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Abstract 

Recent years have hinted that the concept of fractal spacetime may play a role in both the “would-be” physics 

beyond the Standard Model and the large-scale structure of the Universe. Here we explore a scenario where classical 

spacetime equipped with minimal fractality appears to provide a natural solution for two major challenges of 

relativistic cosmology, the cosmological constant and coincidence problems.  
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1. Introduction 

As it is well known, the principle of general (or diffeomorphism) covariance lies at the core of 

General Relativity (GR) [1, 2]. This principle asserts that all physical laws must take the same 

mathematical form regardless of the coordinate system used by observers in arbitrary relative 

motion. Stated differently, general covariance means invariance of physical laws under all 

possible coordinate transformations and is typically formulated in terms of tensor fields. An 

implicit assumption of general covariance is that any coordinate transformation and its inverse 

are smooth functions that can be differentiated arbitrarily many times. However, as it is also 

known, there is a plethora of non-differentiable curves and surfaces in Nature, as repeatedly 

discovered since the introduction of fractal geometry in 1983 [3]. The inevitable conclusion is 
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GR assigns a preferential status to differentiable transformations and the smooth geometry of 

spacetime, which is at odds with the very spirit of general covariance. 

A natural question arises on how to properly integrate fractal geometry in the classical 

framework of GR without spoiling its internal consistency. Echoing the points made in [4-13], 

we believe that a promising avenue along these lines is through the use of fractional field theory 

or dimensional reduction. As we explain below, although both approaches target primarily the 

realm of sub-nuclear scales (that is, physics beyond the Standard Model of elementary particles 

as well as the ultraviolet regime of Quantum Gravity), they may be also of great utility on 

macroscopic scales, where classical behavior and GR become relevant. A direct outcome of this 

scenario in the limit of low-level fractionality is that the description of classical fields on flat 

spacetime matches the description of the same fields coupled to gravitation. This viewpoint 

enables one to understand gravitation as an “effective” medium induced by the fractal attributes 

of spacetime [12-13] and makes it possible to equate classical trajectories of either massive or 

massless particles in GR with their paths on flat fractal manifolds. 

In fact, the duality between motion in non-Euclidean metric and on fractal manifolds can be 

substantiated using a simple argument from classical optics: light bending in gravitational fields 

is analogous to light bending in an optical medium having a varying refractive index [15-16]. 

Since a flat spacetime manifold having an underlying fractal structure can be shown to act like a 

medium with a locally defined effective refractive index (ERI) [6, 9-10, 12], the analogy may be 

used to gain insight into some of the open puzzles of relativistic cosmology. In particular, as we 

argue below, exploiting this duality leads to a natural resolution of both cosmological constant 

and coincidence problems. Moreover, the proposed solution steers clear of any anthropic 

reasoning and fine-tuning arguments, does not require the presence of new fields or symmetries 
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in the theory and does not make any prior assumptions on the dynamic nature of the 

cosmological constant.   

To gain credibility, our findings must be backed up by concurrent theoretical work and further 

input from astrophysical observations. Being aware of the unsettled nature of some of the topics 

discussed here, we caution that our sole intent is sketching an unexplored viewpoint on two open 

problems of contemporary cosmology.  

The paper is organized as follows: the formal analogy between classical field theory coupled to 

gravitation and the same theory defined on flat fractal spacetime is introduced in the second 

section. The idea of ERI stemming from the fractal geometry of spacetime forms the topic of the 

third section. Next section establishes the connection between ERI on fractal spacetime and ERI 

defined in optical analogues of classical gravity. Building on these findings, the last section 

shows how this analogy enables a straightforward resolution of the cosmological constant and of 

the coincidence problems.  

2. Fractal space-time as analog of classical gravity  

Consider a classical scalar field theory defined on Minkowski spacetime [4-5] 
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Straightforward generalization of (1) on fractal spacetime can be carried out by defining a non-

trivial measure of the form 
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where ( )   is the gamma function and 0  <   ≤ 1  is the fractal dimension, assumed equal for all 

coordinates. Ordinary flat spacetime surfaces in the limit 1  . Introducing the operator 
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turns (1) into 
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Furthermore, assuming a polynomial potential ( )V  ~ 
n  yields 
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Compare now (6) with classical scalar field theory in curved spacetime induced by gravitational 

fields [1, 18] 
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It is apparent that the contribution of fractal spacetime carried by the nontrivial measure (2) and 

(3) is formally identical with the contribution of the metric potential g 
 as in 

 ( ) v ( )g g x x

   (8) 
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It is also apparent that the passage to flat space-time ( det( ) 1g  , g   with signature 

( 1, 1, 1, 1)      ) occurs in the limit 1  .We are led to conclude from this brief analysis 

that, at least in principle, scalar field theory on fractal space time is formally reducible to scalar 

field theory coupled to classical gravitation [7, 9-10].  

3. The effective refractive index of fractal space-time 

A remarkable property of fractal spacetime is that it turns the classical vacuum into an 

“effective” medium equipped with polarization properties [12]. In particular, the departure from 

integer dimensionality changes the magnitude of electrical and magnetic fields, as well as of 

currents and charges in empty space.  Three coefficients contribute to these deviations, namely:  
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Here, 0r  represents the position vector in a spherical coordinates, ,d and Dare non-integers 

numbers that generalize the familiar one, two and three dimensions of ordinary spaces and ( )   

stands for the Gamma function. It follows that the ERI for the fractal spacetime is given by  
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Consider now that the space-time has low-level fractality in one, two and three spatial 

dimensions, which amounts to  

 ( ),d D O       <<1  (14) 

In particular, let us take ( )O   and ( ')d O  , with   and '  arbitrarily close to each other. 

In this case the ERI (13) becomes  

 21 ( ') 1 ( )effn O O        (15) 

The above relation tells us that the departure from unity of the ERI scales quadratically with the 

dimensional parameter  , when   << 1 . We shall use (15) in the next section.  

4. Optical analogues of General Relativity 

Modeling gravitation as an optical medium is an old idea, first formulated by Eddington and 

developed by others [15-16]. Here we follow [15] and briefly review the basis for this analogy. If 

the space is considered isotropic and the metric time-independent, the line element may be 

written as 

 
22 2 2 2 2

0( ) ( )ds c dt d  r r r  (16) 

in which   and   are functions of the isotropic coordinates r ( , ,r   ) and 0c  is the speed of 

light in vacuum. The speed of light at any point in the gravitational field results from setting

0ds  , which yields 
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The ERI induced by gravitation is thus 
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Using (18) the ERI in the de Sitter (dS) model is given by 
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where represents the dimensionful cosmological constant and 
2( )n  r r  is the same 

constant expressed in dimensionless form. Due to the exceedingly small magnitude of ( )n r , 

(19) is well approximated by 

 ( ) 1 ( ( ))dS nn O  r r  (20) 

Likewise, the ERI in the Friedman-Robertson-Walker (FRW) model is 

 
2

( ) ( )
( , )

11
44

FRW

a t a t
n t

Kk
 



r
r

 (21) 

where ( )a t  is the expansion parameter, k  represents the Gaussian curvature with units [length] ^ 

(-2) and K  is the dimensionless curvature [15]. Consider now an asymptotically flat FRW model 

corresponding to an open Universe ( 0UK  , 0UK  ) of maximal observable radius 
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It follows that (21) is well approximated in this limit by 

 2( , ) 1 ( )FRW Un t O R r  (23) 

We note that both (20) and (23) become consistent with (15), if 

 
1

1 2( ) ( )U nO R O     (24) 

5. Solving the cosmological constant and coincidence problems   

5.1) Current estimates place the diameter of the observable Universe at 2 UR ≈ 
109.3 10 light-

years ≈ 
268.8 10 m [21]. Since the Planck length is 

351.6162 10 m, the radius of the observable 

Universe expressed in Planck units (PU) amounts to 

 UR ≈ 
612.7 10 (PU) (25) 

As seen from (20), (23) and (24), both effective refractive indices for the dS and FRW models 

deviate slightly from unity, under the assumption that the radial coordinate approaches its 

maximal observed value ( 2,U UR K R r ). Combining (20), (23) and (25) yields 

 
2 123( ) (10 )n UO R O     (PU)  (26) 

The magnitude of the cosmological constant given by (26) is in close agreement with current 

astrophysical observations [17].  
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5.2) The concept of fractal texture underlying the large scale geometry of spacetime resonates 

well with the hypothesis of the so-called cosmic string network [19-20]. In line with this 

hypothesis, consider that the overall mass M of matter and radiation in the observable Universe 

is uniformly distributed along a random web of nearly one-dimensional strings (that, in turn, may 

be interpreted as topological defects of the space-time continuum). It is then natural to assume 

that M scales almost linearly with UR as in 

 M ~ 1

UR  ,   << 1  (PU) (27) 

The density of matter and radiation of the present epoch takes the form 

 M ~ 
3

U

M

R
~ (2 )

UR   (PU) (28) 

It follows that (28) falls close to the numerical value of the cosmological constant (26), that is, 

 ( )M nO    (PU)  (29) 

6. Conclusions 

Our brief analysis reveals that classical spacetime equipped with minimal fractality may provide 

a natural explanation for both the cosmological constant and coincidence problems. The 

proposed solution is not based on any anthropic reasoning and fine-tuning arguments, does not 

invoke the presence of new fields or symmetries in the theory and does not make any prior 

assumptions on the dynamic nature of the cosmological constant.  
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