αβ(γ5σκτR)γδR̃
µν

κτ +

+ α3β7(γ5σµνR)αβ(γκR)γδT̃
µν

κ + α3β8(γ5σµνR)αβ(σκτR)γδD̃
µν

κτ +

+ α3β9(γ5σµνR)αβ(γ5σκτR)γδD
µν

κτ . (80)

The corresponding dynamical equations are given by13

2α2β4

m
∂νT

µν
κ +

iα3β7

m
εµναβ∂ν T̃κ,αβ = α1β1G

µ
κ , (81)

2α2β5

m
∂νR

µν
κτ +

iα2β6

m
εαβκτ∂νR̃

αβ,µν +
iα3β8

m
εµναβ∂νD̃κτ,αβ −

− α3β9

2
εµναβελδκτD

λδ
αβ = α1β2F

µ
κτ +

iα1β3

2
εαβκτ F̃

αβ,µ , (82)

2α2β4T
µν

κ + iα3β7ε
αβµν T̃κ,αβ =

α1β1

m
(∂µG ν

κ − ∂νG µ
κ ) , (83)

2α2β5R
µν

κτ + iα3β8ε
αβµνD̃κτ,αβ + iα2β6εαβκτ R̃

αβ,µν − α3β9

2
εαβµνελδκτD

λδ
αβ =

=
α1β2

m
(∂µF ν

κτ − ∂νF µ
κτ ) +

iα1β3

2m
εαβκτ (∂µF̃αβ,ν − ∂νF̃αβ,µ) . (84)

The essential constraints are:

α1β1G
µ

µ = 0 , α1β1G[κµ] = 0 , (85)

12 The reader can compare our results of this Section with those of Ref. [29]. I became aware about their
consideration from Dr. D. V. Ahluwalia (personal communications, May 5, 1998). I consider their discussion of
the standard formalism in the Sections I and II, as insufficient.
13 All indices in this formula are already pure vectorial and have nothing to do with previous notation. The
coefficients αi and βi may, in general, carry some dimension.



2iα1β2F
µ

αµ + α1β3ε
κτµ

αF̃κτ,µ = 0 , (86)

2iα1β3F̃
µ

αµ + α1β2ε
κτµ

αFκτ,µ = 0 , (87)

2iα2β4T
µ

µα − α3β7ε
κτµ

αT̃κ,τµ = 0 , (88)

2iα3β7T̃
µ

µα − α2β4ε
κτµ

αTκ,τµ = 0 , (89)

iεµνκτ
[
α2β6R̃κτ,µν + α3β8D̃κτ,µν

]
+ 2α2β5R

µν
µν + 2α3β9D

µν
µν = 0 , (90)

iεµνκτ [α2β5Rκτ,µν + α3β9Dκτ,µν ] + 2α2β6R̃
µν

µν + 2α3β8D̃
µν

µν = 0 , (91)

2iα2β5R
µα

βµ + 2iα3β9D
µα

βµ + α2β6ε
να

λβR̃
λµ

µν + α3β8ε
να

λβD̃
λµ

µν = 0 , (92)

2iα1β2F
λµ

µ − 2iα2β4T
µλ

µ + α1β3ε
κτµλF̃κτ,µ + α3β7ε

κτµλT̃κ,τµ = 0 , (93)

2iα1β3F̃
λµ

µ − 2iα3β7T̃
µλ

µ + α1β2ε
κτµλFκτ,µ + α2β4ε

κτµλTκ,τµ = 0 , (94)

α1β1(2Gλ
α − gλ

αG
µ

µ)− 2α2β5(2Rλµ
µα + 2R µλ

αµ + gλ
αR

µν
µν) +

+ 2α3β9(2Dλµ
µα + 2D µλ

αµ + gλ
αD

µν
µν) + 2iα3β8(ε µν

κα D̃κλ
µν − εκτµλD̃κτ,µα)−

− 2iα2β6(ε µν
κα R̃κλ

µν − εκτµλR̃κτ,µα) = 0 , (95)

2α3β8(2D̃λµ
µα + 2D̃ µλ

αµ + gλ
αD̃

µν
µν)− 2α2β6(2R̃λµ

µα + 2R̃ µλ
αµ +

+ gλ
αR̃

µν
µν) + +2iα3β9(ε µν

κα Dκλ
µν − εκτµλDκτ,µα)−

− 2iα2β5(ε µν
κα Rκλ

µν − εκτµλRκτ,µα) = 0 , (96)

α1β2(Fαβ,λ − 2F βλ,α + F βµ
µ g

λα − Fαµ
µ g

λβ)−
− α2β4(T λ,αβ − 2T β,λα + T µα

µ gλβ − T µβ
µ gλα) +

+
i

2
α1β3(εκταβF̃ λ

κτ + 2ελκαβF̃ µ
κµ + 2εµκαβF̃ λ

κ,µ)−

− i

2
α3β7(εµναβT̃ λ

µν + 2ενλαβT̃µ
µν + 2εµκαβT̃ λ

κ,µ ) = 0 . (97)

They are the results of contractions of the field function (80) with six antisymmetric matrices,
as above. Furthermore, one should recover the relations (70-75) in the particular case when
α3 = β3 = β6 = β9 = 0 and α1 = α2 = β1 = β2 = β4 = β5 = β7 = β8 = 1.

As a discussion, we note that in such a framework we have physical content because only
certain combinations of field functions can be equal to zero. In general, the fields F µ

κτ , F̃ µ
κτ ,

T µν
κ , T̃ µν

κ , and R µν
κτ , R̃ µν

κτ , D µν
κτ , D̃ µν

κτ can correspond to different physical states and
the equations above describe couplings one state with another.

Furthermore, from the set of equations (81-84) one obtains the second-order equation for the



symmetric traceless tensor of the second rank (α1 6= 0, β1 6= 0):

1
m2

[∂ν∂
µG ν

κ − ∂ν∂
νG µ

κ ] = G µ
κ . (98)

After the contraction in indices κ and µ this equation is reduced to

∂µG
µ

α = Fα , (99)
1
m2

∂αF
α = 0 , (100)

i. e., to the equations connecting the analogue of the energy-momentum tensor and the analogue
of the 4-vector potential (the additional notoph field as opposed to the Logunov theory?).
As we showed in our recent work [30] the longitudinal potential may have importance in the
construction of electromagnetism (see also the works on the notoph and notivarg concept [31]).
Moreover, according to the Weinberg theorem [9] for massless particles it is the gauge part of the
4-vector potential ∼ ∂µχ, which is the physical field. The case, when the longitudinal potential
is equated to zero, can be considered as a particular case only. This case may be relevant
to some physical situation but hardly to be considered as a basis for unification. Further
investigations may provide additional foundations to “surprising” similarities of gravitational
and electromagnetic equations in the low-velocity limit, Refs. [32, 33, 34, 36].

5. Interactions with Fermions.
The possibility of terms as σ · [A × A∗] appears to be related to the matters of chiral
interactions [38, 39]. As we are now convinced, the Dirac field operator can be always presented
as a superposition of the self- and anti-self charge conjugate field operators (cf. Ref. [37]). The
anti-self charge conjugate part can give the self charge conjugate part after multiplying by the
γ5 matrix, and vice versa. We derived14

[iγµD∗
µ −m]ψs

1 = 0 , (102)

or15

[iγµDµ −m]ψa
2 = 0 . (104)

Both equations lead to the terms of interaction such as σ · [A×A∗] provided that the 4-vector
potential is considered as a complex function(al). In fact, from (102) we have:

iσµ∇µχ1 −mφ1 = 0 , (105)
iσ̃µ∇∗

µφ1 −mχ1 = 0 . (106)

And, from (104) we have

iσµ∇∗
µχ2 −mφ2 = 0 , (107)

iσ̃µ∇µφ2 −mχ2 = 0 . (108)

14 The anti-self charge conjugate field function ψ2 can also be used. The equation has then the form:

[iγµD∗
µ +m]ψa

2 = 0 . (101)

15 The self charge conjugate field function ψ1 also can be used. The equation has the form:

[iγµDµ +m]ψs
1 = 0 . (103)

As readily seen, in the cases of alternative choices we have opposite charges in the terms of the type σ · [A×A∗]
and in the mass terms.



The meanings of σµ and σ̃µ are obvious from the definition of γ matrices. The derivatives
are defined:

Dµ = ∂µ − ieγ5Cµ + eBµ , ∇µ = ∂µ − ieAµ , (109)

and Aµ = Cµ + iBµ. Thus, relations with the magnetic monopoles can also be established.
From the above system we extract the terms as ±e2σiσjAiA

∗
j , which lead to the discussed

terms [38, 39].16 Furthermore, one can come to the same conclusions not applying to the
constraints on the creation/annihilation operators (which we have previously chosen for clarity
and simplicity in Ref. [39]). It is possible to work with self/anti-self charge conjugate fields
and the Majorana anzatzen. Thus, in the considered cases it is the γ5 transformation which
distinguishes various field configurations (helicity, self/anti-self charge conjugate properties etc)
in the coordinate representation.

6. Boson Interactions.
The most general relativistic-invariant Lagrangian for the symmetric 2nd-rank tensor is

L = −α1(∂αGαλ)(∂βG
βλ)− α2(∂αG

βλ)(∂αGβλ)−
− α3(∂αGβλ)(∂βGαλ) +m2GαβG

αβ . (110)

It leads to the equation[
α2∂

2 +m2
]
G{µν} + (α1 + α3)∂{µ| (∂αG

α|ν}) = 0 . (111)

In the case α2 = 1 > 0 and α1 + α3 = −1 it coincides with Eq. (98). There is no any problem
to obtain the dynamical invariants for the fields of the spin 2 from the above Lagrangian. The
mass dimension of Gµν is [energy]1.

We now present possible relativistic interactions of the symemtric 2nd-rank tensor. They
should be the following ones:

Lint
(1) ∼ GµνF

µF ν , (112)

Lint
(2) ∼ (∂µGµν)F ν , (113)

Lint
(3) ∼ Gµν(∂µF ν) . (114)

The term ∼ (∂µG
α
α)Fµ vanishes due to the constraint of tracelessness. Obviously, these

interactions cannot be obtained from the free Lagrangian (110) just by the covariantization
of the derivative ∂µ → ∂µ + gFµ.

It is also interesting to note that thanks to the possible terms

V (F ) = β1(FµF
µ) + β2(FµF

µ)(FνF
ν) (115)

we can give the mass to the G00 component of the spin-2 field. This is due to the possibility of
the Higgs spontaneous symmetry breaking [40]

Fµ(x) =


v + ∂0χ(x)

g1

g2

g3

 , (116)

16 I am grateful to Prof. S. Esposito for the e-mail communications (1997-98) on the alternative proof of the
considered interaction. We would like to note that the terms of the type σ · [A×A∗] can be reduced to (σ · ∇)V ,
where V is the scalar potential.



with v being the vacuum expectation value, v2 = (FµF
µ) = −β1/2β2 > 0. Other degrees of

freedom of the 4-vector field are removed since they can be interpreted as the Goldstone bosons.
It was stated that “for any continuous symmetry which does not preserve the ground state,
there is a massless degree of freedom which decouples at low energies. This mode is called the
Goldstone (or Nambu-Goldstone) particle for the symmetry”. As usual, the Higgs mechanism
and the Goldstone modes should be important in giving masses to the three vector bosons.17 As
one can easily see, this expression does not permit an arbitrary phase for Fµ, which is possible
only if the 4-vector would be the complex one.

Next, due to the Lagrangian interaction of fermions with notoph are of the order e2 since
the beginning (as opposed to the interaction with the 4-vector potential Aµ), it is more difficult
to observe it. However, as far as I know the theoretical precision calculus in QED (the Landé
factor, the anomalous magnetic moment, the hyperfine splittings in positronium and muonium,
and the decay rate of o-Ps and p-Ps) are about the order corresponding to the 4th-5th loops,
where the difference may appear with the experiments [41, 42].

7. Conclusions.
We considered the Bargmann-Wigner formalism to derive the equations for the AST field and
for the symmetric tensor of the 2nd rank. We introduced additional scalar normalization field
in the Bargmann-Wigner formalism in order to take into account possible physical significance
of the Ogievetskĭı-Polubarinov–Kalb-Ramond modes. We introduced the additional symmetric
matrix in the Bargmann-Wigner expansion (γ5σµνR) in order to take into account the dual
fields. The consideration is similar to Ref. [43].

Furthermore, we discussed the interactions of notoph, photon and graviton (and, probably,
notivarg18). For instance, the interaction notoph-graviton may give the mass to spin-2 particles
in the way which is similar to the spontaneous-symmetry-breaking Higgs formalism.
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