Elliptic curve formula and work on dimensions

Abstract:
I will conjecture stuff about curves with a formula that looks alike the formula for elliptic curves and will prove that negative dimensions exist.

1. A couple of conjectures about curves
I conjecture that there exist curves such as elliptic curves in all dimensions that are of the form:
\[y^x = E^d + aE^{d-1} + bE^{d-2} + c \]
Where E is an L-function and knowing that \(y \) is defined by \(Q^2 \).

2. Negative dimensions
I know it seams weird and I myself don’t understand it but it is there.
Now let’s go on to the proof that negative dimensions exist.
We know that the following equation:
\[y^1 = 2x + 1 \]
is in the second dimension and that:
\[y^2 = 4x^2 + 1 \]
Is in the fourth, but what happens when we raise \(y \) to the -2\(^{nd} \) power? Then we have the following equation:
\[y^{-2} = -4x^2 - 1 \]
And knowing that \(y \) is in the 2\(^{nd} \) dimension, then \(y^2 \) is in the -4\(^{th} \) dimension, which proves that negative dimensions exist!

3. A little word
I hope this paper will help the future work in this subject. Thank you to have read my, I hope, usefull work.

Julien Laurendeau