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Preface 

I started the Hilbert Book Model during my studies in physics in 

the sixties on the Technical University of Eindhoven (TUE). 

In the first two years the lectures concerned only classical physics. 

In the third year quantum physics was introduced. I had great diffi-

culty in understanding why the methodology of doing physics 

changed drastically. So I went to the teacher, which was an old nearly 

retired and very wise professor and asked him: 

"Why is quantum mechanics done so differently from classical 

mechanics?".  

His answer was short. He stated": 

"The reason is that quantum mechanics is based on the superpo-

sition principle".  

 

I quickly realized that this was part of the methodology and could 

not be the reason of the difference in methodology1. So I went back 

and told him my concern. He told me that he could not give me a 

better answer and if I wanted a useful answer I should research that 

myself. So, I first went to the library, but the university was quite 

new and its library only contained rather old second hand books, 

which they got as a gift from other institutions. Next I went to the 

city’s book shops. I finally found a booklet from P. Mittelstaedt: 

(Philosophische Probleme der modernen Physik,  

BI Hochschultaschenbücher, Band 50, 1963) that contained a chapter 

on quantum logic.  

It learned me that small particles appear to obey a kind of logic 

that differs from classical logic. As a result their dynamic behavior 

differs from the behavior of larger objects, which obey classical 

                                                           
1 Superposition of particles is an indispensable ingredient in the 

comprehension of entanglement. 
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logic. I concluded that this produced the answer that I was looking 

for. 

I searched further and encountered papers from Garret Birkhoff 

and John von Neumann that explained the correspondence between 

quantum logic and separable Hilbert spaces. That produced a more 

conclusive answer to my question. 

 

The lectures also told me that observables were related to eigen-

values of Hermitian operators. These eigenvalues are real numbers. 

However, it was clearly visible that nature has a 3+1D structure. So 

I tried to solve that discrepancy as well. After a few days of puzzling 

I discovered a number system that had this 3+1D structure and I 

called them compound numbers. I went back to my professor and 

asked him why such compound numbers were not used in physics. 

Again he could not give a reasonable answer.  

When I asked the same question to a much younger assistant pro-

fessor he told me that these numbers were discovered more than a 

century earlier by William Rowan Hamilton when he was walking 

with his wife over a bridge in Dublin. He was so glad about his dis-

covery that he carved the formula that treats the multiplication of 

these numbers into the sidewall of the bridge. The inscription has 

faded away, but it is now molded in bronze and fixed to the same 

wall by Hamilton’s students. The numbers are known as quaternions. 

So, I went to the library and searched for papers on quaternions.  

In those years Constantin Piron wrote his papers on the number 

systems that can be used by Hilbert spaces. Piron discovered that 

only members of suitable division rings can be used as coefficients 

in linear combinations of Hilbert vectors in separable Hilbert spaces. 

Division rings comprise real numbers, complex numbers and quater-

nions. That information completed my insight in this subject. I final-

ized my physics study with an internal paper on quaternionic Hilbert 

spaces.  
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The university was specialized in applied physics and not in the-

oretical physics. This did not stimulate me to proceed with the sub-

ject. Next, I went into a career in industry where I used my 

knowledge of physics in helping to analyze intensified imaging and 

in assisting with the design of night vision equipment and X-ray im-

age intensifiers. That put me with my nose on the notion of quanta.  

The output window of image intensifiers did not show impinging 

radiation waves. Instead they showed clouds of impinging quanta. In 

those times I had not much opportunity to deliberate on that fact. 

However, after my retirement I started to rethink the matter. That 

was the instant that the Hilbert Book Model was revived. 

 

In 2009 at the age of 68 I restarted the Hilbert Book Model pro-

ject. The HBM is a very simple model of physics that is completely 

deduced and only covers the lowest levels of fundamental physics. 

For that reason it is strictly based on a solid foundation. For that 

foundation I choose the lattice structure of traditional quantum logic. 

The lattice structure of this logic system is isomorphic to the lattice 

structure of the set of closed subspaces of a separable Hilbert space. 

Since neither the logic system nor the Hilbert space can represent 

dynamics, a full dynamic model is based on an ordered sequence of 

such static sub-models. This sequence shows great similarity with 

the set of pages of a book. This has led to the name “Hilbert Book 

Model” 

 

Thus, in a few words: The Hilbert Book Model tries to explain the 

existence of quanta. It does that by starting from traditional quantum 

logic. 
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You will find the model to be in many aspects controversial and 

non-conventional. That is why the author took great efforts in order 

to keep the model self-consistent. 

 

Due to a series of new concepts that are introduced by the HBM 

and the fact that they lend themselves for a rather pictorial descrip-

tion, will physicists that support conventional physics experience the 

HBM as a kind of Alice’s wonderland. In this manuscript, all of these 

new concepts will be introduced in a cautious and trustworthy man-

ner. The methodology will directly or indirectly base on the selected 

foundation. 

 

Some readers have criticized me for lack of formulas, because one 

formula can say more than a thousand words. Restating formulas that 

you can find in any physical textbook is not the purpose of this book. 

On the other hand this manuscript contains formulas that you will 

not find elsewhere. An important example is the coupling equation. 

Another example is the definition of the blurred allocation function. 

For those who are interested in related formulas the section Q-

FORMULÆ contains formulas that are difficult to find in literature. 

 

The main purpose of the Hilbert Book Model is to get insight into 

the possibilities of the physical toolkit.  

 

Each time that I read this book I encounter small and sometimes 

big inconsistencies. When I see them I repair them. Due to my sloppy 

nature there must still be a lot of them left. I apologize to the reader 

for this inconvenience. I do not consider myself a good and precise 

mathematician and I consider myself as a horrible physicist. The 

Great Creator must be a lot better. For a better manuscript you better 

invite Him. He constructed this structure. 

 



8 

 

 
  



9 

 

 

 

 

If a mathematical theory is self-consistent, then there is a realistic 

chance that nature somewhere somehow uses it. 

 

If that theory is compatible with traditional quantum logic, then 

there is a much larger chance that nature will use it. 

 

This drives my intuition. 

 

 

 

This manuscript does not offer another physical reality. 

The Hilbert Book Model offers an alternative view on 

physical reality. 

 

That view differs from the view that is offered by  

contemporary physics. 

 

In this way the manuscript can offer new insights. 
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HvL  

No model of physics can change physical reality. 
Any view on physical reality involves a model. 

Drastically different models can still be consistent in themselves. 
 

The Hilbert Book Model is a simple self-consistent model of physics. 
This model steps with universe-wide progression steps from one sub-

model to the next one. Each of these sub-models represents a static status 
quo of the universe. The sub-models are strictly based on traditional 

quantum logic  
 

The HBM is a pure quaternion based model. Conventional physics is 
spacetime based and uses complex numbers. When both models are com-
pared, then the progression quantity (which represents the page number 

in the Hilbert Book model)  
corresponds to proper time in conventional physics. 

 
In the HBM all proper time clocks are synchronized. 

The length of a smallest quaternionic space-progression step in the HBM 
corresponds to an "infinitesimal" observer’s time step in conventional 
physics. 

 



11 

 

  



12 

 

 

 

 

 

 

Ir J.A.J. van Leunen 

 

 

 

PHYSICS OF THE HILBERT 

BOOK MODEL 
  



13 

 

ACKNOWLEDGEMENTS 
 

I thank my wife Albertine, who tolerated me to work days and 

nights on a subject that can only be fully comprehended by experts 

in this field. For several years she had to share me with my text pro-

cessor. She stimulated me to bring this project to a feasible tempo-

rary end, because this project is in fact a never ending story. 

 

I also have to thank my friends and discussion partners that lis-

tened to my lengthy deliberations on this non society chitchat suita-

ble subject and patiently tolerated that my insights changed regu-

larly. 

  



14 

 

DETAILS 
 

The Hilbert Book Model is the result of a still ongoing research 

project.  

That project started in 2009. 

 

The continuing status of the project can be followed at  

http://www.e-physics.eu 

 

The author’s e-print site is:  

http://vixra.org/author/j_a_j_van_leunen. 

This book is accompanied by a slide show at  

http://vixra.org/abs/1302.0125 

or 

HBM slides 

Use a PowerPoint viewer for this .pptx file 

 

 

 

 

The nice thing about laws of physics is that they repeat them-

selves. Otherwise they would not be noticed. The task of physicists is 

to notice the repetition. 
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http://www.e-physics.eu/TheHilbertBookModelBlack.pptx


15 

 

Contents 

1. Introduction ....................................................................... 26 

 The Book Model ................................................................ 29 
2.1 Space-progression models............................................ 29 
2.2 Paginated model ........................................................... 30 
2.3 Spacetime model versus paginated model ................... 31 

 General remarks ................................................................ 32 
3.1 Why quantum logic can be used as foundation ............ 32 
3.2 Completely deduced model .......................................... 33 
3.3 Generators, spread and descriptors. ............................. 35 

3.3.1 Recapitulation ..................................................... 40 
3.3.2 Generation and annihilation cycle ....................... 41 

3.4 Why particles have potentials ...................................... 42 
3.5 Fundamental particles .................................................. 42 
3.6 Coupling and events ..................................................... 44 
3.7 Systems and sub-systems ............................................. 45 
3.8 Wave particle duality ................................................... 46 
3.9 Fuzziness ...................................................................... 47 
3.10 Quanta .......................................................................... 49 
3.11 What image intensifiers reveal ..................................... 49 

 The logic model .................................................................. 51 
4.1 Static status quo ........................................................... 51 

4.1.1 Quantum logic ..................................................... 51 
4.1.2 Hilbert logic ........................................................ 52 

 Dynamic model .................................................................. 55 
5.1 Correlation vehicle ....................................................... 55 



16 

 

5.1.1 Smallest rational ...................................................57 
5.2 The embedding continuum ...........................................57 

5.2.1 Dark matter and Huygens principle non-

uniformity. ............................................................................58 
5.3 Temporal range of the correlation vehicle ....................59 
5.4 Dynamic logic ...............................................................59 

 Isomorphic model ...............................................................60 
6.1 Hierarchy ......................................................................63 
6.2 Correspondences ...........................................................65 
6.3 Affine-like space ...........................................................66 
6.4 Continuity .....................................................................67 

6.4.1 Arranging dynamics .............................................67 
6.4.2 Establishing coherence .........................................68 
6.4.3 Structure of the correlation vehicle ......................70 

 Hilbert spaces .....................................................................72 
7.1 Real Hilbert space model ..............................................73 
7.2 Gelfand triple ................................................................74 
7.3 Complex Hilbert space model .......................................75 
7.4 Quaternionic Hilbert space model.................................77 

7.4.1 Curvature and fundamental fuzziness ..................78 
7.4.2 Discrete symmetry sets ........................................81 
7.4.3 Generations and Qpatterns ...................................83 
7.4.4 Microstate.............................................................84 

7.5 Optimal ordering ...........................................................85 
7.6 The reference Hilbert space ..........................................85 
7.7 The embedding continuum ...........................................87 
7.8 The cosmological principle revisited ............................87 
7.9 Fourier transform ..........................................................89 

 The HBM picture ...............................................................90 



17 

 

8.1 The Schrödinger picture ............................................... 90 
8.2 The Heisenberg picture ................................................ 90 
8.3 The Hilbert Book Model picture .................................. 90 
8.4 The operational picture ................................................ 91 
8.5 Discussion .................................................................... 93 
8.6 Quantum state function ................................................ 94 

 The enumeration process .................................................. 96 
9.1 New mathematics ......................................................... 96 
9.2 Gravity and electrostatics ............................................. 97 

9.2.1 Interpretation ..................................................... 100 
9.2.2 Bertrand’s theorem ............................................ 100 

9.3 The internal dynamics of Qpatterns ........................... 101 
9.4 Qpatterns .................................................................... 104 

9.4.1 Natal and swarms .............................................. 104 
9.4.2 Micro-paths ....................................................... 107 
9.4.3 Characteristics of the micro-path ...................... 108 
9.4.4 Advantages of QPDD’s ..................................... 108 
9.4.5 Isotropic space coverage ................................... 108 
9.4.6 Qpattern history ................................................. 109 
9.4.7 Qpattern cycle ................................................... 111 
9.4.8 Fourier transform .............................................. 111 

9.5 Qtargets ...................................................................... 112 
9.6 New mathematics ....................................................... 113 

9.6.1 Waves that spread information .......................... 114 
9.6.2 Waves that shrink space .................................... 116 
9.6.3 Information carrier waves ................................. 117 
9.6.4 Spreading electric charge information............... 118 
9.6.5 Huygens principle ............................................. 118 

9.7 Quasi oscillations and quasi rotations ........................ 119 
9.8 Distant Qtargets ......................................................... 119 
9.9 Spurious elements ...................................................... 120 



18 

 

9.10 The tasks of the correlation vehicle ............................120 
9.10.1 Composites .........................................................122 
9.10.2 Swarming ...........................................................123 

Geometric model ........................................................................125 

 Geometrics ........................................................................126 

 Distributions of quaternions ............................................128 
11.1 Continuous quaternionic distributions ........................128 
11.2 RQE’s .........................................................................128 

11.2.1 Reference Hilbert space .....................................130 
11.2.2 Later Hilbert spaces............................................132 

11.3 Potentials.....................................................................134 
11.3.1 Diluted potential identity ....................................135 

11.4 Palestra ........................................................................136 
11.5 Qpatch regions ............................................................137 
11.6 QPDD’s and Qtargets .................................................138 

11.6.1 Inner products of QPDD’s .................................142 
11.7 Blurred allocation functions ........................................143 
11.8 Local QPDD’s and their superpositions ......................145 
11.9 Generations .................................................................145 

 Coupling ............................................................................147 
12.1 Background potential ..................................................148 
12.2 Interpretation ...............................................................150 
12.3 Isotropic vector potential ............................................151 
12.4 Quantum fluid dynamics .............................................151 

12.4.1 Quaternionic nabla .............................................151 
12.4.2 The differential and integral continuity 

equations 152 
12.5 The coupling equation ................................................157 



19 

 

12.6 Path integral ............................................................... 158 
12.7 How to apply the coupling equation .......................... 159 
12.8 Energy ........................................................................ 159 

12.8.1 Fourier transform .............................................. 161 

 Elementary particles ....................................................... 162 
13.1 Reference frames ....................................................... 165 
13.2 Coupling Qpatterns .................................................... 166 
13.3 Elementary particle properties ................................... 168 

13.3.1 Spin ................................................................... 169 
13.3.2 Electric charge ................................................... 169 
13.3.3 Color charge ...................................................... 169 
13.3.4 Mass .................................................................. 170 

13.4 Elementary object samples......................................... 170 
13.4.1 Photons and gluons ........................................... 171 
13.4.2 Leptons and quarks ........................................... 172 
13.4.3 Quarks ............................................................... 176 
13.4.4 W-particles ........................................................ 179 
13.4.5 Z-candidates ...................................................... 182 

 Fields ................................................................................ 184 
14.1 Physical fields ............................................................ 185 

14.1.1 Secondary fields ................................................ 186 
14.2 Gravitation field ......................................................... 186 
14.3 Electromagnetic fields ............................................... 187 
14.4 Photons and gluons .................................................... 187 
14.5 Radio waves ............................................................... 188 
14.6 Isotropic and anisotropic potentials ........................... 188 

14.6.1 Huygens principle for odd and even number of 

spatial dimension ............................................................... 188 
14.6.2 The case of even spatial dimensions ................. 190 
14.6.3 Huygens principle applied ................................. 193 



20 

 

14.7 Discussion ...................................................................194 

 Inertia ................................................................................196 
15.1 Inertia from coupling equation ....................................196 
15.2 Information horizon ....................................................197 

 Lorentz transformation ...................................................199 

 Gravitation as a descriptor ..............................................201 
17.1 Palestra ........................................................................201 

17.1.1 Spacetime metric ................................................202 
17.1.2 The Palestra step ................................................204 
17.1.3 Pacific space and black regions. .........................205 
17.1.4 Start of the universe. ..........................................206 

 Modularization .................................................................207 
18.1 Complexity .................................................................207 
18.2 Relational complexity .................................................209 
18.3 Interfaces .....................................................................209 
18.4 Interface types .............................................................210 
18.5 Modular subsystems ...................................................210 
18.6 Quantum oscillations ..................................................211 
18.7 Relational complexity indicators ................................212 
18.8 Modular actions ..........................................................213 
18.9 Random design versus intelligent design ....................213 
18.10 Probability distributions .........................................213 
18.11 Entanglement and Pauli principle ...........................214 

18.11.1 Pauli principle ................................................215 
18.11.2 Gauge transformations ...................................216 

 Non-locality .......................................................................216 
19.1 Within a particle..........................................................216 



21 

 

19.2 Between particles ....................................................... 217 

 Principles .......................................................................... 218 
20.1 Huygens principle ...................................................... 218 
20.2 Pauli principle ............................................................ 218 
20.3 Color confinement ..................................................... 218 

 Fundamental particles .................................................... 220 

 Events ............................................................................... 221 
22.1 Generations and annihilations .................................... 221 
22.2 Absorption versus emission ....................................... 221 
22.3 Oscillating interactions .............................................. 222 
22.4 Movements................................................................. 222 

 Atoms and their electrons ............................................... 223 
23.1 Photon emission and absorption. ............................... 224 
23.2 Hadrons, quarks and gluons ....................................... 225 
23.3 Photon propagation and interference ......................... 225 
23.4 Chunks of energy ....................................................... 225 
23.5 Radio waves ............................................................... 226 
23.6 Creation and annihilation ........................................... 226 
23.7 Basic frequencies ....................................................... 226 

 Cosmology ........................................................................ 227 
24.1 Cosmological view..................................................... 227 
24.2 The cosmological equations ....................................... 227 
24.3 Inversion surfaces ...................................................... 228 
24.4 Entropy....................................................................... 228 
24.5 Cosmological history ................................................. 229 
24.6 Recapitulation ............................................................ 231 



22 

 

Other subjects .............................................................................234 

 Dark stuff ..........................................................................234 
25.1 Dark matter .................................................................234 
25.2 Dark energy ................................................................234 

 Functions that are invariant under Fourier 

transformation. ...........................................................................234 
26.1 Natures preference ......................................................235 

 Conclusion .........................................................................235 

Q-FORMULÆ ............................................................................237 

 Introduction ......................................................................238 

 Quantum logic ..................................................................239 
2.1 Lattices ........................................................................239 
2.2 Proposition ..................................................................243 
2.3 Observation .................................................................244 

 Hilbert logic ......................................................................246 

 Hilbert space isomorphism ..............................................247 

 About quaternions ............................................................248 
5.1 Notation ......................................................................248 
5.2 Cayley-Dickson construction ......................................248 
5.3 Warren Smith’s numbers ............................................249 

5.3.1 2n-on construction ..............................................249 
5.4 Waltz details ...............................................................254 
5.5 Spinors and matrices ...................................................257 



23 

 

5.5.1 Symmetries ........................................................ 258 
5.5.2 Spinor ................................................................ 260 
5.5.3 Dirac spinors ..................................................... 261 
5.5.4 Spinor base ........................................................ 262 
5.5.5 Gamma matrices ................................................ 263 

 Quaternionic differentiation ........................................... 265 
6.1 Differentiation in flat space........................................ 265 
6.2 Differentiation in curved space .................................. 266 

 Coordinate systems ......................................................... 268 
7.1 Cylindrical circular coordinates ................................. 268 

7.1.1 Base vectors ...................................................... 268 
7.1.2 Cartesian to cylindrical circular ........................ 268 
7.1.3 Cylindrical circular to Cartesian........................ 268 
7.1.4 Directed line element ........................................ 268 
7.1.5 Solid angle element ........................................... 268 
7.1.6 Directed area element ........................................ 269 
7.1.7 Volume element ................................................ 269 
7.1.8 Spatial differential operators ............................. 269 

7.2 Polar coordinates ........................................................ 270 
7.3 3 sphere ...................................................................... 271 
7.4 Hopf coordinates ........................................................ 273 
7.5 Group structure .......................................................... 273 
7.6 Versor ........................................................................ 275 
7.7 Symplectic decomposition ......................................... 275 
7.8 Quaternionic algebra .................................................. 276 

 Quaternionic distributions.............................................. 277 
8.1 Basic properties of  continuous quaternionic 

distributions ........................................................................... 278 
8.1.1 Symmetries ........................................................ 279 



24 

 

8.1.2 Differentials .......................................................279 

 The separable Hilbert space Ң ........................................281 
9.1 Notations and naming conventions .............................281 
9.2 Quaternionic Hilbert space .........................................282 

9.2.1 Ket vectors .........................................................282 
9.2.2 Bra vectors .........................................................282 
9.2.3 Scalar product ....................................................283 
9.2.4 Separable ............................................................284 
9.2.5 Base vectors .......................................................284 
9.2.6 Operators ...........................................................285 
9.2.7 Unit sphere of Ң .................................................294 
9.2.8 Bra-ket in four dimensional space ......................294 
9.2.9 Closure ...............................................................295 
9.2.10 Canonical conjugate operator P ..........................295 
9.2.11 Displacement generators ....................................296 

9.3 Quaternionic L² space .................................................296 

 Gelfand triple ....................................................................298 
10.1 Understanding the Gelfand triple ................................299 

 Fourier transform ............................................................300 
11.1 Fourier transform properties .......................................300 

11.1.1 Linearity .............................................................300 
11.1.2 Differentiation ....................................................301 
11.1.3 Parseval’s theorem .............................................302 
11.1.4 Convolution ........................................................302 

11.2 Helmholtz decomposition ...........................................302 
11.2.1 Quaternionic Fourier transform split ..................304 

11.3 Fourier integral ...........................................................304 
11.3.1 Alternative formulation ......................................306 

11.4 Functions invariant under Fourier transform ..............306 



25 

 

11.5 Special Fourier transform pairs .................................. 312 
11.6 Complex Fourier transform invariance properties ..... 312 

 Quaternionic probability density distributions ............ 314 
12.1 Potential functions ..................................................... 314 
12.2 Dynamic potential ...................................................... 315 
12.3 Differential equation .................................................. 315 
12.4 Continuity equation .................................................... 315 
12.5 Fluid dynamics ........................................................... 321 

12.5.1 Coupling equation ............................................. 321 

 Conservation laws ........................................................... 323 
13.1 Differential potential equations .................................. 323 

13.1.1 Maxwell ............................................................ 324 
13.2 Gravity and electrostatics ........................................... 325 
13.3 Flux vector ................................................................. 325 
13.4 Conservation of energy .............................................. 326 

13.4.1 Interpretation in physics .................................... 326 
13.4.2 How to interpret Umechanical ..................................... 327 

13.5 Conservation of linear momentum ............................. 328 
13.6 Conservation of angular momentum .......................... 330 

13.6.1 Field angular momentum .................................. 330 
13.6.2 Spin ................................................................... 332 
13.6.3 Spin discussion .................................................. 333 

 



26 

 

1. Introduction 

I present you my personal view on the lower part of the hierarchy 

of objects that occur in nature. Only fields and elementary particles 

are treated in some detail. Composite particle objects are treated in a 

general way. Cosmology is touched. 

For the greater part, the model is deduced. For that reason the 

model is founded on a solid and well accepted foundation. That foun-

dation is traditional quantum logic.  

The model does not aim at experimental verification of its results, 

but it uses experimentally verified results of physics as a guidance. 

The model uses mathematical tools for extending the foundation. In 

some cases “new” mathematics is applied. 

 

The paper is founded on three starting points:  

 A sub-model in the form of traditional quantum logic 

that represents a static status quo.  

 A correlation vehicle that establishes sufficient cohe-

sion between subsequent members of a sequence of 

such static sub-models. 

 The cosmological principle. 
 

Further it uses a small set of hypotheses.  

 

The correlation vehicle must provide sufficient cohesion between 

the subsequent members of the sequence. The cohesion must not be 

too stiff otherwise no dynamics will take place. 
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The cosmological principle means that at large scales, universe 

looks the same for whomever and wherever you are. One of the con-

sequences is that at larger scales universe possesses no preferred di-

rections. It is quasi-isotropic (on average isotropic). 

It turns out that the cosmological principle is already a corollary 

of the first two points. 

 

The mathematical concepts are treated in more detail in the sec-

ond part, which is called Q-formulæ. 

 

First the HBM refines quantum logic to Hilbert Logic. A Hilbert 

logic system resembles a separable Hilbert space much closer than 

quantum logic does. Together with quantum logic this refined logical 

system represents a new hierarchy that introduces nature’s building 

blocks and their constituents.  

 

The paper explains2 all features of fundamental physics that are 

encountered in the discussed hierarchy which ranges from proposi-

tions about physical objects until elementary particles and their com-

posites. Amongst them are the cosmological principle, the existence 

of quantum physics, the existence of a maximum speed of infor-

mation transfer, the existence of super-high frequency carrier waves, 

the existence of physical fields and how they are generated, the 

origin of curvature, the origin of inertia, the dynamics of gravity, the 

existence of elementary particles, the existence of generations of el-

ementary particles, the existence of the Pauli principle and the his-

tory of the universe and the consequences of color confinement.  

 

The HBM introduces a new way in which potentials are formed 

by wave fronts that together form super-high frequency carrier 

                                                           
2 Or it indicates a possible explanation 
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waves3. It considers photons and gluons as modulations of these car-

rier waves. Due to the very high frequency the carrier waves cannot 

be observed directly. Instead their averaged results play a significant 

role. 

New mathematics is involved in the dynamic generation of poten-

tial functions. 

On the other hand the current HBM does not explore further than 

composites that are directly constructed from elementary particles. It 

only touches some aspects of cosmology. 

 

                                                           
3 Despite the fact that there are great similarities, these super-high 

frequency waves must be distinguished from the well-known UHF 

radio waves. 
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 The Book Model 

The name of the research project that treats this investigation is 

due to one of the main starting points on which this study is based.  

 

The Hilbert Book Model (HBM) is based on the assumption4 that 

universe steps with universe wide progression steps and that the 

static status quo of each of these steps can be described by an infinite 

dimensional separable Hilbert space and its Gelfand triple. With 

other words a dynamic model will consist of an ordered sequence of 

these static sub-models. 

 

The sequence of the static models show similarity with the se-

quence of pages in a book. That is why the name “Hilbert Book 

Model” is selected for the project. 

2.1 Space-progression models 

With respect to space and progression several models are possible 

and can coexist as valid models of the space progression aspects of 

physical reality. We restrict ourselves to models that use a three di-

mensional space5. This space may be curved. We will call this space 

operating space. 

 

All space-progression models that consider the notion of an ob-

server do possess the notions of and observer’s time.  

The observer’s time clock ticks at the location of the observer. 

The observed time clock ticks at the location of the observed item 

and travels with that item. 

                                                           
4 This assumption is derived from the fact that the foundation on 

which the HBM is based cannot represent dynamics. 
5 The reason for this restriction will be elucidated later. 
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Observer’s time and observed time differ due to the fact that in-

formation needs to travel from the location of the observed item to 

the location of the observer. 

Special relativity is formulated in terms of observer’s time and 

operating space. It uses a local speed of information transfer. In that 

way it exists in all space progression models that consider the notion 

of an observer and that possess a mechanism for information transfer. 

2.2 Paginated model 

A paginated space-progression model is special because in that 

model all observed time clocks are per definition synchronized. 

Thus, the model contains a universe wide clock. It means that ob-

server’s time is always derived from this universe wide and may dif-

fer per observation. 

 

The HBM is a paginated model. Its universe is synchronized by 

clocks that feature a fixed step size. 

 

The direct consequences of the fixed step size are that progression 

is fundamentally quantized. In a paginated model universe is recre-

ated at every progression step.  

 

The progression step size 𝜏𝑠 defines a super-high frequency 𝜈𝑢, 

which represents the basic carrier frequency for transport of infor-

mation. 

This document does not produce an estimate of 𝜏𝑠. 

A paginated model also means that every lower frequency wave 

is chopped and can only live on as a modulation of a super-high fre-

quency wave. 
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2.3 Spacetime model versus paginated model 

Contemporary physics uses a spacetime model. In this model op-

erating space and progression are coupled via the local speed of in-

formation transfer. In this model observer’s time will be used as the 

common time concept. This results in a spacetime continuum that is 

characterized by a Minkowski signature. In a spacetime model the 

observed time clocks are derived from the selected observer’s time 

clock. However, it is possible to select for a given observation the 

observer’s time such that it conforms to a model wide synchronized 

observed time. In that case the spacetime model and the paginated 

model are different views of the same reality. The consequence is 

that in that case observer’s time can no longer be freely chosen. 

 

The HBM is a paginated model. In contrast to the spacetime 

model that is used by contemporary physics and which has a Min-

kowski signature, this paginated model has an Euclidean signature 

and can be comprehended much easier. The paginated model can be 

easily represented by quaternions, which in this case prove that they 

are nature’s preferred number system. The corresponding regenera-

tion of the universe puts a different light on how nature operates at 

its lowest levels. In the spacetime model this view is impracticable. 

 

In contemporary physics, red-shift is measured and interpreted as 

space expansion. Further the speed of information transport appears 

to be constant. The HBM takes this speed as a model constant. As a 

consequence space expansion goes together with a similar expansion 

of the progression step. With other words the universe wide time 

clock slows down as a function of progression. 
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 General remarks 

3.1 Why quantum logic can be used as foundation 

In no way a model can give a precise description of physical real-

ity. At the utmost it presents a correct view on physical reality. But, 

such a view is always an abstraction. 

Physical reality is very complicated. It seems to belie Occam’s 

razor. However, views on reality that apply sufficient abstraction can 

be rather simple and it is astonishing that such simple abstractions 

exist. Complexity is caused by the number and the diversity of the 

relations that exist between objects that play a role. A simple model 

has a small diversity of its relations. 

Particular mathematical structures might fit onto observed physi-

cal reality because its relational structure is isomorphic to the rela-

tional structure of these observations. 

The part of mathematics that treats relational structures is lattice 

theory6. Logic systems are particular versions of lattice theory. Clas-

sical logic has a simple relational structure7. However since 1936 we 

know that physical reality cheats classical logic. Since then we think 

that nature obeys quantum logic, which has a much more compli-

cated relational structure. Mathematics offers structures that are lat-

tice isomorphic to quantum logic. One of them is the set of closed 

subspaces of a separable Hilbert space. 

 

The conclusion of this deliberation is that physical reality is not 

based on mathematics, but that it happens to feature relational struc-

tures that are similar to the relational structure that some mathemat-

                                                           
6The German name for lattice theory is Theorie der Verbände.  
7 It can be represented by Venn diagrams. 
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ical constructs have. That is why mathematics fits so well in the for-

mulation of physical laws. Physical laws formulate repetitive rela-

tional structure and behavior of observed aspects of nature. 

3.2 Completely deduced model 

The Hilbert Book Model is completely deduced. In general phys-

icists tend not to trust completely or largely deduced models. They 

are afraid that the model designer allowed his fantasy to strike ram-

pantly. For that reason the HBM is strictly based on a solid and well 

accepted foundation, which is extended by using trustworthy mathe-

matical tools. The HBM selects traditional quantum logic as its foun-

dation.  

 

We want to understand the physics of the developed model. For 

that reason the first priority of the HBM project is to understand how 

this model works and it is not considered its primary task to verify 

via suitable experiments whether nature behaves that way. This is 

compensated by pursuing a strong degree of self-consistence of the 

model. At the same time the knowledge of how nature works is a 

guide in the development of the model.  

 

For example the HBM uses observed time instead of observer’s 

time. Observed time is a Lorentz invariant measure of progression. 

The corresponding clock ticks at the location of the observed item 

and travels with that item. Our common notion of time is observer’s 

time. The observer’s time clock ticks at the location of the observer. 

The HBM adds to this fact that all observed time clocks are synchro-

nized. It possesses a universe wide clock. The HBM does not bother 

about the fact that in general observed time cannot practicably be 

measured.  
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Together with a fixed maximum speed of information transfer this 

selection of the progression parameter renders most formulas auto-

matically Lorentz invariant. 

The model features super-high frequency waves that cannot be 

observed. Only the averaged effect of these waves become noticea-

ble as potentials. 

Further, the model includes lower level objects that cannot be ob-

served as individuals. Only as groups these objects become noticea-

ble behavior. 

The result is that the HBM introduces its own methodology that 

often deviates considerably from the methodology of contemporary 

physics. The advantage is that this approach enables the researcher 

to dive deeper into the undercrofts of physics than is possible with 

conventional methodology.  

 

As a consequence the HBM must be reluctant in comparing these 

methodologies and in using similar names. Confusions in discussion 

groups about these items have shown that great care is necessary. 

Otherwise, the author can easily be accused from stealing ideas from 

other theories that are not meant to be included in the HBM model.  

This again will make it difficult to design measurements. Meas-

uring methods are designed for measuring physical phenomena that 

are common in contemporary physics. This is best assured when is 

sought for phenomena that are similar between the model and con-

temporary physics. This action contradicts the caution not to use sim-

ilar terms and concepts. This is the main reason why the HBM does 

not make experimental verification to its first priority. 

 

On the other hand, also contemporary physics contains items that 

cannot be measured. For example color charge is an item that cannot 
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(yet) be measured. Due to color confinement, quarks have never been 

detected as separate objects8. 

 

As indicated above, observed time is a concept that also exists in 

contemporary physics, but in general it cannot be measured.  

 

Contemporary physics uses the field concept, but except for the 

cases that the fields are raised by properties of separate particles con-

temporary physics does not bother what causes the field. 

3.3 Generators, spread and descriptors. 

The HBM allows very pictorial representations of its fundamental 

concepts. Let me give you a small preview. Later in this manuscript 

these subjects will cautiously be derived from the selected founda-

tion. 

 

Much of what happens in the HBM is due to the fact that the HBM 

is a paginated model and as a consequence the whole universe, par-

ticles as well as the embedding continuum must be recreated at every 

progression step. 

 

In the model, generators produce coherent groups of discrete ob-

jects that are spread over a sub-regions of an embedding continuum. 

The object density distribution and the current density distribution of 

these coherent groups are continuous functions that describe and cat-

egorize these groups.  

 

Depending on a dedicated Green’s function, the distributions of 

discrete objects also correspond to potential functions. This is due to 

the fact that the embedding of particles in the embedding continuum 

                                                           
8 Isolated quarks have a very short live. 
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causes local singularities that represent the flow of the spread of the 

influences of the source of these influences over the embedding con-

tinuum. It is quite possible that each potential corresponds to a dedi-

cated type of wave front. 

 

Due to the way in which the gravitation potential is generated, this 

potential function corresponds to a local curvature of the embedding 

space.  

This can be comprehended when the groups are generated dynam-

ically in a rate of one element per progression step. During its very 

short existence the element transmits a wave front9 that slightly folds 

and thus curves the embedding space. The wave front keeps floating 

away with light speed from its previous source. It represents a trace 

of the existence of the element. This trace survives the element when 

that element is long gone. These traces can be observed without af-

fecting the emitter.  

 

For each coherent group, the elements are generated at a rate of 

one element per progression step. With other words the wave fronts 

form super-high frequency waves that move with light speed away 

from their source.  

However, each wave front is emitted at a slightly different loca-

tion. Already at a small distance it appears as if they originate from 

the same center location. The transport of the wave fronts is con-

trolled by the Huygens principle. 

 

The coherent group forms a building block. The emitted wave 

fronts together constitute the potential functions of this building 

block. Due to the spatial spread of the separate singularities and the 

                                                           
9 For anisotropic elements the message is transmitted by an aniso-

tropic wave. 
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averaging included in the potentials, these potential functions no 

longer represent a local singularity. 

 

The elements act as step stones and together they form a micro-

path for the corresponding group. This micro-movement can be con-

sidered as a combination of a quasi-oscillation and a quasi-rotation. 

The micro-path is completed in a fixed number 𝑁𝑤 of progression 

steps10.  

After the completion of a micro-path a new set is generated that 

has the same statistical characteristics. It is impossible to know pre-

cisely where the next step stone will be located. In a running micro-

path it is impossible to detect the start and the end of the path. Only 

the cycle time 𝜏𝑐 = 𝑁𝑤 ∙ 𝜏𝑠 is fixed. 

 

After completion of the micro-path the particle takes a virtual po-

sition at its new start point. This does not need to be a step stone. A 

step stone is a location where the particle can be detected. Instead the 

new start point is the location of the target of the sharp continuous 

part of the blurred allocation function. This blurred allocation func-

tion is part of the mechanism that embeds particles into their embed-

ding continuum. 

If the new start point equals the location of the previous start 

point, then the particle is considered to be at rest. Another possibility 

is that the particle takes part in an oscillation. If the start points differ, 

then the particle is considered to move. 

 

Indirectly, the generator influences space curvature. The de-

scriptors only describe the influence of the emitted wave fronts on 

the local space curvature.  

 

                                                           
10 This number can vary between categories of building blocks. 
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The super-high frequency wave cannot be observed. Only its av-

eraged effect is observable. The resulting potential is an integral and 

therefore a rather static effect. Low frequency modulations of this 

wave, which are due to oscillations of the emitter, can be observed. 

These modulation waves possess a much lower frequency than the 

super-high frequency carrier wave has. Photons are particular exam-

ples of modulations of the super-high frequency carrier waves. Their 

emission and absorption take 𝑁𝑤 progression steps and occur only at 

a sudden jump of the energy of the particle. 

 

The implementation of the element generator can be described by 

the convolution of a sharp continuous function and a low scale sto-

chastic spatial spread function that blurs the continuous function.  

In this way, the spreading part can be seen as the activator of local 

space curvature, while the derivative of the sharp part defines a local 

metric that can be considered as the descriptor of the local curvature.  

The two parts must be in concordance. In this way, two kinds of 

descriptors of local curvature exist. The first is the density distribu-

tion that describes the stochastic spatial spread of the discrete ob-

jects. It corresponds to a local potential function. The second de-

scriptor is the local metric. Since these functions act on different 

scales, they can usually be treated separately. 

 

The origin of the local curvature is the dynamic stochastic pro-

cess that produces the low scale spread of the discrete objects. As 

described above these objects transmit wave fronts that curve the lo-

cal space. The HBM suggests the combination of a Poisson process 

that is coupled to a binomial process, where the attenuation of the 

binomial process is implemented by a 3D spread function11. The sto-

chastic generator process will generate according to a standard plan.  

                                                           
11 See: The enumeration process. 
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In principle, at each location where it is active the generator pro-

duces locally the same kind of patterns. In undisturbed (natal) for-

mat, these patterns may only differ in their symmetry properties.  

 

However, these patterns cause space curvature. The local curva-

ture is generated by the considered group and by neighboring groups.  

 

Due to an existing uniform move of the building block and due to 

the variance in space curvature, the center location of the pattern may 

become displaced and the pattern becomes distorted. Both effects 

disturb the natal state of the distributions that are generated by the 

generating process.  

 

Since the patterns are generated with a single element per progres-

sion step, the generation poses a large chance to not generate the tar-

get natal shape but instead a distorted shape that in addition is spread 

over the path that the center location decides to follow.  

 

The produced distribution can still be described by a continuous 

function, but that function will differ from the continuous function 

that describes the undisturbed natal state.  

 

So the generation process is characterized by two functions. The 

first one represents the characteristics of the local generation process. 

It describes the natal state of the intended distribution. It is more a 

prospector than a descriptor.  

The second one describes the actually produced distribution that 

is distorted by the local space curvature and spread out by the move-

ment of the center location.  
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Further the generation of the distribution may not be completely 

finished, because not enough elements were generated since the gen-

eration of the pattern was started. However, strong indications exist 

that the complete generation of the micro-path will be finished before 

any other action on the particle will be started. 

 

The generated element only lives during the current progression 

step. In the next step a newly generated element replaces the previous 

object.  

 

At any instant the generated distribution consists of only one ele-

ment. Thus for its most part the distribution that represents the parti-

cle can be considered as a set of virtual elements that lived in the past 

or will live in the future.  

 

The virtual distribution together with its current non-virtual ele-

ment represents a pattern. The local curvature is partly caused by the 

pattern itself, but for another part it is caused by neighbor patterns. 

For a free particle at rest, the wave fronts emitted by the steps 

stones dig a local potential well. In this way a particle creates its own 

inertia. For a particle that takes part in a quantum oscillation, the mi-

cro-path that is formed by the step stones is stretched along the path 

of the oscillation and the wave fronts emitted by the steps stones dig 

a local potential ditch that forms a geodesic along which the particle 

can move freely. 

3.3.1 Recapitulation 

The previous description of the natal generation can be imagined 

visually.  

At a rate of one element per progression instant the generator pro-

duces step stones that are used by the generated building block. 
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The step stones are located randomly in a coherent region of 

curved 3D space.  

 

The building block walks along these step stones. As a conse-

quence even at rest the building block follows a stochastic micro-

path.  

Any movement of the building block as a whole, will be super-

posed on the micro-path.  

 

At every arrival at a step stone, the building block transmits its 

presence and its properties via a wave front that slightly folds and 

thus curves the embedding continuum.  

These wave fronts and the transmitted content constitute the po-

tentials of the building block. 

 

Nobody said that the undercrofts of physics behave in a simple 

way! 

3.3.2 Generation and annihilation cycle 

Generation and annihilation of elementary particles and emission 

and absorption of photons take a fixed number 𝑁𝑤 of progression 

steps12. This number is set by the cycle time of the generation mech-

anism. This cycle time 𝜏𝑐 = 𝑁𝑤 ∙ 𝜏𝑠 also determines the duration of 

other processes, such as the absorption and emission of photons. 

 

                                                           
12 This number can vary between categories of building blocks. 
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This fact also means that all Qpatterns13 of the same generation 

contain 𝑁𝑤 step stones. It also means that probably any electric 

charge of a building block is evenly spread over 𝑁𝑤 elements14. 

 

A strong distortion of the planned step stone distribution can start 

the annihilation cycle of the corresponding particle. This can occur 

by violent movements and/or by strong space curvature.  

 

Due to conservation laws, with elementary particles annihilation 

and creation always occurs together for a pair of a particle and an 

anti-particle. 

3.4 Why particles have potentials 

The question why particles possess fields can better be answered 

by turning the question into the problem why embedding fields ac-

cept particles. Embedding fields can be represented by “analytic” 

quaternionic functions and such functions adapt singularities. Ele-

mentary particles represent singularities in a field that is represented 

by an analytic quaternionic function. In a paginated model these sin-

gularities can be interpreted as sources or drains. This view transfers 

physics into a kind of fluid dynamics. 

3.5 Fundamental particles 

The HBM takes color confinement as a serious restriction. As a 

consequence not all elementary particles can be generated as indi-

vidual particles15.  

                                                           
13 A Qpattern represents an elementary building block. 
14 For generations this assumption means that since charges are 

the same between different generations, 𝑁𝑤 must be the same for 

different generations. 
15 Isolated quarks have a very short live 
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Quarks can only appear combined in hadrons.  

 

For that reason the HBM introduces the category of fundamental 

particles. This category concerns particles that in one coherent cycle 

are generated by the generation mechanism. (Each such cycle takes 

a fixed number of progression steps). 

 

Inside fundamental particles no interactions take place that are 

observable from the outside. 
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3.6 Coupling and events 

The HBM introduces the notion of coupling of fields. It also 

means that non-coupled fields exists. Coupling is described by a cou-

pling equation, which is a special kind of differential continuity 

equation16. 

Coupling takes place between stochastic fields. Stochastic fields 

describe density distributions and current density distributions of 

lower order objects. The distributions are generated by a local gen-

eration process that in each progression step produces ONE lower 

order object per stochastic field. 

 

Coupling is implemented by messages that are transmitted in the 

embedding continuum by the active elements of the distribution via 

wave fronts17 that slightly fold and thus curve this continuum. To-

gether these wave fronts constitute the potentials that are raised by 

the distribution. It is sensible to presume that the element generator 

reacts on the potentials that are active in that location. 

 

When the particle is annihilated, the coupling stops. This also 

means that no further wave fronts are generated that contribute to the 

potential. However, the existing wave fronts keep flowing away from 

their original source. They keep extending their reach with light 

speed. With these wave fronts the potential flees away. 

 

In order to keep the considered group coherent, an inbound or out-

bound micro-move must on average be followed by a move in a re-

verse direction. This must hold separately in each spatial dimension.  

                                                           
16 See: Coupling 
17 For anisotropic elements the message is transmitted by an ani-

sotropic wave. 
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Thus in each spatial dimension a kind of quasi oscillation takes 

place. The synchronization of this quasi oscillation may differ per 

dimension. In a similar way a quasi-rotation can exist. A certain kind 

of coupling of fields may be based on induced synchronization of 

these quasi oscillations and quasi-rotations. 

 

Coupling becomes complicated when it involves coupling de-

pendencies that live in different dimensions. Such cases can no 

longer be solved by separating the problem per dimension. It also 

means that the problem is inherently quaternionic and cannot be 

solved by simple complex number based technology. This occurs in 

the coupling equation of elementary particles where two quaterni-

onic functions are coupled that belong to different discrete symmetry 

sets. Dirac has solved this problem by applying spinors and Dirac 

matrices. The HBM solves this with quaternionic methodology. The 

HBM applies special indices that identify discrete symmetry flavors. 

 

The wave fronts that constitute the potentials of the building 

blocks are non-coupled fields. When the source oscillates then these 

super-high frequency carrier waves get modulated. The correspond-

ing modulation frequency is much lower than the carrier frequency18. 

Photons are examples of these modulated waves. 

3.7 Systems and sub-systems 

Modularization and entanglement are the mechanism that hold na-

ture’s building blocks together.  

Modularization reduces the complexity of the (sub) system. Mod-

ules might couple via two way interfaces that are implemented by 

oscillations. 

                                                           
18 Atoms implement these modulations in a peculiar way. 
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Entanglement installs the requirement that the (sub) system pos-

sess a quantum state function that in some way can be interpreted as 

a normalizable probability density distribution and that can be writ-

ten as a superposition of the quantum state functions of its compo-

nents. Thus, the superposition de-normalizes the effective quantum 

state functions of the system components19. 

In entangled systems the Pauli principle resides. Entangled 

(sub)systems obey the coupling equation. 

3.8 Wave particle duality 

The HBM offers a simple explanation for wave particle duality. 

A point-like object can hop along a stochastically distributed set 

of step stones that together form a micro-path. The step stones form 

a coherent distribution that can be described by a continuous object 

density distribution. Via a properly selected Green’s function the 

step stone distribution can also be converted into a potential function. 

Each suitable Green’s function corresponds to a corresponding po-

tential function.  

A direct conversion from density distribution to a potential func-

tion is also possible and also uses a dedicated Green’s function.  

These higher level objects are different views of the same thing. 

Let us call it a building block. However, the potential is not just an-

other view. The underlying mechanism also stands for some extra 

functionality. 

 

Both the density distribution and the potential function have a 

Fourier transform and can be considered as a wave package. Problem 

with this view is the fact that the step stones only are used in a single 

progression instant. So most of the time the step stones are virtual. 

                                                           
19 This makes no sense in complex quantum physics, but it does 

make sense in quaternionic quantum physics. 
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This becomes less relevant when the step stone distribution is gener-

ated according to a given plan. In that case the plan represents the 

building block. 

 

The most impressing view is raised by the fact that at every arrival 

at a step stone the building block emits a wave front that contains 

information about its presence and about its properties. The flow of 

these wave fronts are controlled by the Huygens principle. Together 

the wave fronts constitute a super-high frequency carrier wave that 

cannot be observed directly, but that can show observable lower fre-

quency modulations and that shows its influence in the form of the 

potentials of the building block. This does not take away that also the 

distribution of the step stones can behave in a wavy way. 

 

Now we have a higher level object that at the same time is a point-

like particle and will act as a wave package and a super-high fre-

quency carrier wave 

This idea is exploited by the Hilbert Book Model. 

3.9 Fuzziness 

Much confusion exists about the fundamental fuzziness of nature. 

In the HBM the origin of this fuzziness is well defined. The fuzz-

iness is created by the stochastic part of the correlation mechanism, 

which controls that sufficient, but not too much coherence exists be-

tween subsequent members of the sequence of static sub-models.  

 

The fuzziness is implemented in the standard planned form of na-

ture’s building blocks. It is described by the natal quantum state 

function of this standard planned building block. 

 

The standard building block is generated by a stochastic process 

that consists of the combination of a Poisson process and a binomial 
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process. The binomial process is implemented by a 3D spread func-

tion, which has a standard form. This standard form is isotropic and 

is formed by a fixed number of elements20. That number defines the 

standard deviation of the standard building block. 

 

The quantum state function of the standard building block is a 

continuous quaternionic function, which has its parameters in con-

figuration space. The spread of the quantum state function in config-

uration space corresponds to the standard deviation of the building 

block. 

 

The quantum state function has a Fourier transform. This trans-

formed function has its parameters in momentum space. The spread 

in the momentum space and the spread in the configuration space are 

related via Heisenberg’s uncertainty relation. This relation is charac-

terized by the standard deviation of the density distribution of the 

standard building block, which depends on the number of elements 

in the building block.  

 

In conventional physics this relation is characterized by Planck’s 

constant. Thus, in the HBM Planck’s constant relates to the number 

of elements in the standard building block. 

 

The actual building block is created element by element and is  

distorted by the local space curvature. Its movement smears the ac-

tual building block along its path of movement.  

 

                                                           
20 This number can vary between categories of building blocks. 
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Often the uncertainty principle is indicated as explanation for na-

ture’s fuzziness. That is a false interpretation. The uncertainty rela-

tion only indicates that location and momentum cannot both be 

known with arbitrary precision. The actual fuzziness is expressed by 

the spread of the quantum state function or better said it is character-

ized by the number of elements of the standard building block. 

3.10 Quanta 

Quantum physics deserves its name due to the existence of 

quanta. Quanta are quantized amounts of energy that are carried by 

photons and gluons or exchanged with these carriers by particles. 

The absorption of quanta may cause the release of particles from 

a bounded situation. The emission of quanta may indicate the bind-

ing of free particles into a composite. 

These processes can be used to detect quanta. 

 

Thus the observation of photons does not concern the visualiza-

tion of their wave structure, but instead it concerns the detection 

event in which the photon is absorbed. On the other hand the spatial 

configuration of the detection events can reveal wave and interfer-

ence patterns. 

 

3.11 What image intensifiers reveal 

The author spent eighteen years in the development of image in-

tensifier tubes. These devices range from goggles via driver scopes 

to fourteen inch wide X-ray image intensifiers. 

The image intensifiers had one feature in common. They were all 

capable of turning the impingement and detection of a quantum at 

their input screen into a visible light spot at their output screen. A 
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hail storm of impinging quanta at the input resulted in a noisy film 

at the output212223. 

The starlight scopes enable visibility of very low dose scenes un-

der starlight conditions. They turned infrared and visible light quanta 

into light spots on a luminescent phosphor screen. 

The X-ray image intensifiers were designed to deliver a percepti-

ble image of an X-ray shadow picture at the lowest possible X-ray 

dose for the diagnosed patient24. 

What still astonishes me is that I never saw any indication of a 

wave entering the input of the image intensifiers. I only saw clouds 

of quanta. That does not say that these clouds cannot have the shape 

of waves, but the individually detected quanta did not show that re-

lation. 

  

                                                           
21 See: http://en.wikipedia.org/wiki/File:Moon_in_x-rays.gif . Low dose X-ray 

image of the moon. 
22 See: http://www.youtube.com/watch?v=U7qZd2dG8uI ; Hail storm. Warning, 

this is NOT a video of an external object. 
23 Also see: http://en.wikipedia.org/wiki/Shot_noise  
24 A short film of the output of an X-ray image 

intensifier made at a very low dose. 
Provided by Philips Healthcare 
 

http://en.wikipedia.org/wiki/File:Moon_in_x-rays.gif
http://www.youtube.com/watch?v=U7qZd2dG8uI
http://en.wikipedia.org/wiki/Shot_noise
http://www.scitech.nl/English/Science/QuantumLimitedLlowDoseImaging.avi
http://www.scitech.nl/English/Science/QuantumLimitedLlowDoseImaging.avi
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 The logic model 

Founding physics on classical logic seems a suitable solution, 

however since 1936 the physical community knows that nature 

cheats classical logic and instead obeys quantum logic.  

In this chapter the basic phenomena of physics will be deduced 

from its logical foundation. The HBM choses traditional quantum 

logic as its most basic foundation. In 1936, this foundation was sug-

gested by Garret Birkhoff and John von Neumann25. 

The structure of quantum logic is far more complicated than the 

structure of classical logic. 

4.1 Static status quo 

It is astonishing to discover that the foundation of physics that was 

suggested by Birkhoff and von Neumann cannot implement dynam-

ics. The suggested model can only implement a static status quo of 

the universe. Quantum logic does not offer operators that can install 

dynamics. That facility is offered by Hilbert logic and by Hilbert 

spaces. However, the HBM will not exploit the possibility to allow 

dynamic Hilbert logic operators as is done in conventional physics 

as is shown by the Heisenberg picture in the Hilbert space. 

4.1.1 Quantum logic 

The most basic level of objects in nature is formed by the propo-

sitions that can be made about the objects that occur in nature. The 

relations between these propositions appear to be restricted by the 

                                                           
25http://en.wikipedia.org/wiki/John_von_Neumann#Quan-

tum_logics & Stanford Encyclopedia of Philosophy, Quantum Logic 

and Probability Theory, http://plato.stanford.edu/entries/qt-

quantlog/ 

http://en.wikipedia.org/wiki/John_von_Neumann#Quantum_logics
http://en.wikipedia.org/wiki/John_von_Neumann#Quantum_logics
http://plato.stanford.edu/entries/qt-quantlog/
http://plato.stanford.edu/entries/qt-quantlog/
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axioms of traditional quantum logic. This set of related propositions 

can only describe a static status quo. The axioms that specify quan-

tum logic are specified in Q-FORMULÆ 2. 

In mathematical terminology the propositions whose relations are 

described by traditional quantum logic form a lattice. More particu-

lar, they form an orthomodular lattice that contains a countable infi-

nite set of atomic (=mutually independent) propositions. Within the 

same quantum logic system multiple versions of sets of these mutu-

ally independent atoms exist. In this phase of the model the content 

of the propositions is totally unimportant. As a consequence these 

atoms form principally an unordered set26. Only the interrelations be-

tween the propositions count. 

The definition of traditional quantum logic shows narrow similar-

ity with the definition of classical logic, however the modular law, 

which is one of the about 25 axioms that define the classical logic, is 

weakened in quantum logic. This is the cause of the fact that the 

structure of quantum logic is significantly more complicated than the 

structure of classical logic. 

4.1.2 Hilbert logic 

The set of propositions of traditional quantum logic is lattice iso-

morphic with the set of closed subspaces of a separable Hilbert 

space. However still significant differences exist between this logic 

system and the Hilbert space. This gap can be closed by a small re-

finement of the quantum logic system. This refinement leads to a 

Hilbert logic system. 

 

Step 1: Define linear propositions (also called Hilbert proposi-

tions) as quantum logical propositions that are characterized by a 

                                                           
26 This fact will prove to be the underpinning of the cosmologic 

principle. 
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number valued strength or relevance. This number is taken from a 

division ring. 

 

Step 2: Require that linear combinations of Hilbert propositions 

also belong to the logic system.  

 

Step 3: Introduce the notion of relational relevance between two 

linear propositions. This measure has properties that are similar to 

the properties of the inner product of Hilbert space vectors. The num-

ber value of the relational relevance is in the same way taken from a 

suitable division ring. 

 

Step 4: Close the subsets of the new logic system with respect to 

this relational relevance measure. 

 

The resulting logic system will be called Hilbert logic.  

The Hilbert logic is lattice isomorphic as well as topological iso-

morphic with the corresponding Hilbert space. 

The definition of Hilbert logic is formally specified in Q-

FORMULÆ 3. 

 

In this correspondence, Hilbert propositions are the equivalents of 

Hilbert vectors. General quantum logic propositions are the equiva-

lents of (closed) subspaces of a Hilbert space.  

The measure of the relational relevance between two Hilbert 

propositions is the equivalent of the inner product between two Hil-

bert vectors.  

Due to this similarity the Hilbert logic will also feature opera-

tors27. 

                                                           
27 In the HBM the Hilbert logic does not feature dynamic opera-

tors. 
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In a Hilbert logic, linear operators can be defined that have atomic 

Hilbert propositions as their eigen-propositions. The eigenspace of 

these operators is countable. 

In a Hilbert logic system the superposition principle holds. A lin-

ear combination of Hilbert proposition is again a Hilbert proposition. 
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 Dynamic model 

A dynamic model can be constructed from an ordered sequence 

of the above static sub-models28. Care must be taken to keep suffi-

cient cohesion between subsequent static models. Otherwise, the 

model just represents dynamical chaos. However, some deviation 

must be tolerated, because otherwise, nothing dynamical will happen 

in this new dynamic model. The cohesion is established by a suitable 

correlation vehicle. 

5.1 Correlation vehicle 

The correlation vehicle supports and guards the coherence of the 

dynamics of the model. The correlation vehicle uses a toolkit con-

sisting of an enumerator generator, an embedding continuum and an 

allocation function that maps the enumerators onto the embedding 

continuum. The embedding continuum is curved and can be repre-

sented by a field. This allocation function is a function of both the 

sequence number of the sub-models and the enumerators that are at-

tached to a member of the selected set of atomic propositions. The 

enumeration is artificial and is not allowed to structurally add extra 

characteristics or functionality to the attached proposition. For ex-

ample, if the enumeration takes the form of a coordinate system, then 

this coordinate system cannot have a unique origin and it is not al-

lowed to structurally introduce preferred directions. These re-

strictions lead to an “affine-like space”29. The avoidance of preferred 

directions produces problems in multidimensional coordinate sys-

tems. As a consequence, in case of a multidimensional coordinate 

system the correlation vehicle must use a smooth touch. This means, 

                                                           
28 Another choice is to apply dynamic operators. That choice is 

not pursued by the HBM. 
29 We will call a space with these restrictions an affine-like space. 



56 

 

that at very small scales the coordinate system must get blurred. This 

means that the guarantee for coherence between subsequent sub-

models cannot be made super hard. Instead coherence is reached with 

an acceptable tolerance. In any case a super hard coherence is un-

wanted. Thus the blur serves two purposes. At small scales it avoids 

preferred directions in multidimensional enumeration systems and at 

the same time it introduces sufficient freedom to tolerate the imple-

mentation of dynamics. 

 

The correlation mechanism assigns a quantum logic proposition and a correspond-

ing Hilbert subspace to each elementary building block. Via the continuous part of the 

allocation function it maps this selected subspace to a subspace of the Gelfand triple. 

That selected subspace will correspond to a coherent region of the eigenspace of the 

operating space operator that resides in the Gelfand triple. Further, it decides at every 

progression step which vector of the subspace will act as eigenvector of the allocation 

operator in the Hilbert space. Only one vector can be selected. The corresponding 

eigenvalue will be mapped into the region of the eigenspace of the operating space 

operator that resides in the Gelfand triple and that is selected via the map of the build-

ing block subspace to the Gelfand triple. 

 

The correlation vehicle also takes care of the perseverance of the 

emitted potential. For that reason it uses the Huygens principle. At 

every progression step the super-high frequency waves are re-emit-

ted from locations at the existing wave fronts. 

 

In this way at every progression step the correlation mechanism 

not only regenerates all building blocks, it also regenerates at every 

progression step all wave fronts that contribute to potentials. Further 

on will be shown that these wave fronts together constitute the em-

bedding continuum. Thus the correlation vehicle also regenerates the 

embedding continuum. 
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At particular events the regeneration of building blocks may stop 

or may evolve into another mode. A strong enough modulation of 

the embedding continuum may start a new generation process. 

Later some extra tasks of the correlation vehicle will be treated. 

5.1.1 Smallest rational 

In order to create sufficient freedom for the action of the stochas-

tic spatial spread function the HBM introduces a smallest rational 

number. It means that also the rational complex numbers and the ra-

tional quaternions use this lower limit. The result is a mesh that con-

sists of a countable number of knot points.  

 

The smallest rational may vary as a function of progression. This 

corresponds to an isotropic expansion or compression. 

 

Not all mesh knot points are used and the used points may move 

along a static mesh. The used mesh knots are imaged by the contin-

uous sharp part of the allocation function. The stochastic spatial 

spread function will use these mesh knot images as its center point. 

 

The images of the total blurred allocation function present loca-

tions of corresponding building blocks. 

 

The derivative of the continuous sharp part of the allocation func-

tion defines a local metric. That metric describes the local curvature. 

5.2 The embedding continuum 

The embedding continuum can be represented by a field, which is 

represented by an analytic quaternionic function. An alternative 
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name for this continuum is operational space30. Such functions ac-

cept the existence of a finite number of singularities. In a paginated 

model these singularities can be interpreted as sources or as drains. 

In a closed field each source must correspond to drains that compen-

sates the source. A source need not be in the neighborhood of the 

corresponding drain. In fact a local virtual drain can be defined that 

represents the activity of all distant drains that together compensate 

the source. The same holds for a virtual source that represents the 

activity of all distant sources that together compensate the drain. 

Embedded building blocks are elementary singularities, which are 

either sources or drains. 

Singularities are generated when a non-adapted quaternion is em-

bedded in a quaternionic function that has a different discrete sym-

metry. The dimension of the singularity corresponds with the differ-

ence in discrete symmetry in these dimensions.  

In a paginated model the influence of a singularity expands dy-

namically in the form of a wave front that leaves the singularity with 

the highest possible speed. This wave front is regenerated at every 

progression step. Its propagation and regeneration is controlled by 

the Huygens principle. Depending on the dimension of the singular-

ity, the wave front can be emitted into one, two or three dimensions. 

In each of these cases the Huygens principle acts differently. 

5.2.1 Dark matter and Huygens principle non-uni-

formity.  

The regeneration of the wave forms may occur in a non-uniform 

way. Due to the fact that the generation of each wave form slightly 

                                                           
30 The operational space is represented by the eigenspace of an 

operational space operator that resides in the Gelfand triple of the 

Hilbert space. 
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folds and thus curves the embedding continuum, a non-uniform op-

eration of the Huygens principle may cause non-uniform space cur-

vature that can be interpreted as the existence of dark matter. 

5.3 Temporal range of the correlation vehicle 

The temporal range of the correlation vehicle stretches over a 

fixed number of progression steps. The reason of this fact is that the 

correlation vehicle is based on a Poisson process that generates this 

number of data per production cycle. The result is that all building 

blocks contain this number of step stones. This number determines 

Planck’s constant. 

5.4 Dynamic logic 

The HBM does not support dynamic logic systems. In the HBM, 

all dynamic aspects are treated by the correlation vehicle. The corre-

lation vehicle implements a very complicated mechanism. It has little 

sense to implement that capability into a logic system when it can be 

done by a dedicated external mechanism. 
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 Isomorphic model 

The natural form of the enumeration system can be derived from 

the lattice isomorphic companion of the quantum logic sub-model. 

Or it can be derived via a corresponding Hilbert logic system. Here 

we follow the historical development that was initialized by Birkhoff 

and von Neumann. 

 

In the fourth decade of the twentieth century Garret Birkhoff and 

John von Neumann31 were able to prove that for the set of proposi-

tions in the traditional quantum logic model a mathematical lattice 

isomorphic model exists in the form of the set of the closed subspaces 

of an infinite dimensional separable Hilbert space32. The Hilbert 

space is a linear vector space that features an inner vector product. It 

offers a mathematical environment that is far better suited for the 

formulation of physical laws than what the purely logic model can 

provide. 

Some decades later Constantin Piron33 proved that the only num-

ber systems that can be used to construct the inner products of the 

Hilbert vectors must be division rings. Later M.P. Solèr’s theorem 

formulated this discovery more precisely. The only suitable division 

                                                           
31http://en.wikipedia.org/wiki/John_von_Neumann#Quan-

tum_logics & Stanford Encyclopedia of Philosophy, Quantum Logic 

and Probability Theory, http://plato.stanford.edu/entries/qt-

quantlog/ 
32 In fact the discovery went in the reverse direction. The Hilbert 

spaces were already in use before quantum logic was formulated. 
33 C. Piron 1964; _Axiomatique quantique_  

http://en.wikipedia.org/wiki/John_von_Neumann#Quantum_logics
http://en.wikipedia.org/wiki/John_von_Neumann#Quantum_logics
http://plato.stanford.edu/entries/qt-quantlog/
http://plato.stanford.edu/entries/qt-quantlog/
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rings are the real numbers, the complex numbers and the quaterni-

ons34.  

Quaternions can be seen as combinations of a real scalar and a 3D 

(real) vector. The number system of the quaternions represent a 

1+3D coordinate system. It can be shown that the eigenvalues of nor-

mal operators must also be taken from the same division ring. 

 

Since the set of real numbers is multiple times contained in the set 

of complex numbers and the set of complex numbers is multiple 

times contained in the set of quaternions, the most extensive isomor-

phic model is contained in an infinite dimensional quaternionic sep-

arable Hilbert space. For our final model we will choose the quater-

nionic Hilbert space, but first we study what the real Hilbert space 

model and the complex Hilbert space model provide. What can be 

done by using a quaternionic Hilbert space can also be done in a real 

or complex Hilbert space by adding extra structure35. 

 

It appears that a cross product of two quaternionic Hilbert spaces 

no longer equals a quaternionic Hilbert space36. The HBM does not 

use such cross products. 

 

The set of closed subspaces of the Hilbert space represents the set 

of propositions that forms the static quantum logic system. The quan-

tum logic system can be refined to a corresponding Hilbert logic sys-

tem. Like the sets of mutually independent atoms in the Hilbert logic 

system, multiple sets of orthonormal base vectors exist in the Hilbert 

space.  

                                                           
34 Bi-quaternions have complex coordinate values and do not form 

a division ring. 
35 http://math.ucr.edu/home/baez/rch.pdf 
36 The result is an abstraction to a real Hilbert space. 

http://math.ucr.edu/home/baez/rch.pdf
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The base vectors do not form an ordered set. However, a so called 

normal operator will have a set of eigenvectors that form a complete 

orthonormal base. The corresponding eigenvalues may provide a 

means for enumeration and thus for ordering these base vectors. An 

arbitrary normal operator will in general not fit the purpose of 

providing an affine-like eigenspace.  

Usually the eigenvalues of a normal operator introduce a unique 

origin and in the case of a multidimensional eigenspace, the eigen-

space may structurally contain preferred directions. Still, suitable 

enumeration operators exist that produce properly ordered enumera-

tions in a subspace37.  

 

Several things can already be said about the eigenspace of the 

wanted enumeration operator:  

 Its eigenspace is countable.  

 It has no unique origin.  

 It does not show preferred directions.  

 Its eigenvalues can be embedded in an appropri-

ate reference continuum. 
 

                                                           
37 See Cosmology 
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As part of its corresponding Gelfand triple38 a selected separable 

Hilbert space forms a sandwich that features uncountable orthonor-

mal bases and (compact) normal operators with eigenspaces that 

form a continuum39. 

A reference continuum can be taken as the eigenspace of the cor-

responding enumeration operator that resides in the Gelfand triple of 

this reference Hilbert space. 

 

Together with the pure quantum logic model, we now have a dual 

model that is significantly better suited for use with calculable math-

ematics. Both models represent a static status quo. 

 

The Hilbert space model suits as part of the toolkit that is used by 

the correlation vehicle. 

 

As a consequence, an ordered sequence of infinite dimensional 

quaternionic separable Hilbert spaces forms the isomorphic model 

of the dynamic logical model. 

6.1 Hierarchy 

The refinement of quantum logic to Hilbert logic also can deliver 

an enumeration system. However, the fact that the selected separable 

Hilbert space offers a reference continuum via its Gelfand triple 

                                                           
38 See http://vixra.org/abs/1210.0111 for more details on the Hil-

bert space and the Gelfand triple. See the paragraph on the Gelfand 

triple.  
39 A similar sandwich can be applied to the Hilbert logic. This 

possibility is not pursued in the HBM. 
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make the Hilbert space more suitable for implementing the Hilbert 

Book Model40. 

 

The two logic systems feature a hierarchy that is replicated in the 

Hilbert space. Quantum logic propositions can be represented by 

closed subspaces of the Hilbert space. Atomic Hilbert propositions 

can be represented by base vectors of the Hilbert space. The base 

vectors that span a closed subspace belong to that subspace. This sit-

uation becomes interesting when the base vectors are eigenvectors. 

In that case the corresponding eigenvalues can be used to enumerate 

the eigenvectors of the Hilbert space operator and the corresponding 

eigen atoms of the Hilbert logic operator. 

 

A similar hierarchy can be found when a coherent set of lower 

order objects forms a building block. Here the lower order objects 

correspond to atomic Hilbert propositions and to corresponding Hil-

bert base vectors. The building block corresponds to the quantum 

logical proposition and to the corresponding closed Hilbert subspace. 

 

Isomorphisms 

Logic Proposition Hilbert space Object 

Quantum logic Atomic  Subspace Building 

block 

Hilbert logic Atomic  Base vector Step stone 

 

  

                                                           
40 The HBM does not pursue the introduction of a sandwich-like 

construct for the Hilbert logic as the Gelfand triple is for the Hilbert 

space. In fact it could be done. 
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6.2 Correspondences 

Several correspondences exist between the sub models: 

 

Quantum 

logic 

Hilbert space Hilbert 

logic 

Propositions: 

𝑎, 𝑏 

Subspaces 

a,b 

Vectors: 

|𝑎⟩, |𝑏⟩ 

Hilbert 

proposi-

tions: 

𝑎, 𝑏 

atoms 

𝑐, 𝑑 

 Base  

vectors: 

|𝑐⟩, |𝑑⟩ 

atoms 

𝑐, 𝑑 

Relational 

complexity: 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 

(𝑎 ∩  𝑏) 

Relational 

complexity: 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 

(𝑎 ∩  𝑏) 

Inner 

product: 

〈𝑎|𝑏〉 

Rela-

tional cou-

pling meas-

ure 

Inclusion: 

(𝑎 ∪  𝑏) 

Inclusion: 

(𝑎 ∪  𝑏) 

Linear 

combination: 

𝛼|𝑎⟩ + 𝛽|𝑏⟩ 

Linear 

combina-

tion: 

𝛼𝑎 + 𝛽𝑏 

For atoms 

𝑐𝑖: 

⋃ 𝑐𝑖

𝒊

 

Subspace 

{∑ 𝛼𝑖|𝑐𝑖⟩

𝑖

}

∀𝛼𝑖

 

Subset 

{∑ 𝛼𝑖𝑐𝑖

𝑖

} 

 

The distribution 

𝑎(𝑖) ≡ {〈𝑎|𝑐𝑖〉}∀𝑖
  

has no proper definition in quantum logic. It can be interpreted 

via the Hilbert logic and Hilbert space sub-models. 
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6.3 Affine-like space 

The installation of the correlation vehicle requests the introduc-

tion of enumerators. The enumeration may introduce an ordering.  

 

The set of mutually independent atomic Hilbert propositions is 

represented by an orthonormal set of base vectors in Hilbert space. 

Both sets span the whole of the corresponding structure. An arbitrary 

orthonormal base is not an ordered set. It has no start and no end. It 

can be embedded in an affine-like space. Or otherwise stated: the set 

can be enumerated by elements of an affine-like space.  

 

The HBM uses a simple definition of an affine-like space. It is a 

vector space that has no origin and no preferred directions. The space 

might be curved and it might be divided in compartments. At large 

and moderate scales these compartments might allow a coordinate 

system that has a unique origin.  

 

All or a part of the base vectors can be enumerated for example 

with rational quaternions. Enumeration introduces an artificial origin 

and may introduce artificially preferred directions. Thus, in order to 

prevent preferred directions, enumeration will apply only to a part of 

the affine-like space. As is shown in the last paragraph, this enumer-

ation process defines a corresponding “mostly normal” operator.  

 

Normal operators are defined in Q-FORMULÆ 9. Off course, the 

indicated “mostly normal” operator is not normal. It has an affine-

like eigenspace. In certain subspaces it is similar to a normal opera-

tor. There the eigen(sub)space may have a (selected) origin. 

 

If the enumeration introduces an ordering, then the attachment of 

the numerical values of the enumerators to the Hilbert base vectors 
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defines a corresponding operator. It must be remembered that the se-

lection of the enumerators and therefore the corresponding ordering 

is kind of artificial. The eigenspace of the enumeration operator has 

no unique origin41 and is has no natural preferred directions42. Thus 

it has no natural axes. It can only indicate the distance between two 

or more locations. It will be shown that for multidimensional rational 

enumerators the distance is not precise. In that case the enumeration 

can at the utmost represent a blurred coordinate system. Both in the 

Hilbert space and in its Gelfand triple, the enumeration can be repre-

sented by a “mostly normal” enumeration operator. 

 

The HBM suggests a smallest rational number. At very low scales 

ordered enumeration may be taken over by a stochastic enumeration 

mechanism. However, that does not occur at all mesh points. Where 

this stochastic enumeration occurs, the model will show special ob-

jects that act as nature’s building blocks. 

6.4 Continuity 

The task of the correlation vehicle is to arrange sufficient cohe-

sion between subsequent members of the sequence. This cohesion 

translates to a moderate form of continuity. 

6.4.1 Arranging dynamics 

Embedding the enumerators in a continuum highlights the inter-

spacing between the enumerators. Having a sequence of static sub-

models is no guarantee that anything happens in the dynamic model. 

A fixed (everywhere equal) interspacing will effectively lame any 

                                                           
41 It might have several origins. 
42 At small scales the enumeration may be installed by a stochastic 

process, which avoids preferred directions. At larger scales any pre-

ferred direction will be disturbed by space curvature. 



68 

 

dynamics. A more effective dynamics can be arranged by playing 

with the sizes of the interspacing in a stochastic way. This is the task 

of a stochastic enumerator generator. 

6.4.2 Establishing coherence 

The cohesion between subsequent static models can be estab-

lished by embedding each of the countable sets in an appropriate 

continuum and enforcing coherence via a continuous function.  

 

As a first step, the whole Hilbert space can be embedded in its 

Gelfand triple. The enumerators of the base vectors of the separable 

Hilbert space or of a subspace can also be embedded in a correspond-

ing continuum.  

In the reference Hilbert space that continuum is formed by the 

values of the enumerators that enumerate a corresponding orthonor-

mal base of the Gelfand triple43.  

For subsequent Hilbert spaces a new appropriate embedding con-

tinuum will be used, but that continuum may be curved.  

 

Next a correlation vehicle is established by introducing a contin-

uous allocation function that controls the coherence between subse-

quent members of the sequence of static models. It does that by cre-

ating a moderate relocation in the countable set of the enumerators 

that act in the separable Hilbert space by mapping them to the em-

bedding continuum. The relocation is controlled by a stochastic pro-

cess.  

 

                                                           
43 See Gelfand triple 



69 

 

The differential of the allocation function can be used to specify 

the small scale working space for this stochastic process44. The cor-

relation vehicle also takes care of the persistence of the embedding 

continuum. For this purpose it uses the Huygens principle. 

 

The equivalence of this action for the logic model is that the enu-

merators of the atomic propositions are embedded in a continuum 

that is used by an appropriate correlation vehicle. The problem with 

this view is that currently the Hilbert logic does not possess an equiv-

alent of the Gelfand triple45. 

 

The allocation function uses a combination of progression and the 

enumerator id as its parameter value. The value of the progression 

might be included in the value of the id.  

 

Apart from their relation via the allocation function, the enumer-

ators and the embedding continuum are mutually independent46. For 

the selected correlation vehicle it is useful to use numbers as the 

value of the enumerators. The type of the numbers will be taken 

equal to the number type that is used for specifying the inner product 

of the corresponding Hilbert space and Gelfand triple.  

 

The danger is then that in general a direct relation between the 

value of the enumerator of the Hilbert base vectors and the embed-

ding continuum is suggested. A positive exception is formed by the 

selected reference Hilbert space, but this is an exceptional case.  

                                                           
44 The differential defines a local metric. 
45 This “logic Gelfand triple” can be constructed, but the HBM 

will not use it. 
46 This is not the case for the reference Hilbert space in the se-

quence. There a direct (close) relation exists. 
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So, for later Hilbert spaces a warning is at its place. Without the 

allocation function there is no relation between the value of the enu-

merators and corresponding values in the embedding continuum that 

is formed by the Gelfand triple.  

However, there is a well-defined relation between the images47 

produced by the allocation function and the selected embedding con-

tinuum48.  

 

The relation between the members of a countable set and the 

members of a continuum raises a serious one-to-many problem. That 

problem can easily be resolved for real Hilbert spaces and complex 

Hilbert spaces, but it requires a special solution for quaternionic Hil-

bert spaces. That solution is treated below when quaternionic Hilbert 

spaces are discussed. 

 

Together with the selected embedding continuum and the Hilbert 

base enumeration set, the allocation function defines the evolution of 

the model. 

6.4.3 Structure of the correlation vehicle 

At every progression step the correlation vehicle regenerates the 

eigenspaces of the non-conserved operators49. This regeneration runs 

at a super-high frequency. That frequency is set by the progression 

step size 𝜏𝑠. 

                                                           
47 Later these images will be called Qpatches 
48 Later the nature of this embedding continuum will be revealed. 

In later Hilbert spaces the embedding continuum is constituted by 

interfering super-high frequency waves.  
49 These operators reside in Hilbert logic, in the corresponding 

Hilbert space and in the corresponding Gelfand triple. 
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An important part of the functionality of the correlation vehicle is 

implemented by the blurred allocation function. This function is the 

convolution of a continuous part and a local blur. The local blur is 

implemented by the combination of a Poisson process and a binomial 

process. The binomial process is implemented by a 3D spread func-

tion. We will call this combined process a stochastic spatial spread 

function. 

The derivative of the continuous part of the allocation function 

defines a local metric. 

 

Another part of the functionality of the correlation vehicle con-

cerns the regeneration of the embedding continuums. This regenera-

tion is governed by Huygens principle. This part of the correlation 

vehicle is implemented by wave fronts that flow with the constant 

maximum speed of information transfer. The wave fronts constitute 

super-high frequency carrier waves. 

 

Later we will see that the correlation vehicle is restricted by color 

confinement . The correlation mechanism also supports some extra 

tasks in the establishment of composites. It installs and supports en-

tanglement. As a consequence it supports the Pauli principle. 
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 Hilbert spaces 

Sets of subsets of Hilbert spaces represent quantum logical sys-

tems and associated Hilbert logic systems. Closed subspaces of the 

Hilbert space represent quantum logical propositions and Hilbert 

space vectors represent Hilbert propositions. 

 

The Hilbert space itself is a static hull. A normal operator with a 

countable ordered set of rational eigenvalues can be used as a refer-

ence operator. This operator will be used for enumeration purposes. 

These enumerators will be used as parameters for the functions that 

implement the correlation mechanism. This correlation mechanism 

controls the evolution of other operators that will carry the progres-

sion dependence of the HBM. 

 

Each Hilbert space corresponds to a Gelfand triple. That space 

features operators which have a continuum as their eigenspace. Also 

in this space a normal operator with an ordered set of eigenvalues 

can be used as a reference operator. Continuum eigenspaces will be 

used to represent the target space of the blurred allocation function. 

The corresponding operators depend on progression. Partly they re-

side in the Hilbert space. Other progression dependent operators re-

side in the Gelfand triple. 

 

The reference operators are static objects50. Together with the Hil-

bert space and the Gelfand triple they form the static hull. 

 

                                                           
50 However, the real part of the eigenvalue of the reference oper-

ator is used to store progression. 
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Several normal operators in the Gelfand triple will be used to de-

liver target values for functions that implement the correlation mech-

anism. These operators are dynamic objects. In the HBM they will 

be re-created at every progression step. 

7.1 Real Hilbert space model 

When a real separable Hilbert space is used to represent the static 

quantum logic, then it is sensible to use a countable set of real num-

bers for the enumeration. A possible selection is formed by the nat-

ural numbers. Within the real numbers the natural numbers have a 

fixed interspacing. Since the rational number system has the same 

cardinality as the natural number system, the rational numbers can 

also be used as enumerators. In that case it is sensible to specify lo-

cally a (fixed, but progression dependent) smallest rational number 

as the enumeration step size. In this way the notion of interspacing 

is preserved and can the allocation function do its scaling task51. In 

the realm of the real Hilbert space model, the continuum that embeds 

the enumerators is formed by the real numbers. The values of the 

enumerators of the Hilbert base vectors are used as parameters for 

the allocation function. The value that is produced by the allocation 

function determines the target location for the corresponding enu-

merator in the target embedding continuum. The target embedding 

continuum is taken as the eigenspace of an operator that resides in 

the Gelfand triple. The interspacing freedom is used in order to in-

troduce dynamics in which something happens.  

In fact what we do is defining an enumeration operator that has 

the enumeration numbers as its eigenvalues. The corresponding ei-

genvectors of this operator are the target of the enumerator. 

                                                           
51 This enables progression dependent scaling. Later, in the qua-

ternionic Hilbert space model, this freedom is used to introduce 

space curvature and it is used for resolving the one to many problem. 
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With respect to the logic model, what we do is enumerate a previ-

ously unordered set of atomic propositions that together span the Hil-

bert logic system and next we embed the enumerators in an appro-

priate continuum. The correlation vehicle takes care of the cohesion 

between subsequent quantum logical and Hilbert logical systems. 

 

While the progression step is kept fixed, the (otherwise fixed) 

space step might scale with progression. 

 

Instead of using a fixed smallest rational number as the enumera-

tion step size and a map into a reference continuum we could also 

have chosen for a model in which the rational numbered step size 

varies with the index of the enumerator. 

7.2 Gelfand triple 

The Gelfand triple of a real separable Hilbert space can be under-

stood via the enumeration model of the real separable Hilbert space. 

This enumeration is obtained by taking the set of eigenvectors of a 

normal operator that has rational numbers as its eigenvalues.  

Let the smallest enumeration value of the rational enumerators 

approach zero. Even when zero is reached, then still the set of enu-

merators is countable.  

Now add all limits of converging series of rational enumerators to 

the enumeration set. When appropriate also add a corresponding ei-

genvector.  

 

After this operation the enumeration set has become a continuum 

and has the same cardinality as the set of the real numbers. This op-

eration converts the Hilbert space into its Gelfand triple and it con-

verts the normal operator into a new operator that has the real num-

bers as its eigenspace.  
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It means that the orthonormal base of the Gelfand triple that is 

formed by the eigenvectors of the new normal operator has the car-

dinality of the real numbers.  

It also means that linear operators in this Gelfand triple have ei-

genspaces that are continuums and have the cardinality of the real 

numbers52.  

 

The same reasoning holds for complex number based Hilbert 

spaces and quaternionic Hilbert spaces and their respective Gelfand 

triples. 

7.3 Complex Hilbert space model 

When a complex separable Hilbert space is used to represent 

quantum logic, then it is sensible to use rational complex numbers 

for the enumeration.  

Again a smallest enumeration step size is introduced. However, 

the imaginary fixed enumeration step size may differ from the real 

fixed enumeration step size. The otherwise fixed imaginary enumer-

ation step may be scaled as a function of progression.  

 

In the complex Hilbert space model, the continuum that embeds 

the enumerators of the Hilbert base vectors is formed by the system 

of the complex numbers. This continuum belongs as eigenspace to 

the enumerator operator that resides in the Gelfand triple.  

 

It is sensible to let the real part of the Hilbert base enumerators 

represent progression. The same will happen to the real axis of the 

embedding continuum. On the real axis of the embedding continuum 

the interspacing can be kept fixed.  

                                                           
52 This story also applies to the complex and the quaternionic Hil-

bert spaces and their Gelfand triples. 
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Instead, it is possible to let the allocation function control the in-

terspacing in the imaginary axis of the embedding continuum. The 

values of the rational complex enumerators are used as parameters 

for the allocation function.  

The complex value of the allocation function determines the tar-

get location for the corresponding target value in the continuum.  

 

The allocation function establishes the necessary coherence be-

tween the subsequent Hilbert spaces in the sequence.  

 

The difference with the real Hilbert space model is, that now the 

progression is included into the values of the enumerators. The result 

of these choices is that the whole model steps with (very small, say 

practically infinitesimal) progression steps. 

 

In the model that uses complex Hilbert spaces, the enumeration 

operator has rational complex numbers as its eigenvalues. In the 

complex Hilbert space model, the fixed enumeration real step size 

and the fixed enumeration imaginary step size define a speed of in-

formation transfer.  

 

The fixed imaginary step size may scale as a function of progres-

sion. The same will then happen with the speed of information trans-

fer, defined as space step divided by progression step. However, if 

information steps one step per progression step, then the information 

transfer speed will be constant.  

 

Progression plays the role of observed time. Now define a new 

concept that takes the length of the complex path step as the step 

value. Call this concept the observer’s time step.  
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Observed time is the time that ticks at the location of the observed 

item and in its reference frame.  

Observer’s time is the time that ticks at the location of the ob-

server and in its reference frame 53. Observer’s time is our conven-

tional notion of time. 

 

 

Again the eigenvectors of the (complex enumeration) operator are 

the targets of the enumerator whose value corresponds to the com-

plex eigenvalue.  

 

In the complex Hilbert space model the squared modulus of the 

quantum state function represents the probability of finding the loca-

tion of the corresponding particle at the position that is defined by 

the parameter of this function. 

 

 

7.4 Quaternionic Hilbert space model 

When a quaternionic separable Hilbert space is used to model the 

static quantum logic, then it is sensible to use rational quaternions 

for the enumeration.  

Again the fixed enumeration step sizes are applied for the real part 

of the enumerators and again the real parts of the enumerators repre-

sent progression.  

The reference continuum that embeds the discrete enumerators is 

formed by the number system of the quaternions.  

 

                                                           
53 In fact observer’s time is a mixture of progression and space. 

See paragraph on spacetime metric. 
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The scaling allocation function of the complex Hilbert space 

translates into an isotropic scaling function in the quaternionic Hil-

bert space. However, we may instead use a full 3D allocation func-

tion that incorporates the isotropic scaling function. This new allo-

cation function may act differently in different spatial dimensions. 

However, when this happens at very large scales, then it conflicts 

with the cosmological principle. At those scales the allocation func-

tion must be quasi isotropic. The allocation function is not allowed 

to create preferred directions. 

 

Now the enumeration operator of the Hilbert space has rational 

quaternions as its eigenvalues. The relation between eigenvalues, ei-

genvectors and enumerators is the same as in the case of the complex 

Hilbert space. Again the whole model steps with nearly constant  

progression steps. 

 

In the quaternionic Hilbert space model the real part of the quan-

tum state function represents the probability of finding the location 

of the corresponding particle at the position that is defined by the 

parameter of this function. It corresponds to a density distribution of 

the locations where the corresponding building block can/could be 

found. 

7.4.1 Curvature and fundamental fuzziness 

The spatially fixed interspacing that is used with complex Hilbert 

spaces poses problems with quaternionic Hilbert spaces. Any regular 

spatial interspacing pattern will introduce preferred directions. Pre-

ferred directions are not observed in nature54 and the model must not 

                                                           
54 Preferred directions are in conflict with the cosmological prin-

ciple. 
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create them. A solution is formed by the randomization of the inter-

spacing. Thus instead of a fixed imaginary interspacing we get an 

average interspacing.  

 

This problem does not play on the real axis. On the real axis we 

can still use a fixed interspacing.  

 

Further, the actual location of the enumerators in the embedding 

continuum will be determined by the combination of a sharp contin-

uous allocation function (SCAF) ℘ and a stochastic spatial spread 

function (SSSF) 𝒮 that specifies the local blur.  

The form factor of the blur may differ in each direction and is set 

by the differential of the sharp allocation function ℘.  

The total effect is given by the convolution 𝒫 =  ℘ ∘  𝒮 of the 

sharp allocation function ℘ and spread function 𝒮. The result is a 

blurred allocation function 𝒫. Per progression step for each building 

block, the blurred allocation function 𝒫 produces only a single step 

stone. Per full production cycle and for each building block, the 

blurred allocation function 𝒫 produces a Qpattern that consists of a 

coherent set of step stones.  

In the model a Qpattern represents an elementary building block 

and is represented by a quantum logical proposition and by a sub-

space of the Hilbert space. 

The planned result of 𝒮 alone is described by a quaternionic prob-

ability density distribution (QPDD). This is a descriptor. It describes 

the planned distribution of a set of discrete objects that will be gen-

erated in a sequence55.  

 

                                                           
55 Later we will see that this sequence has a fixed length. 
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The planned result of 𝒫 is the actual  local QPDD. In the quater-
nionic Hilbert space model it conforms to the quaternionic quan-
tum state function. It is a close equivalent of the well-known 
wave function. 

 

The requirement that the cosmological principle must be obeyed 

is one of the causes of a fundamental fuzziness of the quaternionic 

Hilbert model. Another cause is the requirement that coherence 

between subsequent progression steps must not be too stiff. These 

causes are the reason of existence of quantum physics. 

 

An important observation is that the blur mainly occurs locally. 

The blur has a very limited extent. On the other hand, due to the 

emission of potential generating wave fronts, the blur corresponds to 

a potential function that has an unlimited extent, but its influence de-

creases with distance. 

 

At medium distances the freedom that is tolerated by the alloca-

tion function causes curvature of observed space56. However, as ex-

plained before, at very large scales the allocation function must be 

quasi isotropic57. The local curvature is described by the differential 

of the sharp part of the allocation function. 

 

The continuous part of the allocation function defines the proper-

ties of the current target embedding continuum. In fact it determines 

the eigenspace of a corresponding operator that resides in the Gel-

fand triple.  

 

                                                           
56 The origin of this curvature will be explained later. 
57 Quasi-isotropic = on average isotropic. 
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Apart from the exceptional case of the reference Hilbert space, the 

selection of this operator poses a choice. For the reference Hilbert 

space the eigenspace of the reference operator that resides in the Gel-

fand triple is selected. For subsequent Hilbert spaces, the HBM se-

lects the superposition of this field and of all emitted wave fronts as 

the proper choice of this embedding continuum. 

 

 

This picture only tells that space curvature might exist. It does not 

describe the origin of space curvature. For a more detailed explana-

tion of the origin of space curvature, please see the paragraph on the 

enumeration process. 

7.4.2 Discrete symmetry sets 

Due to their four dimensions, quaternionic number systems exist 

in 16 versions (sign flavors58) that differ in their discrete symmetry 

sets. The same holds for sets of rational quaternionic enumerators 

and for continuous quaternionic functions. Four members of the set 

represent isotropic expansion or isotropic contraction of the imagi-

nary interspacing. At large scales two of them are symmetric func-

tions of progression. The other two are at large scales anti-symmetric 

functions of progression. We will take the symmetrical member that 

expands with positive progression as the reference rational quater-

nionic enumerator set. Each member of the set corresponds with a 

quaternionic Hilbert space model. Thus apart from a reference con-

tinuum we now have a reference rational quaternionic enumerator 

set. Both reference sets meet at the reference Hilbert space. Even at 

the instance of the reference Hilbert space, the allocation function 

must be a continuous function of progression. 

 

                                                           
58 See paragraph on Qpattern coupling 
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When the real parts are ignored, then eight sign flavors result. 

These eight flavors are discerned by their “color” and their handed-

ness. Besides of color, we use special indices in order to mark the 

sign flavors. 

 

 

 

 

Within a coherent set of enumerators or in the images of such a set 

that are produced by the allocation function all objects possess the 

same sign flavor.  

Eight sign flavors  

(discrete symmetries) 

Colors N, R, G, B, R̅, G̅, B̅, W 

Right or Left handedness R,L 

 
Figure 1: Sign flavors 
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A similar split in quaternionic sign flavors as exists with quaterni-

onic number systems occurs with continuous quaternionic func-

tions. In the picture they are listed as ψ⓪…ψ⑦. Apart from their dis-

crete symmetry set, these functions are equal. 

 

In the picture the color N and the continuous function version ψ⓪  

represent the reference sign flavor.  

 

For each discrete symmetry set of their parameter space, the func-

tion values of the continuous quaternionic distribution exist in 16 

versions that differ in their discrete symmetry set. Within the target 

domain of the continuous quaternionic distribution the symmetry set 

will stay constant. 

 

In contemporary physics the discrete sign flavors are usually repre-

sented by spinors and 4×4 matrices. The HBM uses quaternions 

and the described special indices. 

7.4.3 Generations and Qpatterns 

Depending on its characteristics, the local generator of enumera-

tors can generate a certain distribution of randomized enumerators. 

A Poisson generator combined by a binomial process that is imple-

mented by a suitable 3D isotropic spread function can implement a 

suitable distribution. The planned distribution is described by a local 

QPDD. The local QPDD corresponds to the characteristics of the 

generator, but depending on its starting condition the stochastic gen-

erator can generate different distributions. Thus, different distribu-

tions may correspond to a single QPDD. The QPDD is a continuous 

quaternionic function that describes in its real part the density of the 

elements of the described distribution. In its imaginary part the 

QPDD describes the associated current density distribution. 
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If generators with different characteristics exist, then several gen-

erations59 of local QPDD’s exist.  

Since different generations of the same type have the same elec-

tric charge and if charge is evenly distributed over all 𝑁𝑤 elements, 

it is quite probable that that for all generations 𝑁𝑤 is the same. 

 

HYPOTHESIS 1: For a selected generation the following holds: 

Apart from the discrete symmetry set of the QPDD, the natal 

QPDD’s are everywhere in the model the same.  

 

Therefore we will call the distribution of objects that is described 

by this basic form of the selected QPDD generation a Qpattern. For 

each generation, QPDD’s exist in 16 versions that differ in their dis-

crete symmetry set. Each Qpattern has a weighted center location, 

which is called Qpatch. 

At each progression step, all generators produce only a single el-

ement of the distribution. This means that each subsequent Hilbert 

space contains only one element of the Qpattern. That element is 

called Qtarget. 

In the model a Qtarget  is represented by an atomic Hilbert prop-

osition and by an eigenvector of the allocation operator. It acts as 

the current step stone in the elementary building block. 

Due to the influence of local curvature and due to movement of 

the Qpatch the Qtargets form a swarm that differs from a Qpattern. 

7.4.4 Microstate 

A Qpattern corresponds with the statistic mechanical notion of a 

microstate. A microstate of a gas is defined as a set of numbers which 

specify in which cell each atom is located, that is, a number labeling 

                                                           
59 See the later paragraph on generations 
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the atom, an index for the cell in which atom s is located and a label 

for the microstate60. 

7.5 Optimal ordering 

In the Hilbert space it is possible to select a base that has optimal 

ordering for the eigenvalues of a normal operator. Optimally ordered 

means that these sections are uniformly distributed and that stochas-

tic properties of these sections are the same. In the Hilbert logic sys-

tem a similar selection is possible for the set of mutually independent 

atomic propositions. There the atomic propositions are enumerated 

by the same set of rational quaternionic values. 

For the Hilbert spaces it means that in the Gelfand triple a corre-

sponding operator exist whose eigen space maps onto the well-or-

dered eigenspace of the operator that resides in the Hilbert space. 

We will call these operators “reference operators”. 

7.6 The reference Hilbert space 

The reference Hilbert space is taken as the member of the se-

quence of Hilbert spaces at the progression instance where the allo-

cation function is a symmetric function of progression that expands 

in directions that depart from the progression value of the reference 

Hilbert space. 

At large and medium scales the reference member of the sequence 

of quaternionic Hilbert spaces is supposed to have a quasi-uniform61 

distribution of the enumerators in the embedding continuum. This is 

realized by requiring that the eigenspace of the enumeration operator 

                                                           
60 http://www.intechopen.com/books/theoretical-concepts-of-

quantum-mechanics/quantum-mechanical-ensembles-and-the-h-

theorem 
61 quasi-uniform = on average uniform. 
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that acts in the Gelfand triple of the zero progression value Hilbert 

space represents the reference embedding continuum.  

At this instance of progression, the target embedding continuum 

is flat. For the reference Hilbert space the isotropic scaling function 

is symmetric at zero progression value62. Thus for the reference Hil-

bert space at the reference progression instance the distribution of the 

enumerators will realize a densest packaging63of the target images.  

 

For all subsequent Hilbert spaces the embedding continuum 

will be taken from the superposition of wave fronts that are initi-

ated in earlier Hilbert spaces. 

 

The (reference) Hilbert space together with its Gelfand triple and 

the reference operators in both structures form a static block that re-

appears in all later members of the sequence. 

  

                                                           
62 However, it is possible that multiple reference Hilbert spaces 

exist. In that case the statement must be adapted. 
63 The densest packaging will also be realized locally when the 

geometry generates black regions. 
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7.7 The embedding continuum 

For the reference Hilbert space the embedding continuum is taken 

from a flat normal location operator that resides in its Gelfand triple. 

That continuum is the virginal reference continuum. 

 

Later we will see that it is possible to construct an embedding 

continuum from fields that are emitted from other compartments of 

the universe that have their own evolution cycle. 

 

For subsequent Hilbert spaces the embedding continuum for fer-

mions is formed by the superposition of all wave fronts that are gen-

erated by objects that lived in previous Hilbert spaces. The result is 

a curved equivalent embedding continuum that replaces the virginal 

reference continuum. The curvature is caused by the mechanism that 

emits the super-high frequency waves that constitute the gravitation 

potentials. These waves also constitute other potentials. 

 

Bosons use an embedding continuum that is formed by the wave 

fronts that are emitted locally in previous Hilbert spaces.  

 

The correlation vehicle takes care of the persistence of the SHF 

waves. 

7.8 The cosmological principle revisited 

The enumeration process attaches an artificial content to each of 

the members in the unordered set of atomic propositions. The unre-

stricted enumeration with rational quaternions generates an artificial 

origin and it generates artificial preferred directions that are not pre-

sent in the original set of atomic propositions. The correlation vehicle 

is not allowed to attach this extra functionality to the original propo-

sitions. However, the vehicle must still perform its task to establish 

cohesion between subsequent sub-models. One measure is to turn the 
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enumeration space into an affine-like space or to restrict the enumer-

ation to a closed subset of a larger affine-like space where the subset 

has a unique origin. An affine-like space has no unique origin. The 

next measure is to randomize the enumeration process sufficiently 

such that an acceptable degree of cohesion is reached and at the same 

time a quasi-isotropy of this affine-like space is established. This 

measure requires the freedom of some interspacing, which is ob-

tained by assigning a lowest rational number. In principle, a lowest 

rational number can be chosen for the real part and a different small-

est base number can be chosen for the imaginary part. This choice 

defines a basic notion of speed. The resulting (imaginary) space is 

on average isotropic. The randomization results in a local blur of the 

continuous function that regulates the enumeration process. 

The result of these measures is that roughly the cosmologic prin-

ciple is installed. Thus, in fact the cosmological principle is a corol-

lary of the other two starting points. 

However, according to this model, apart from the low scale ran-

domization, at the start the universe would be quite well ordered. Af-

ter a myriad of progression steps this medium to large scale ordering 

is significantly disturbed. 

 

Looking away64 from any point in universe is in fact looking back 

in observed time. Looking as far as is physically possible will open 

the view at a reference member of the Hilbert Book Model. This ref-

erence member represents a densest and well-ordered packaging. 

This will result in a uniform background at the horizon of the uni-

verse. 

The well-known microwave background radiation is not fully uni-

form and is expelled by members that are close to the densest pack-

aged member. 

                                                           
64 Looking away = receiving messages from other objects. 
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7.9 Fourier transform 

The Fourier transform switches between two views of the Hilbert 

space. It converts a set of base vectors into a new set of base vectors 

such that none of the old base vectors is retained and all new base 

vectors can be written as linear combinations of the old base vectors 

in which the coefficients all have the same norm.  

 

The Fourier transform retains the values of inner products be-

tween any two vectors. Thus, it is a unitary transform. 
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 The HBM picture 

In the early days of quantum physics two views on quantum phys-

ics existed, the Schrödinger picture and the Heisenberg picture. The 

HBM adds two extra pictures. 

8.1 The Schrödinger picture 

The Schrödinger picture describes a dynamic implementation in 

Hilbert space in which the quantum states carry the time dependence. 

The operators are static65.  

8.2 The Heisenberg picture 

The Heisenberg picture describes a dynamic implementation in 

Hilbert space in which the operators (represented by matrices) carry 

the time dependence. The quantum states are static66. 

8.3 The Hilbert Book Model picture 

In the HBM picture an ordered sequence of Hilbert spaces and 

their corresponding Gelfand triples are used. Each of these spaces 

represent a static status quo. 

In the HBM the whole Hilbert space carries the observed time de-

pendence. Both the enumeration operator and the patterns that rep-

resent the quantum state functions depend on the progression param-

eter. Other operators describe the target images of these enumerator 

generators. These target images form the Qtargets. For each Qpattern 

the Hilbert space contains only the actual element, the current Qtar-

get as an eigenvector of the allocation operator. Thus if only a single 

Hilbert space is considered, then the Qpatterns cannot be recognized 

as a set of eigenvectors of the allocation operator. The Qpatterns can 

                                                           
65 http://en.wikipedia.org/wiki/Schr%C3%B6dinger_picture 
66 http://en.wikipedia.org/wiki/Heisenberg_picture 

http://en.wikipedia.org/wiki/Schr%C3%B6dinger_picture
http://en.wikipedia.org/wiki/Heisenberg_picture
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only be recognized as subspaces. The Qtarget is a vector inside the 

Qpattern subspace. The virtual elements are not actually present as 

eigenvectors of the allocation operator in any member of the se-

quence of Hilbert spaces. The virtual elements can only exist as place 

holders, i.e. as vectors that are not eigenvectors of the allocation op-

erator.  

 

The potentials of Qpatterns act as traces of the existing and passed 

Qpatterns and the corresponding wave fronts form traces of the Qtar-

gets. They affect the embedding continuum that is formed by the ei-

genspace of an operational space operator that resides in the Gel-

fand triple of the Hilbert space and that is affected by wave fronts 

that are emitted by particles that existed in the past. Qtargets repre-

sented these particles in previous Hilbert spaces. 

The correlation vehicle ensures the cohesion between subsequent 

Hilbert spaces and takes care of the persistence of the emitted wave 

fronts. In order to achieve this, at each progression step the correla-

tion vehicle uses the Huygens principle67. 

 

The wave fronts survive the extinction of the sources that created 

them. Their amplitude diminishes with distance and the wave fronts 

interfere, but they exist forever.  

 

Emitted wave fronts do not compensate each other. They just 

interfere. 

8.4 The operational picture 

In the operational picture only a single Hilbert space and its Gel-

fand triple are used.  

                                                           
67 If the potentials are emitted in two dimensions, then the situa-

tion is more complicated. 
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An operator that resides in the Hilbert space acts as the reference 

operator. It has an equivalent in the Gelfand triple and the eigen-

spaces of these operators map onto each other in an orderly fashion. 

Together with the Hilbert space and Gelfand triple these reference 

operators represent the static part of the model68. 

 

The eigenvalues of the reference operators represent the progres-

sion value in their real part. 

 

The author considers it an odd idea to afflict operators with intel-

ligence that controls their temporal behavior. It is more sensible to 

accept the role of an external correlation mechanism that establishes 

the necessary coherence between subsequent static status quos. 

 

In the Hilbert space and in its Gelfand triple the correlation vehi-

cle supports the existence of progression dependent operators. This 

concerns a stochastically operating operator in the Hilbert space and 

for each potential type a compact normal operator that installs the 

temporal behavior of these potentials. 

 

The correlation vehicle uses the eigenspaces of the reference op-

erators as its parameter spaces. It uses eigenspaces of other operators 

as its target space. As a consequence these target operators depend 

on progression.  

 

This picture comes close to the Heisenberg picture, but it does not 

keep states static. 

                                                           
68 An exception holds for the real parts of the eigenvalues. They 

represent progression. 
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8.5 Discussion 

Obviously the HBM selects the Hilbert Book Model picture. Ac-

cording to the feel of the author this picture offers the cleanest view. 

In this picture the difference between virtual and actual elements of 

a building block can be clearly explained. 

 

The Hilbert space and Gelfand triple hulls together with the ref-

erence operators form the static part of both the HBM picture and the 

operational picture. In the HBM picture this static part is represented 

by the reference Hilbert space, its Gelfand triple and the reference 

operators. There is one small exception to this static behavior: the 

eigenvalues of the reference operators represent the progression 

value in their real parts. 

 

Not all of the eigenvectors of the Hilbert space reference operator 

are constantly in use. Annihilation and (re)creation events regulate 

this usage. Virtual elements of building blocks are not used as eigen-

values of eigenvectors of the allocation operator. Only the Qtarget is 

used, which is an actual element. 

 

For a local view the models only use a huge subspace of the Hil-

bert space(s). For a cosmological view the full Hilbert space is used. 

 

Enumeration is considered to be an artificial action and the enu-

merators must be seen as to be embedded in an affine-like space.  

 

The correlation vehicle controls all aspects of dynamics. It does 

that both in Hilbert space and in the Gelfand triple. Since the Hilbert 

space and the Gelfand triple are static hulls, the correlation vehicle 

controls a selected set of operators that reside in these spaces. The 
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tools of the correlation vehicle are the allocation function (in the Hil-

bert space) and the Huygens principle (in the Gelfand triple). Its ac-

tions are coordinated. 

Also in the support of entangled (sub)systems the correlation 

mechanism plays an important role. 

8.6 Quantum state function 

In contemporary physics the “quantum state function” is used in 

its complex format. There it is a complex probability amplitude dis-

tribution (CPAD). It is also called “wave function”. The squared 

modulus of the quantum state function is interpreted as the probabil-

ity to be able to detect the corresponding building block at the loca-

tion that is specified by the parameter of the wave function. The com-

plex phase of the wave function can be freely selected. This freedom 

is used in gauge transforms. 

 

In quaternionic quantum physics the quaternionic quantum state 

function is defined as a continuous quaternionic function. Its real part 

equals the squared modulus of the complex quantum state function 

and has the same interpretation. This part has no complex phase. In 

fact the real part can be interpreted as an object density distribution, 

where the objects are the locations where the corresponding building 

block can be detected. The imaginary part of the quaternionic quan-

tum state function can be interpreted as the associated current density 

distribution. In fact it registers the displacement of the described 

building block since its last location. At every progression instant the 

building block gets a new location. The average location moves more 

quietly. 

 

The displacement is the sum of the displacement that is due to the 

movement of the building block as a whole and the displacement that 
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is caused by the stochastic spatial spread. This last category of dis-

placements cause the walk of the building block along a stochastic 

micro-path. 

 

In quaternionic quantum physics the gauge transformation re-

duces to a mathematical trick.  

 

The characterization of the quaternionic quantum state function 

as a quaternionic probability density distribution (QPDD) is used in 

analogy to the characterization of the complex quantum state func-

tion as a complex probability amplitude distribution (CPAD), but 

care must be taken because the interpretations of the CPAD and the 

QPDD slightly differ. 
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 The enumeration process 

It is not yet made clear how Qpatterns will be shaped. This infor-

mation can be derived from the requirements that are set for the cor-

relation vehicle. We will start with a suggestion for the enumeration 

process that for this vehicle will lead to the wanted functionality. 

 

HYPOTHESIS 2: At small scales the enumeration process is gov-

erned by a Poisson process. The lateral spread that goes together 

with the low scale randomization of the interspacing plays the role 

of a binomial process. The combination of a Poisson process and a 

binomial process is again a Poisson process, but locally it has a 

lower efficiency than the original Poisson process. The binomial at-

tenuation is implemented by a continuous 3D spread function. 

 

As an example, we consider the special situation that this combi-

nation produces a 3D normal distribution. For a large number of enu-

merator generations the resulting spatial Poisson distribution resem-

bles a Gaussian distribution69. If the generated enumerators are 

considered as charge carriers, then the corresponding potential has 

the shape of an Error function divided by 𝑟. Already at a short dis-

tance from its center location the potential function starts decreasing 

with distance 𝑟 as a 1/𝑟 function70. 

9.1 New mathematics 

No mathematical solution is known for the conversion of a super-

high frequency train of wave fronts to a rather static potential func-

tion. Normally the relation between a set of charges and a potential 

                                                           
69 http://en.wikipedia.org/wiki/Poisson's_equation#Poten-

tial_of_a_Gaussian_charge_density 
70 http://farside.ph.utexas.edu/teaching/em/lectures/node28.html  

http://farside.ph.utexas.edu/teaching/em/lectures/node28.html
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function is regulated by a dedicated Green’s function. We can try a 

similar solution by letting the wave front play the role of the a charge. 

We can  also use the fact that a building block contains a fixed num-

ber of step stones. Thus, instead of an integral a sum over 𝑁𝑤 step 

stones can be used.  

9.2 Gravity and electrostatics 

Potentials depend on the Green’s function that is used to convert 

the corresponding density distribution into a potential function. 

Apart from their Green’s function, gravity and electrostatics can be 

treated by similar equations. We use the fact that charge Q is spread 

over 𝑁𝑤 step stones that have charge 𝑞 = 𝑄/𝑁𝑤. 

 

Description Gravity Electrostatics 

Field 𝒈 = −𝛁 φ 𝑬 = −𝛁 φ 

Force 𝑭 = 𝑚𝒈 𝑭 = 𝑄𝑬 

Gauss law 〈𝛁, g〉 = −4𝜋𝐺𝜌 
〈𝛁, E〉 =

𝑄

𝜀
 

Poisson law 

∆𝜑 = 〈 𝜵, 𝜵𝜑〉 

∆𝜑 = 4𝜋𝐺𝜌 
∆𝜑 = −

𝑄

𝜀
 

Greens func-

tion 

−𝜌(𝒓′)

|𝒓 − 𝒓′|
 

𝑞

|𝒓 − 𝒓′|
 

Single charge 

potential 
𝜑 = −

4𝜋𝐺𝑚

|𝒓|
 𝜑 =

𝑄

4𝜋𝜀|𝒓|
 

Single charge 

field 
𝑔 = −

4𝜋𝐺𝑚

|𝒓|2
𝒓 𝑬 =

𝑄

4𝜋𝜀|𝒓|2
𝒓 

Two charge 

force 
𝑭 = −

4𝜋𝐺𝑚1𝑚2

|𝒓|3
𝒓 𝑭 =

𝑄1𝑄2

4𝜋𝜀|𝒓|3
𝒓 

Mode attracting repelling 
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The table shows that the Greens functions of both fields differ in 

sign. For the gravitation potential the Green’s function is charged 

with the local “charge” density 𝜌(𝒓′). For the electrostatic potential 

the Green’s function is charged with a (constant) electric charge 𝑄. 

The Yukawa potential71 uses a short range Green’s function:  

 
−𝜌(𝒓′)

|𝒓 − 𝒓′|
exp(−𝜇|𝒓 − 𝒓′|) 

 

                                                           
71 http://en.wikipedia.org/wiki/Yukawa_potential 

(1) 

http://en.wikipedia.org/wiki/Yukawa_potential
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 In this example we use the gravitational Green’s function.  

 

Since the items are carriers with charge 𝜌𝑖, the density distributionρf(𝐫) corre-

spond to a potential 𝜑(𝒓).  

Every item contributes a term 𝜑𝑖(𝒓 − 𝒓𝒊) =
−𝜌𝑖

|𝒓−𝒓𝒊|
 

 

𝜑(𝒓) = ∑ 𝜑𝑖(𝒓 − 𝒓𝒊)

𝑖

= ∑
−𝜌𝑖

|𝒓 − 𝒓𝒊|
𝑖

 

 

Example: If there is a static spherically symmetric Gaussian charge density 

 

ρg(r) =
ρ𝑐

σ3√2π
3 exp (

−r2

2σ2
) 

 

where ρ𝑐 is the total charge, then the solution 𝜑(𝑟) of Poisson's equation, 

 

∇2φ = ρg 

 

is given by 

 

φ(r) =
ρ𝑐

4πεr
erf (

r

√2σ
) =

−1

4πε
∫

ρg(𝒓′)

|𝒓 − 𝒓′|
𝑑3𝒓′ 

 

where 𝑒𝑟𝑓(𝑥) is the error function. 

 

Note that, for 𝑟 much greater than 𝜎, the erf function approaches unity and the 

potential 𝜑 (𝑟) approaches the point charge potential 

 

φ(r) ≈
−ρ𝑐

4πεr
 

as one would expect. Furthermore the 𝑒𝑟𝑓 function approaches 1 extremely 

quickly as its argument increases; in practice for 𝑟 >  3𝜎 the relative error is 

smaller than one part in a thousand. 

http://en.wikipedia.org/wiki/Gaussian_distribution
http://en.wikipedia.org/wiki/Error_function
http://en.wikipedia.org/wiki/Electrical_potential
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9.2.1 Interpretation 

The above integral can be interpreted as a summation of influ-

ences by all step stones that constitute the micro-path of the particle. 

Thus the potential of the (Gaussian) particle is given by: 

 

φ(r) ≈
ρ𝑐

4πεr
erf (

r

√2σ
) 

 

This no longer represents a singularity. 

9.2.2 Bertrand’s theorem 

Now we remember Bertrand’s theorem.72 : 

Bertrand's theorem states that only two types of central force poten-

tials produce stable, closed orbits:  

(1) an inverse-square central force such as the gravita-
tional or electrostatic potential 

𝑉(𝑟) =  
−𝑘

𝑟
 

and  

(2) the radial harmonic oscillator potential 

𝑉(𝑟) =  ½ 𝑘 𝑟2 

                                                           
72 http://en.wikipedia.org/wiki/Bertrand's_theorem. 

(1) 

(1) 

(2) 

http://en.wikipedia.org/wiki/Central_force
http://en.wikipedia.org/wiki/Potential
http://en.wikipedia.org/wiki/Potential
http://en.wikipedia.org/wiki/Orbit_(dynamics)
http://en.wikipedia.org/wiki/Gravity
http://en.wikipedia.org/wiki/Gravity
http://en.wikipedia.org/wiki/Electrostatics
http://en.wikipedia.org/wiki/Simple_harmonic_oscillator
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According to this investigation it becomes acceptable to assume 

that the undisturbed shape of the Qpatterns can be characterized by 

something that comes close to a 3D Gaussian distributions. Since 

such a distribution produces the correct shape of the gravitation po-

tential, the underlying mechanism would explain the origin of cur-

vature.  

9.3 The internal dynamics of Qpatterns 

A Qpattern is generated in a rate of one element per progression 

step. A corresponding allocation operator that resides in the Hilbert 

space will reflect these Qtargets in its eigenspace.  

 

During each progression step for each potential type an increment 

is added to the relatively static potential function. This is performed 

by transmitting a message to the environment of the Qtarget. The 

Qtarget is the element, which is currently active.  

 

Depending on the discrete symmetric difference with the embed-

ding continuum to which the building block couples, the wave front 

is either spherical or anisotropic. In the latter case, it is isotropic in 

less than three dimensions. Otherwise said, the embedding process 

causes a singularity in one, two or three dimensions. 

 

For full 3D isotropic coupling Qtargets73 the message is sent in 

the form of a 3D tsunami-like spherical wave front . The wave front 

folds the embedding continuum. This is the mechanism, which is 

used in order to transport the message.  

 

                                                           
73 See Discrete symmetry sets. 
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By repeating that message for every new Qtarget a constant 

stream of messages is produced that together form a wave pattern 

that oscillates with super-high frequency74.  

 

If the Qpattern does not move, then at some distance the situation 

looks as if an oscillating spherical wave is transmitted from a single 

source. The same happens when the Qpattern takes part in a quantum 

oscillation. In that case the micro-path is stretched along the oscilla-

tion path. The hectic movements in the micro-path then hide the os-

cillation. If the Qpattern takes part in a wider oscillation then the su-

per-high temporal frequency wave gets a lower temporal frequency 

amplitude and phase modulation. If the Qpattern is involved in a 

more large scale movement, then a series of micro-paths are 

stretched along subsequent pieces of the movement path. 

 

The geometry of the emitted wave fronts may depend on the sym-

metry properties of the emitting Qtarget. 

 

                                                           
74 That frequency is determined by the progression step size 𝜏𝑠. 
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The wave fronts curve the embedding continuum. The effect on 

local curvature diminishes with distance from the Qtargets. This can 

be comprehended by accepting that the transport of the wave fronts 

is controlled by the Huygens principle. The resulting effect is de-

scribed by the corresponding potential function75. 

 

The sharp continuous part of the allocation function registers the 

effect on the embedding continuum and stores this data for the crea-

tion of the next version of the embedding continuum.  

The correlation vehicle applies the Huygens principle for recreat-

ing the embedding continuum at every progression step.  

 

                                                           
75 See: Waves that spread information. 
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A corresponding operator that resides in the Gelfand triple will 

reflect the resulting embedding continuum in its eigenspace. 

9.4 Qpatterns 

9.4.1 Natal and swarms 

The Qpattern is a dynamic building block. Qpatterns extend over 

many progression steps76. A Qtarget lasts only during a single pro-

gression step. 

 

A Qpattern is a coherent collection of objects that are distributed 

in space by a stochastic process. It means that each Qpattern is cre-

ated differently. It is probably so that the Qpattern is also recreated 

differently in subsequent creations.  

 

This coherent distribution can be described by two density distri-

butions. The first one is a scalar function that describes the distribu-

tion of the density of the spatial locations.  

The second one describes the corresponding current density dis-

tribution. It administers the displacement of the new Qtargets since 

the previous Qtarget generation.  

The two descriptions combine in a single Quaternionic probabil-

ity density Distribution (QPDD).  

 

The QPDD is a continuous quaternionic function. According to 

the hypothesis, Qpatterns of a given generation have a QPDD with a 

fixed natal shape.  

 

                                                           
76 In fact, depending on their generation, they extend over a fixed 

number of progression steps. See Atoms and their electrons. 
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The distribution of discrete objects corresponds to several poten-

tial functions. For each suitable Green’s function a corresponding 

potential function exists.  

In this way the scalar density distribution corresponds to a set of 

scalar potential functions and the current density distribution corre-

sponds to a set of 3D vector potential functions.  

 

A direct conversion from density distribution to a potential func-

tion uses a dedicated Green’s function. Each suitable Green’s func-

tion gives a corresponding potential function. The reverse conversion 

is only possible when the design plan of the Qpattern is known. 

 

Each Qpattern corresponds to a plan. Not all enumerations that 

are required for generating the planned Qpattern must be used during 

the life of the swarm.  

 

Per progression step the generator creates only a single member 

of the Qpattern and that member is replaced in the next step by an-

other member.  

 

At every instant of progression, Qpatterns contain one actual 

member and for the rest it consists of virtual members.  

The actual member is a location where an event can happen. This 

actual element is called Qtarget.  

That event may be the annihilation of the Qpattern. After that the 

generation of new elements stops. Or it can be a sudden change of 

the energy of the Qpattern. In that case a photon is emitted or ab-

sorbed. 

 

In any case at every progression instant at the location of the Qtar-

get, small contributions to the potentials of the Qpattern are gener-

ated by the current Qtarget.  
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Each realization of a Qpattern corresponds to a micro-path that 

runs along step stones. The Qpatch may move and/or oscillate. The 

actual distribution of Qtargets spreads along the actual path of the 

building block. In general, this actual path differs from the planned 

micro-path.  

 

The contributions to the potentials are transmitted by Qtargets at 

the halts along the actual path. 

 

The Qpattern can be described by a function of progression that 

produces a stochastic spatial location at every subsequent progres-

sion step. 

 

Since the collection is generated in a rate of one element per pro-

gression step, the contributions to the potential functions are also 

generated in that rate and at the locations of the Qtargets, which form 

the current actual element.  

 

It is shown above that the potential functions are generated with 

the help of wave fronts77 that with light speed move away from the 

locations of the elements that generated them.  

 

These wave fronts are emitted with a fixed super-high fre-

quency. In the HBM no higher frequency exists. 

 

Only if the Qpattern stays fixed at a single location in an non-

curved part of the embedding continuum, then that location will see 

the generation of a virtual Qpattern that takes a shape that approaches 

                                                           
77 The isotropy of the wave front depends on the isotropy of the 

emitting Qtarget. 
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the planned target distribution. It will take a huge number of progres-

sion steps to reach that condition. It is the number of steps that it 

takes to walk the micro-path. 

 

A moving Qpattern will be spread along the path of the corre-

sponding building block. 

 

A move of the building block may affect the life of the realizable 

part of the Qpattern78. 

9.4.2 Micro-paths 

Qpatterns are representatives of nature’s building blocks. They 

are coherent collections of lower order objects that each can be con-

sidered as a location where the building block can be. These objects 

are generated in a rate of one element per progression step.  

 

The situation can be interpreted as if the building block hops from 

step stone to step stone. These micro-movements form a micro-path 

in the form of a random string.  

 

At each arrival at a step stone the building block emits a message. 

That emission contributes to the potentials of the building block.  

The emission does not affect the Qpattern.  

 

In order to stay at the same position, a step in a given direction 

will on average be followed by a step in the reverse direction. Oth-

erwise the average location will move away or the pattern will im-

plode or explode.  

                                                           
78 http://en.wikipedia.org/wiki/Particle_decay 

http://en.wikipedia.org/wiki/Particle_decay
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This means that the particle moves along a micro-path and this 

path is characterized by quasi-oscillations. Similarly the micro-path 

may show quasi-rotations. 

The same micro-path can exist in two directions. This is probably 

connected with the direction of spin. 

9.4.3 Characteristics of the micro-path 

The micro-path is a stochastic object and has corresponding char-

acteristics. 

A building block type has a fixed number (𝑁𝑤) of step stones. 

The sum of steps results in a building block step (𝑆𝑏).  

This defines the building block speed (𝑆𝑏/𝑁𝑤). 

The step between subsequent step stones has an average length 

(𝑙𝑠) and a step length variance (𝑣𝑠).79 

 

9.4.4 Advantages of QPDD’s 

The QPDD is a quaternionic function that for all planned step 

stones of a Qpattern describes a static situation, where that descrip-

tion also includes the planned (last) displacement of the step stone. 

The same holds after the completion of the micro-path for the QPDD 

of an swarm. 

9.4.5 Isotropic space coverage  

During generation the Qpattern must obtain an isotropic shape. 

This can be obtained by combining the Poisson process with two uni-

form random angular rotations. The rotations are mutual perpendic-

ular and have a range of π radians. The Poisson process produces a 

                                                           
79 The computation of the step length variance has much in com-

mon with the computation of Feynman’s path integral. 
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one dimensional distribution that approaches a normal distribution. 

It determines the off center distance. The first rotation replaces the 

point along a circle with central axes A1, which is perpendicular to 

the axis A0 on which the normal distribution spreads. The second ro-

tation uses axis A2, which is perpendicular to both axis A0 and A1. 

All axes cross at the center location. 

Axis A0 acts as the spin axis of the Qpattern. 

Together these actions produce a 3D normal distribution. The 

choice of the axes offers a sign freedom. Also the direction of rota-

tion is not specified. These sign selections correspond to the discrete 

symmetry sets of quaternionic numbers. 

The direction in which the micro-path is travelled may be con-

nected with the direction of spin. The half and full integer spin value 

may be related to whether the creation of the distribution covers π or 

2π radians. 

9.4.6 Qpattern history 

A Qpattern can be created and it can be annihilated. If a Qpattern 

is annihilated, then the generator stops producing new elements. 

Thus, also the generation of new potential wave fronts will stop. 

However, existing potential waves will keep proceeding.  

 

A fixed number 𝑁𝑤 of wave fronts will signal the annihilation in 

the form of a modulation of the super-high carrier wave. That mod-

ulation corresponds to the emission of a photon.  

 

The last generated wave front closes a train of previous wave 

fronts. This edge moves away with light speed. A previously rather 

“static” potential will be replaced by a dynamic phenomenon. During 

a fixed number 𝑁𝑤 of progression steps the emitted wave fronts will 

be modulated. The modulation represents the emission of a photon. 
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The annihilation frees the identifier of the Qpattern and makes it 

available for reuse. In this way the identifiers of the Qpatterns refer 

to their virgin equivalents that were born in the reference Hilbert 

space. 

A sudden change in the energy of the Qpattern will result in the 

emission or absorption of a photon. 

A slow oscillation of the whole Qpattern results in a correspond-

ing oscillation of its potentials. These oscillations become visual as 

radio waves. The criterion for emitting radio waves is set by the fact 

whether the micro-path can cover the full oscillation path. 

 

If the micro-path stretches along the path of the oscillation, then 

the potentials are not affected. It means that the particle emits its 

usual potentials. This occurs with electrons that take part in the 

spherical harmonic oscillations inside atoms. In atoms photons are 

emitted or absorbed when the mode of the spherical harmonic oscil-

lation changes. 

9.4.6.1 Looking away 

We will define “looking away” as receiving messages from dis-

tant objects. Looking away is looking back in observed time.  

 

Looking back as far as is possible is looking back at the virginal 

state of the historic Qpattern. Looking as far away as is possible is 

looking at the virginal state. In this way a Qpattern can be coupled 

both to its past and to its distant background.  

 

On the other side this means that the wave fronts that are trans-

mitted from this virgin state reach the current local Qpattern. 

 

The superposition of all transmitted wave fronts that were emitted 

in the past and that contribute via superposition to the local potential 
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results in huge background field that acts as a (curved) embedding 

continuum (for fermions). This effect installs inertia80. 

9.4.7 Qpattern cycle 

Despite of the fact that the regeneration process is cyclic, due to 

the fact that the generator is stochastic, the next cycle need not gen-

erate the same Qpattern. Only the statistical parameters of this new 

Qpattern will be the same. Depending on its generation, it will cor-

respond to a fixed natal QPDD. For each generation the cycle time 

𝜏𝑐 is fixed. 

 

The duration of the cycle is only interesting at the occasions when 

photons are emitted or absorbed. Emission and absorption of photons 

takes a full regeneration cycle. 

 

Generation and annihilation can start at any progression instant. 

The duration of photon emission and photon absorption is fixed. It 

equals a full Qpattern re-generation cycle. 

 

During the undisturbed life of a Qpattern it will be impossible to 

determine where the regeneration cycle starts. 

Further, the micro-path may exist in two directions. 

9.4.8 Fourier transform 

A QPDD that has the form of a QPDD of a Gaussian distribution 

has a Fourier transform that also has the form of a QPDD of a Gauss-

ian distribution. However, the characteristics of the distributions will 

differ. 

The QPDD of a coupled Qpattern is compact in configuration 

space and wide spread in canonical conjugated space. 

                                                           
80 See inertia 
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The Fourier transform of the QPDD of a Qpattern is its character-

istic function81. It is a quaternionic function.  

9.5 Qtargets 

In fact the actual elements, called Qtargets, are represented by 

three different rational quaternions. These rational quaternions de-

fine locations or displacements relative to an embedding continuum. 

That continuum might be curved.  

 

1. For each Qtarget, the first quaternion plays the role 

of the corresponding parameter. This also holds at 

zero progression value.  

The real part of this quaternion represents progres-

sion. Its imaginary part acts as the identifier of the el-

ement. The Qtargets walk through a path as a func-

tion of progression.  

2. The imaginary part of the second quaternion defines 

the location of the Qtarget in its current embedding 

continuum. Its real part specifies the local density. It 

also acts as the relevance factor of the corresponding 

Hilbert proposition.  

3. The imaginary part of the third quaternion defines the 

displacement with respect to the previous Qtarget. 

The discrete symmetry set of this quaternion deter-

mines the “charge” of the Qtarget.  

The effective charge is set by the difference between 

                                                           
81 http://en.wikipedia.org/wiki/Characteristic_function_(proba-

bility_theory) 

http://en.wikipedia.org/wiki/Characteristic_function_(probability_theory)
http://en.wikipedia.org/wiki/Characteristic_function_(probability_theory)
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the discrete symmetry set of the Qtarget and the dis-

crete symmetry set of the embedding continuum.  

Apart from the discrete symmetry set this third qua-

ternion contains no new information.  
 

The planned and the actual distribution of Qpattern elements can 

be described by a charged carrier density distribution and a corre-

sponding current density distribution. Via appropriate Green’s func-

tions these density distributions correspond to a scalar potential and 

a corresponding vector potential. The potentials reflect the transmit-

tance of the existence and the discrete properties of the Qtarget via 

super-high frequency information carrier waves. 

 

Since Qtargets are the actual elements of Qpatterns and their iden-

tifier is also Qtarget of a Qpattern that existed at zero progression 

value, the two patterns are connected as well.  

9.6 New mathematics 

The idea that wave fronts82 implement the contribution that 

Green’s functions add to the potential functions, represents new 

mathematics. This is quite clear for the gravitational potential. The 

emitted wave folds and thus curves the embedding continuum. In this 

way curvature can be explained.  

It is less clear for other potentials. Especially the encoding of elec-

tric charge information in the emitted information is not yet properly 

established. This encoding uses the difference in discrete symmetry 

between the Qtarget and the embedding continuum83. 

                                                           
82 For anisotropic Qpatterns the message is transmitted by an ani-

sotropic wave. 
83 See elementary particle properties 
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9.6.1 Waves that spread information 

A Qtarget exists during a single progression step. Even when they 

belong to the same Qpattern will subsequent Qtargets be generated 

at different locations. If the Qtarget is generated, then in the embed-

ding continuum the Qtarget corresponds to a tsunami-like wave front 

that has its source at the location of the Qtarget. After the disappear-

ance of the Qtarget the wave front keeps spreading out. The wave 

fronts that belong to preceding Qtargets and the wave fronts that be-

long to other Qpatterns will interfere with that wave front. If the 

Qpatch is stationary, then at sufficient distance it will look as if the 

waves are generated by a single source. The train of emitted wave 

fronts will resemble a super-high frequency oscillating wave. The 

dof this oscillating wave decreases with distance from the source. 

For isotropic spherical waves, this is the reason of the contribution 

of the term 
𝑄𝑖

|𝒓−𝒓𝒊|
 to the static potential integral. 
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If an annihilation event occurs, then the generator stops generat-

ing Qtargets for this Qpattern. However the wave fronts that have 

been started will proceed spreading over the embedding continuum.  

Example: Generation process with one element per progression instant. Here we use the 

electrostatic Green’s function. 

 Poisson process coupled to a binomial process 

 Binomial process implemented by a 3D spread function 

 Produces a 3D distribution 

 Which approaches a 3D Gaussian distribution 

 ρf(r) =
Q

σ3√2π
3 exp (

−r2

2σ2) 

 This corresponds to a scalar potential of the form  

φ(r) =
Q

4πεr
erf (

r

√2σ
) =

1

4πε
∫

ρf(𝒓′)

|𝒓 − 𝒓′|
𝑑3𝒓′ ≈

Q

4πεr
(𝑟 ≫ 𝜎) 

 And a vector potential of the form  

𝐐

4πεr
(𝑟 ≫ 𝜎) 

 

 Charge Q represents the discrete symmetry set difference between the 

carrier and the embedding continuum. 
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When the local generator stops generating then no new wave 

fronts will be formed. The last wave front and foregoing wave fronts 

proceed spreading with light speed. The last trail of wave fronts is 

modulated and carries a photon. 

 

The fact that the wave fronts keep spreading is a consequence of 

the characteristics of the correlation vehicle, which is implemented 

by the enumerator generating mechanism. That mechanism also re-

generates the embedding continuum for use in the next progression 

step. The mechanism uses the Huygens principle in order to establish 

persistence of the floating wave fronts. 

 

The scalar potential functions and vector potential functions that 

correspond to the charge and current density distributions reflect the 

transmission of the information that is transmitted by the Qtargets. 

 

The potential functions reveal the existence and the properties 

of the Qpattern. The potentials can be observed without affecting 

the Qpattern. 

9.6.2 Waves that shrink space 

The tsunami-like wave fronts appear to shrink space. The local 

shrinkage diminishes when the distance from the source increases. 

As a consequence, for 3D spherical information carrier waves, the 

influence diminishes as 1/r. Also this fact is a consequence of the 

actions of the correlation vehicle, which uses the Huygens principle 

in order to control the flow of the wave fronts. 

 

All quaternionic quantum state functions are fields (they are qua-

ternionic probability density distributions) that extend over a limited 

region of the embedding space.  
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The corresponding potentials extend over a part of universe that 

falls within the information horizon of the corresponding particles.  

 

The potential functions act as traces of Qpatterns. When a particle 

annihilates, then the information about its existence keeps spreading. 

However, no new information is generated.  

 

The tsunami-like wave front that spreads this information appears 

to shrink the space where it passes. However, its influence dimin-

ishes with distance. For spherical waves the influence diminishes 

with distance r as 1/r.  

 

As long as a particle lives, it keeps sending these tsunami-like 

wave fronts. This might be the way that gravitation/space curvature 

is implemented. 

9.6.3 Information carrier waves 

Information carrying wave fronts are emitted by Qtargets. The 

corresponding building block emits these wave fronts at a super-high 

frequency that is set by the progression step size 𝜏𝑠. The wave fronts 

move with “light speed”. This speed is the highest possible speed 

that can be achieved for information transmission. Even when the 

Qtargets belong to the same Qpattern will subsequent Qtargets emit 

their information carrier wave fronts from different locations. 

 

The spread of information carrier waves is governed by the Huy-

gens principle. The correlation vehicle uses this principle in order to 

retransmit the waves at every progression step. This holds for trans-

mission in odd numbers of dimensions. For transmission in two di-

mensions the situation is more complicated. 
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Information carrier waves pass unblocked through the embedding 

continuum. These waves are only influenced via interference by 

other information carrier waves. In that case, the information that 

they carry combines into a new information set. 

 

If the emitting building block moves, then the new sources of the 

emitted wave fronts move as well. 

If the emitting building block oscillates, then the information car-

rier wave gets an amplitude and/or phase modulation. The frequency 

of that modulation will be much lower than the super-high frequency 

of the carrier. 

 

A train of emitted carrier wave fronts constitute a potential field. 

The interrelation is set by an appropriate Green’s function. 

9.6.4 Spreading electric charge information 

The Qtarget also contains information about the electric charge of 

the corresponding particle. The process of spreading that information 

corresponds to the way that gravitational information is transmitted. 

In this case not the existence and local density, but the charge is 

transmitted. The charge is determined by the discrete symmetry of 

the Qtarget in comparison to the discrete symmetry of the embedding 

continuum. Only the symmetries of the imaginary parts that encode 

displacement are relevant. 

9.6.5 Huygens principle 

The correlation vehicle applies the Huygens principle. It means 

that in every progression step, every location on a wave front can be 
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seen as a source of a new wave. The Huygens principle acts differ-

ently for waves that operate in different numbers of dimensions84. 

The Green’s function differs accordingly. For odd dimensions the 

mechanism works in the commonly understood way. 

 

The Huygens principle acts on super-high frequency waves that 

transmit the information that is contained in potential fields. The cor-

responding wave fronts proceed with light speed. 

9.7 Quasi oscillations and quasi rotations 

In order to keep the distribution on average coherent in each di-

mension, any step in positive direction must be followed by a step in 

negative direction. With other words a kind of quasi oscillation takes 

place. This oscillation can be synchronous to a reference or it can be 

asynchronous. This (a)synchrony may differ per dimension. In a sim-

ilar way a quasi-rotation can exist. 

A special kind of coupling/interaction between fields can be the 

result of these induced quasi oscillations and or quasi rotations, 

where distant sources of oscillating potentials induce this coupling 

with local oscillations. 

9.8 Distant Qtargets 

The Qtargets of distant Qpatterns also send messages that encode 

their presence in tsunami-like wave fronts. These waves contribute 

to a huge local background potential. This effect represents the origin 

of inertia85. Together the potentials of all Qpatterns constitute a local 

potential that can act as an embedding continuum.  

                                                           
84 An interesting discussion is given at: http://www.math-

pages.com/home/kmath242/kmath242.htm 
85 See Inertia 

http://www.mathpages.com/home/kmath242/kmath242.htm
http://www.mathpages.com/home/kmath242/kmath242.htm
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It is a bit strange that electrostatic potential plays no role in this 

effect. 

In this respect the link http://en.wikipedia.org/wiki/Common_in-

tegrals_in_quantum_field_theory may show interesting. 

9.9 Spurious elements 

Qtargets need not be generated in coherent distributions as is the 

case with Qpatterns. Coherent distributions correspond to potential 

functions that are constructed dynamically in a large series of steps.  

 

In extreme cases the distribution consists of a single element that 

pops up and disappears in a single progression step. During its exist-

ence the element still produces a tsunami-like signal in the form of a 

wave front86 that travels in the embedding continuum. Again this 

wave front causes a local curvature.  

 

In large numbers these spurious elements may cause a noticeable 

effect. 

9.10 The tasks of the correlation vehicle 

 

The correlation mechanism takes care of the coherence between 

subsequent static sub-models. 

The primary task of the element generator is the generation of 

Qtargets that are part of Qpatterns. Qpatterns represent coherent dis-

crete distributions of step stones. 

 

An extra restriction that is installed by the correlation mechanism 

is that the coherent discrete distribution of step stones that belong to 

                                                           
86 For anisotropic Qtargets the message is transmitted by an ani-

sotropic wave. 

http://en.wikipedia.org/wiki/Common_integrals_in_quantum_field_theory
http://en.wikipedia.org/wiki/Common_integrals_in_quantum_field_theory
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an embedded particle can be characterized by a continuous step stone 

density distribution that exists in the embedding continuum. Further 

the mechanism ensures that this continuous object density distribu-

tion can be characterized as a probability density distribution. If this 

is the case, then the object density distribution can be considered as 

the squared modulus of the wave function of the considered object. 

This describes the fundamental stochastic nature of the universe wide 

time clock model. These extra restrictions are far from obvious. 

The consequence is that the stochastic micro-path is generated in a 

recurrent fashion such that important statistical attributes are rein-

stalled in a cyclic fashion. 

 

If after walking along the full micro-path the next walk keeps the 

average location of the step stones at the same location, then the ob-

ject is considered to stay at rest or to take part in an oscillatory move-

ment such that the micro-path is stretched along the path of the os-

cillation. If that is not the case, then the object is considered to move 

and the micro-path is considered to be stretched along the path of 

that movement. 

Here the correlation mechanism will put another restriction that 

concerns the stretching of the micro-path along the movement or os-

cillation paths. This must occur such that that the Fourier transform 

of the density distribution of the step stones will reflect the probabil-

ity distribution of the momenta that characterize the motion. This re-

striction reflects the impact of Heisenberg’s uncertainty principle. 

 

Together these non-obvious additional restrictions present the 

model as a quantum physical system and support the particle-wave 

nature of the objects that are controlled by the correlation mecha-

nism. 
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After the generation and vanishing of the Qtarget the correlation 

vehicle takes care of the transmission of the information about the 

generation incident over the embedding continuum in which the 

Qtarget was produced. This is done in the form of the described tsu-

nami-like wave fronts. This is the second task of the correlation ve-

hicle.  

 

Some tasks are completed before the correlation vehicle stops 

with the current job. For example a micro-walk is completed before 

the generator stops generating new step stones. Some related jobs 

behave similarly. For example the emission or absorption of photons 

also finish their task after completion of the job. 

 

When the generator stops generating Qtargets for the current 

Qpattern, then it does not transmit new information but the correla-

tion mechanism keeps supporting the existing flow of information. 

This means that a third task of the correlation mechanism is the care 

for the survival of the embedding continuum when the Qtargets van-

ish. 

 

The transmission of incident information causes space curvature. 

The sharp part of the allocation function describes the strength of the 

local space curvature. It does this via its differential which specifies 

a local metric. 

 

Apart from describing the curvature, the correlation mechanism 

also recreates at every progression step the corresponding embed-

ding continuum. For that purpose it uses the Huygens principle. 

9.10.1 Composites 

The correlation mechanism plays an important role in the genera-

tion of modular systems. It entangles the components in subsystems 
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or systems. At the same time it implements in these systems the ac-

tions of the Pauli exclusion principle. In this way it establishes the 

scope of the exclusion principle. This scope may extend to subsys-

tems of a system that exist at separated locations. This feature is 

known as “entanglement”. 

9.10.2 Swarming 

The three extra conditions for the coherence between subsequent 

static status quos that are enforced by the correlation mechanism set 

the conditions for  

swarming. Swarming means that the swarm of step stones appears 

to move as one body. These extra conditions are: 

 The coherent distribution of step stones can be de-

scribed by a continuous density distribution. 

o And by a corresponding continuous current 

density distribution 

 The density distribution can be interpreted as a prob-

ability density distribution 

 The (infinitesimal) movement of the whole coherent 

distribution can be described by a single displace-

ment generator (𝑃) 

This last condition can be interpreted as the fact that the probabil-

ity density distribution of the infinitesimal displacements of the step 

stones equals the Fourier transform of the probability density distri-

bution of the step stones. Or in first order the movement of the step 

stones is not hampered by the space curvature that is raised by the 

step stones. In second order this is no longer true for massive parti-

cles. This second order dependence is the origin of inertia. 
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The first order dependence is reflected by the coupling equation, 

which uses normalized quaternionic functions 𝜓 and 𝜑 in order to 

represent density distributions. 

𝛻𝜓 = 𝑚 𝜑 
After Fourier transformation this runs as 

𝑃�̃� = 𝑚 �̃� 
 

Swarming conditions apply to massive elementary particles, pho-

tons, gluons and entangled composites. Photons and gluons have no 

step stones but they possess locations where they can be detected. 

The coupling equation classifies quantum physics as a special 

kind of fluid dynamics. Apart from the differential continuity equa-

tion also the corresponding integral balance equation holds.  

∫𝛻𝜓 𝑑𝑉
𝑉

= 𝑚 ∫ 𝜑 𝑑𝑉
𝑉

 

The swarming conditions result in the capability of the swarm to 

behave as interference patterns. 

(1) 

(2) 

(3) 
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Geometric 
model 
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 Geometrics 

Geometrics enters the model as soon as numerical enumerators 

are applied. These enumerators are taken from the eigenspaces of 

operators. This can happen in Hilbert logic and in the Hilbert space 

and its Gelfand triple. 

 

The geometric model applies the quaternionic Hilbert space 

model. From now on the complex Hilbert space model and the real 

Hilbert space model are considered to be abstractions of the quater-

nionic model. It means that the special features of the quaternionic 

model bubble down to the complex and real models. For example 

both lower dimensional enumeration spaces will show blur at small 

enumeration scales. Further, both models will show a simulation of 

the discrete symmetry sets that quaternionic systems and functions 

possess. This can be achieved with spinors and Dirac matrices or 

with the combination of Clifford algebras, Grassmann algebras and 

Jordan algebras87. 

The real and complex models suit in situations where multidimen-

sional phenomena can be decoupled from the dimensions in which 

they appear. 

 

At large scales the model can properly be described by the com-

plex Hilbert space model. After a sufficient number of progression 

steps, at very large scales the quaternionic model is quasi isotropic. 

We will place the reference Hilbert space at zero progression 

value. This reference Hilbert space can be a subspace of a much 

larger Hilbert space. However, in the reference Hilbert subspace a 

state of well-ordered densest packaging must reside. 

                                                           
87 See: http://math.ucr.edu/home/baez/rch.pdf 

http://math.ucr.edu/home/baez/rch.pdf
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Quaternionic numbers exist in 16 discrete symmetry sets. When 

used as enumerators, half of this set corresponds with negative pro-

gression and will not be used in this geometric model. 

As a consequence we will call the Hilbert space at zero progres-

sion value the start of the model.  

This model does not start with a Big Bang. Instead it starts in a 

state that is characterized by densest packaging of the Qpatches. This 

reference sub-model is well-ordered. 
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 Distributions of quaternions 

11.1 Continuous quaternionic distributions 

Quaternionic distributions consist of a real scalar distribution and 

an imaginary 3D vector distribution. 

It is the sum of a symmetric distribution and an asymmetric dis-

tribution. 

 

The complex Fourier transform of a symmetric (complex) func-

tion is a cosine transform. It is a real function. 

The complex Fourier transform of an anti-symmetric (complex) 

function is a sine transform. It is an imaginary function. 

This cannot directly be translated to quaternionic functions. The 

simplest solution is to consider the symmetric parts and asymmetric 

parts separately.  

 

An asymmetric quaternionic function is always anisotropic. A 

symmetric function can be isotropic. 

 

As shown before the continuous quaternionic distributions can be 

interpreted as descriptors of the density distribution of a coherent 

distribution of discrete objects. However the potential functions that 

can be derived from coherent distributions of discrete objects are also 

quaternionic functions.  

In the HBM these associated potentials can be considered to be 

generated dynamically. 

11.2 RQE’s 

In principle the base vectors of the Hilbert space can be enumer-

ated by members of a countable affine-like space. Here we concen-

trate on a huge subspace in which the base vectors are enumerated 

by rational quaternions.  
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The huge subspace is covered by a large number of small dedi-

cated subspaces that all are identified by a Qpatch region. The 

(closed) subspaces represent Qpatterns. 

 

The ordering and the corresponding origin of space become rele-

vant when an observer object considers one or more observed ob-

jects.  

 

The real parts of the enumerators define progression. In conven-

tional physics progression conforms to observed time. In the HBM 

all observed time clocks are synchronized. As a consequence accord-

ing to our model, the equivalent of observed time steps with a fixed 

step.  

 

RQE stands for Rational Quaternionic Enumerator. This lowest 

geometrical level is formed by the enumerators of a selected base of 

a selected member of the sequence of Hilbert spaces. The selected 

base vectors represent atoms of the Hilbert logic system.  

 

In this level, the embedding continuum plays a secondary role. 

 

The sequence number corresponds with the progression value in 

the real part of the value of the RQE. In principle the enumerators 

enumerate a previously unordered set.  

 

The dedicated subspaces are spanned by eigenvectors whose ei-

genvalues form the elements of Qpatterns. Qpatterns are identified 

by a Qpatch, which is the weighted center and by a Qtarget, which 

is the currently actual element. All other elements of the Qpattern 

and all other vectors of the dedicated subspace are virtual. Virtual 

means: “reserved, but currently not in use”. 
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Two types of RQE’s exist.  

 The first type of RQE plays the role the parameter 

that via the continuous part of the allocation func-

tion determine the “origins” of planned Qpatterns. 

We will call these RQE’s “parameter RQE”. 

 The second type of RQE is defined relative to 

these origin RQE’s. We will call these RQE’s “rela-

tive RQE” 
 

The relative RQE’s are targets of the stochastic function that de-

fines the relative locations of the elements of the Qpattern. The rela-

tive RQE’s can be considered to be the target values of the separate 

stochastic part of the allocation function. They define a Qpattern. 

 

The actual Qtarget is the image produced by the total allocation 

function of the parameter RQE. The total allocation function is the 

convolution 𝒫 = ℘ ∘ 𝒮 of the continuous part ℘ of the allocation 

function and the stochastic part 𝒮 of the allocation function. It maps 

a parameter RQE onto a selected embedding continuum. For the ref-

erence Hilbert space its Gelfand triple delivers the reference contin-

uum as embedding continuum. For later Hilbert spaces the role of 

the reference embedding continuum is taken over by the superposi-

tion of wave fronts. 

11.2.1 Reference Hilbert space 

A zero value of the real part of an RQE indicates its role in the 

reference Hilbert space. In the reference Hilbert space the parameter 

RQE’s are well ordered and embedded in a reference continuum that 
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is taken from the eigenspace of a reference operator that resides in 

the Gelfand triple of that reference Hilbert space.  

The considered huge subspace of the selected reference member 

of the sequence of Hilbert spaces represents a state of densest pack-

aging of the parameter RQE’s. This means that in this subspace of 

the selected Hilbert space a normal allocation operator exists whose 

discrete and countable eigenspace has eigenvalues that are parameter 

RQE’s, while in the Gelfand triple of this Hilbert space an opera-

tional space operator exists whose continuous eigenspace embeds the 

values of these parameter RQE’s in a well-ordered and relative dense 

way. The relative density is limited by a lowest size of rational qua-

ternions. 

Due to this restriction the parameter RQE-space is not afflicted 

with splits and ramifications88.  

Thus, the parameter RQE’s are taken from the eigenspace of a 

corresponding normal allocation operator. The reference continuum 

is taken from an operational space operator. In the reference ele-

ments, these operators will be called reference operators.  

 

In the reference Hilbert space the continuous part of the allocation 

function is a unity map. The Qpatches in the reference Hilbert space 

are linear combinations of a coherent set of relative RQE’s that to-

gether with the parameter RQE of that set correspond to eigenvec-

tors, which together span the dedicated subspace. This dedicated sub-

space corresponds to a building block.  

 

In the reference Hilbert space the notion of an absolute RQE 

makes sense. It is the sum of a parameter RQE and a relative RQE. 

                                                           
88 http://en.wikipedia.org/wiki/Quaternion_algebra#Quater-

nion_algebras_over_the_rational_numbers 
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The Qpatch is the average value of all absolute RQE’s that belong to 

the building block. 

11.2.2 Later Hilbert spaces 

In each Hilbert space each planned Qpattern has its own local 

origin. In later Hilbert spaces the embedding continuum is no longer 

flat as it is in the reference Hilbert space. Also the parameter RQE 

may have another location (has another imaginary value) than it had 

in the reference Hilbert space. With other words the parameter 

RQE’s may move.  

Still, the actual Qpatch is the average value of all target RQE’s 

that belong to the corresponding building block. The continuous part 

of the allocation function images the current parameter RQE on a 

temporary target. This temporary target is taken as the parameter of 

the stochastic part of the allocation function. This second part pro-

duces the Qtarget as a location in the selected embedding continuum. 

The actual Qpatch can be recalculated after a full generation cycle. 

 

The selected embedding continuum is formed by superposed po-

tentials and is represented by the eigenspace of a dedicated operator 

that resides in the Gelfand triple. The corresponding potential is a 

special type. It is the gravitation potential. 

 

Relative RQE’s act as planned target vales for elements of 

swarms. They are planned target values for a corresponding param-

eter RQE of the complete allocation function. The actual target val-

ues are the Qtargets.  

 

The Qpatch of the actual building block will become the expecta-

tion value of the Qtargets. Thus, at higher progression values, it no 

longer corresponds to the average value of the undistorted absolute 

RQE’s that characterize the Qpattern. 
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In general, Qtargets are locations in a curved space. Only in the 

reference Hilbert space, that space is flat. 

 

HYPOTHESIS 3: At the start of the life of the considered huge 

subspace the HBM used only one discrete symmetry set for its lowest 

level of geometrical objects. This discrete symmetry set is the same 

set that characterizes the reference continuum. This situation stays 

throughout the history of the model. This set corresponds with the set 

of eigenvalues of an RQE allocation operator that resides in the ref-

erence quaternionic Hilbert space model. 

 

For each building block, in the reference Hilbert space one of the 

relative RQE’s becomes after adaptation the actual element and will 

be called Qtarget. In each subsequent Hilbert space another relative 

RQE will be selected whose image becomes the Qtarget. The selec-

tion of the relative RQE occurs via a random process. 

 

In subsequent Hilbert spaces a new eigenvalue of the reference 

allocation operator becomes the parameter RQE of the new Qtarget 

of the building block. This goes together with the selection of a new 

relative RQE. The relative RQE will differ in a random way from the 

original relative RQE. Thus Qtargets are for a part a continuous func-

tion (℘) of the corresponding parameter RQE’s and for another  part 

the function result is blurred by a random generator function (𝒮). The 

convolution (𝒫) of the continuous function and the random generator 

function (𝒮) determines the location of the current Qtarget.  

 

𝒫 = ℘ ∘ 𝒮 

 

(𝒮) stands for stochastic spatial spread function. The assignment 

of the target value of the random function (𝒮) occurs according to a 

(1) 
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given plan. The natal (undisturbed) result of (𝒮) is a Qpattern that is 

described by a fixed natal quaternionic probability density distribu-

tion (natal QPDD) 𝜓. A significant difference may exist between the 

planned building block and the actually realized building block. 

11.3 Potentials 

Relative RQE’s are the (relative) identifiers of the elements of a 

Qpattern.  

Parameter RQE’s are parameters of Qtargets. Qpatterns exist dur-

ing a series of subsequent Hilbert spaces. They represent nature’s 

building blocks.  

The absolute RQE’s reside in the reference Hilbert space, which 

occurred in the past.  

The real part of the RQE’s reflect the current progression value. 

The parameter RQE’s reside in each of the subsequent Hilbert 

spaces.  

Qpatches are linear combinations of the values of elements of a 

Qpattern. They represent the expectation values of the Qtargets.  

The elements of the Qpatterns correspond to base vectors of ded-

icated Hilbert subspaces.  

The Qtargets emit contributions to the potentials of the Qpatterns. 

 

Potentials depend on their Green’s function. Apart from that, two 

kinds of potentials exist: scalar potentials and vector potentials. Po-

tentials of the same type superpose.  

 

The potentials that possess sufficient reach may together add up 

to huge local potentials89. Locally the superposition of wave fronts 

that form the potentials constitute a curved continuum that can be 

                                                           
89 See Inertia 
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used to embed localizable objects. This continuum installs inertia for 

the embedded Qpatterns. 

 

For all continuous quaternionic functions and for each discrete 

symmetry set of its parameter space, the function exists in 16 differ-

ent discrete symmetry sets for its function values.  

 

In the HBM the discrete symmetry set of the parameter RQE’s is 

fixed.  

 

The quaternionic potentials are continuous functions. Their super-

positions constitute embedding continuums. This means that for vec-

tor potentials also 16 different embedding continuums exist.  

 

Also the allocation function exists in 16 different discrete sym-

metry sets for its function values. The sharp continuous part of the 

allocation function describes an embedding continuum. The alloca-

tion function keeps its discrete symmetry set throughout its life.  

 

Discrete symmetry sets do not influence the scalar potentials that 

are connected to object density distributions. The superposition of 

wave fronts that form these scalar potentials constitutes a special em-

bedding continuum. This continuum characterizes the Palestra. It is 

described by the gravitation potential field. This does not say that in 

the realm of the Palestra no other potentials play their role. 

11.3.1 Diluted potential identity 

In the HBM the embedded continuum is thought to be composed 

by the superposition of emitted wave fronts of ALL elementary par-

ticles. In this superposition the potentials lose their identity. The only 

thing that stays important is that these potentials are formed by su-

perposed wave fronts. During their propagation through universe 
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their amplitude diminishes with travelled distance. However, the 

number of sources that contribute to the local superposed value in-

creases with distance. The result is a huge background potential that 

has a diluted identity. It is no longer a gravitation potential and it is 

also no electrostatic potential. It is a diluted potential. It has many 

aspects of the gravitation potential, but it forms the medium in which 

the new wave fronts are formed, while modulations of these wave 

fronts represent photons. In contemporary physics photons are con-

sidered to be EM waves. 

The gravitation potential and the electrostatic potential have dif-

ferent Green’s functions. This means that in the diluted potential the 

Green’s function has lost its distinguishing effect90. 

11.4 Palestra 

The second geometric level is a curved space, called Palestra. As 

ingredients, it consists of an embedding continuum, the embedded 

Qtarget set and a sharp continuous quaternionic allocation function.  

 

The local curvature is defined via the differential of the continu-

ous (sharp) quaternionic allocation function. The parameter space of 

the allocation function embeds the parameter RQE-set. Thus since 

the parameter RQE-set is countable, the Palestra contains a countable 

set of images of the sharp allocation function.  

We have called these images “local origins” of Qpatterns.  

 

The Qpatches represent the expectation values of the correspond-

ing Qtarget values. The allocation function exists in 16 versions. The 

version determines the discrete symmetry set of the Qpattern and of 

the corresponding Qtargets. 

                                                           
90 However, it is quite possible that different types of potentials 

correspond to different types of wave fronts. 
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The allocation function may include an isotropic scaling function.  

 

The differential of the allocation function defines an infinitesimal 

quaternionic step. In physical terms the length of this step is the in-

finitesimal observer’s time interval. The differential is a linear com-

bination of sixteen partial derivatives. It defines a quaternionic met-

ric91.  

 

The enumeration process adds a coordinate system. The selection 

of the coordinate system is arbitrary. The origin and the axes of this 

coordinate system only become relevant when the distance between 

locations must be handled. The origin is taken at the location of the 

current observer.  

The underlying space is an affine-like space. It does not have a 

unique origin. We only consider an enumerated compartment of the 

affine-like space. 

11.5 Qpatch regions 

The third level of geometrical objects consists of a countable set 

of space patches that occupy the Palestra. We already called them 

Qpatch regions.  

Qpatches are expectation values of the Qtarget images of the pa-

rameter RQE’s that house in the first geometric object level. The set 

of parameter RQE’s is used for the part of the allocation function that 

produces the local Qpattern origins.  

Apart from the rational quaternionic value of the corresponding 

local origin, the discrete symmetry set of that origin will be shared 

by all elements of the corresponding Qpattern.  

                                                           
91 See the paragraph on the spacetime metric. 
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The curvature of the second level space relates to the density dis-

tribution of the local origins of the Qpatterns and to the total energy 

of the corresponding Qpatterns.  

The Qpatches represent the weighted centers of the regions92 

where next level objects can be detected.  

 

The name Qpatch stands for space patches with a quaternionic 

value. The charge of the Qpatches can be named Qsymm, Qsymm 

stands for discrete symmetry set of a quaternion. However, we al-

ready established that the value of the enumerator is also contained 

in the property set that forms the Qsymm charge. 

 

The enumeration problems that come with the quaternionic Hil-

bert space model indicate that the Qpatches are in fact centers of a 

fuzzy environment that houses the potential locations where the ac-

tual parameter RQE images (the Qtargets) can be found. The subse-

quent Qtargets form a micro-path. 

11.6 QPDD’s and Qtargets 

The fuzziness in the sampling of the enumerators and their images 

in the embedding continuum is described by a quaternionic proba-

bility density distribution (QPDD).  

The squared modulus of the complex probability amplitude dis-

tribution (CPAD) represents the probability that an image of a pa-

rameter RQE will be detected on the exact location that is specified 

by the value of the target of the blurred allocation function.  

In the QPDD this location probability is represented by the real 

part of the QPDD. The imaginary part describes a corresponding dis-

placement probability. The real part is an object density distribution 

and the imaginary part is the associated current density distribution. 

                                                           
92 Not the exact locations. 
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The real part is a scalar function and the imaginary part is a 3D vector 

function.  

 

Both a CPAD and a QPDD can describe a Qpattern. A QPDD 

gives a more complete description. 

 

A Qpattern is generated in a rate of one element per progressions 

step.  

 

A Qpattern is generated via a fixed statistical plan and is not dis-

turbed by space curvature or a moving local origin. Since a Qpattern 

is generated by a stochastic process, the same natal QPDD can cor-

respond to different Qpatterns.  

 

The QPDD’s that describe Qpatterns have a flat target space in 

the form of a quaternionic continuum.  

 

This natal QPDD describes the planned blur (𝜓) to the image of 

the sharp allocation function (℘). The blurred allocation function 

(𝒫) is formed by the convolution of the sharp allocation function 

(℘) with stochastic generator function (𝒮). The results of this gener-

ator function are described by the natal QPDD (𝜓) that on its turn 

describes the Qpattern.  

The parameter space of the blurred allocation function (𝒫) is a flat 

quaternionic continuum. The parameter RQE’s form points in that 

continuum.  

 

The generator function (𝒮) is a stochastic function of progression. 

Its anchor point is the image by the continuous part (℘) of the allo-

cation function (𝒫) of the selected parameter RQE. Its target domain 

is an embedding continuum. The natal Qtarget is one of the function 
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values of (𝒮). Usually, the actual Qtarget is displaced with respect to 

the natal Qtarget. 

 

In this way the local form of the actually realized QPDD describes 

a deformed Qpattern. The adaptation concerns the form factor and 

the gradual displacement of the deformed QPDD. The form factor 

may differ in each direction. It is determined by the local differential 

(𝑑℘) of the sharp allocation function (℘). 

 

The image of a parameter RQE that is produced by the blurred 

allocation function (𝒫) is a Qtarget. Qtargets only live during a sin-

gle progression step. Qtargets mark the location where (higher level) 

objects may be detected.  

 

In this way QPDD’s exist in two types. The natal QPDD type de-

scribes the undisturbed Qpattern. It describes a fixed plan. The sec-

ond QPDD type describes the collection of potential Qtargets that at 

a rate of one element per progression step are or will be93 locally 

generated by the blurred allocation function. That is why this second 

QPDD type is also called an actual local QPDD. It describes a 

swarm. 

 

The Qpattern can also be described by a function (𝒮) that produces 

a stochastic spatial location at every subsequent progression interval.  

The fact that Qtargets only exist during a single progression step 

means that on the instant of an event the generation of the Qpattern 

might stop or might proceed in a different mode. Only if the Qpattern 

stays untouched, a rather complete Qpattern will be generated at that 

location.  

                                                           
93 Adding to the QPDD Qtargets that still have to be generated can 

be considered as an odd decision. 
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When the Qpatch moves, then the corresponding swarm smears 

out. With other words the natal QPDD is a plan rather than reality. 

Via the sharp allocation function the random selection of the step 

stones generates a stochastic micro-path. 

 

An event means that a Qpattern stops being generated or is gen-

erated in a different mode. Being generated means that it is coupled 

to an embedding continuum. The generator will create a relatively 

small pattern in that continuum. Coupling means that the generated 

Qpattern is coupled via its Qpatch to a mirror Qpattern that houses 

in the embedding continuum. This is reflected in the coupling equa-

tion94. 

 

Local actual QPDD’s are quaternionic distributions that contain a 

scalar density distribution in their real part that describes a density 

distribution of potential Qtargets. Further they contain a 3D vector 

function in their imaginary part that describes the associated current 

density distribution of these potential Qtargets.  

 

Continuous quaternionic distributions exist in sixteen different 

discrete spatial symmetry sets. However, the QPDD’s inherit the dis-

crete symmetry of their connected sharp allocation function.  

 

The swarms may mingle and then the QPDD’s will superpose. 

However the spatial extent of the swarms is quite moderate. In con-

trast, the potentials of their Qtargets reach very far. Quite probably 

these potentials will superpose. Together the potentials of distant 

building blocks form a background potential.  

 

                                                           
94 See coupling equation. 
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Depending on the Green’s functions, the local QPDD’s corre-

spond to several types of quaternionic potential functions. These 

quaternionic potential functions combine a scalar potential and a vec-

tor potential. 

 

Qpatterns form coherent countable discrete sets. 

A Qpattern conforms to a plan.  

A Qpattern is a mostly virtual object.  

QPDD’s are continuous functions.  

A QPDD may describe a Qpattern.  

A natal QPDD describes a plan. 

A natal QPDD describes a Qpattern. 

A natal QPDD describes a mostly virtual object.  

A Qtarget is an actually existing object.  

A Qtarget is an element of a Qpattern that is described by an ac-

tual QPDD.  

11.6.1 Inner products of QPDD’s 

Each Qpattern is a representative of a Hilbert subspace and indi-

rectly the Qpattern represents a quantum logic proposition. The cor-

responding Qpatch is represented by a linear combination of Hilbert 

base vectors and is represented by a Hilbert proposition. These base 

vectors are eigenvectors of the location operator. The coefficients are 

determined by the values of the real part of the QPDD. The Qpatch 

vector represents some aspects of the QPDD. 

 

Two QPDD’s 𝑎 and 𝑏 have an inner product defined by  

〈𝑎|𝑏〉 = ∫𝑎 𝑏 𝑑𝑉
𝑉

 

Since the Fourier transform ℱ preserves inner products, the Par-

seval equation holds for the inner product: 

(1) 

(2) 
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〈𝑎|𝑏〉 = 〈ℱ𝑎|ℱ𝑏〉 = 〈�̃�|�̃�〉 = ∫ �̃� �̃� 𝑑�̃�
𝑉

 

QPDD’s have a norm 

|𝑎| = √〈𝑎|𝑎〉 

11.7 Blurred allocation functions 

The blurred allocation function 𝒫 has a flat parameter space that 

is formed by rational quaternions. It is the convolution of the sharp 

allocation function ℘ with a stochastic spatial spread function 𝒮 that 

generates a blur that is represented by a planned Qpattern and is de-

scribed by planned natal QPDD 𝜓. ℘ has a flat parameter space that 

is formed by real quaternions.  

 

Natal QPDD 𝜓 has rational quaternionic parameters and corre-

sponds via the sharp allocation function ℘ to an actual QPDD 𝜙. 

 

𝒫 = ℘ ∘ 𝒮 

 

℘ describes the long range variation and 𝜓 describes the short 

range variation.  

 

Due to the fact that Qpatterns are mostly virtual, the relation be-

tween 𝜓 and 𝜙 is not easily described. However, since ℘ has mainly 

long range effects and 𝒮 has mainly short range effects, it is possible 

to describe the effect of 𝒫 on the actual local QPDD 𝜙 as a deformed 

and displaced natal QPDD 𝜓, where the form factor is controlled by 

the differential 𝑑℘ of the sharp allocation function.  

 

The sharp part of the allocation function specifies the current em-

bedding continuum. In fact this function defines the eigenspace of a 

corresponding operator that resides in the Gelfand triple of the cur-

rent Hilbert space. 

(3) 

(1) 
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The planned Qpattern is the result of a Poisson process that is cou-

pled to a binomial process, while the binomial process is imple-

mented by a 3D spread function. This second part 𝒮 of the allocation 

function 𝒫 influences the local curvature. The differential 𝑑℘ of the 

first part ℘ defines a quaternionic metric that describes the local 

spatial curvature. This means that the two parts must be in concord-

ance with each other. 

 

Fourier transforms cannot be defined properly for functions with 

a curved parameter space, however, the blurred allocation function 

𝒫 has a well-defined Fourier transform �̃�, which is the product of 

the Fourier transform ℘̃ of the sharp allocation function and the Fou-

rier transform �̃� of the stochastic spatial spread function 𝒮. 

 

�̃� = ℘̃ × �̃� 

 

�̃� corresponds to a Fourier transform �̃� of the planned natal 

QPDD 𝜓. 

 

The Fourier transform pairs and the corresponding canonical con-

jugated parameter spaces form a double-hierarchy model. 

 

16 blurred allocation functions exist that together cover all 

Qpatches. One of the 16 blurred allocation functions acts as refer-

ence. The corresponding sharp allocation function and thus the cor-

responding actual QPDD 𝜙 have the same discrete symmetry set as 

the lowest level space.  

The fact that the blur 𝜓 mainly has a local effect makes it possible 

to treat ℘ and 𝜓 separately95. 

                                                           
95 𝜓 concerns quantum physics. ℘ concerns general relativaty. 

(2) 
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11.8 Local QPDD’s and their superpositions 

The model uses Qpatterns in order to implement the fuzziness of 

the local interspacing. After adaptation of the form factor to the dif-

ferential of the sharp allocation function a local QPDD is generated. 

The non-deformed natal QPDD describes a Qpattern.  

 

Each Qpattern possess a private inertial reference frame96.  

 

Local QPDD’s may superpose. 

 

Each of the Qpatterns extends over a restricted part of the embed-

ding continuum. The probability amplitude of the elements of these 

Qpatterns quickly diminishes with the distance from their center 

point97.  

 

Qpatterns do not feature potentials, but swarms and their local 

QPDD’s will feature potentials. 

 

The gravitation potential of an swarm extends over the whole em-

bedding continuum. As a consequence superpositions of such poten-

tials may cover the whole embedding continuum. In fact they may 

constitute the embedding continuum. 

11.9 Generations 

Photons and gluons correspond to a special kind of fields. They 

differ in temporal frequency from the super-high frequency carrier 

waves that constitute the potentials of particles.  

 

                                                           
96 See the paragraph on inertial reference frames. 
97 See the paragraph on the enumeration process. 



146 

 

Photons and gluons can be interpreted as amplitude modulations 

of the potential generating waves. Two photon types and six98 gluon 

types exist99. 

 

For fermions, three100 generations of Qpatterns exist that have 

non-zero extension and that differ in their basic form factor. This pa-

per does not in detail explain the existence of these generations. 

 

The generator of enumerators is for a part a random number gen-

erator. That part is implemented by a Poisson process and a subse-

quent binomial process. Generations correspond to different charac-

teristics of the enumerator generator.  

 

All generated Qpatterns may differ in their quasi-oscillations and 

quasi-rotations. 

 

A free elementary particle may oscillate around its own center of 

gravity. This (extra) oscillation represents a higher state of energy. If 

this oscillation is a quantum oscillation, then the oscillation soaks 

into the micro-path of the particle. In that case the oscillation will 

only be noticeable in the extra energy (mass) of the particle. 

  

                                                           
98 In the Standard Model gluons appear as eight superpositions of 

the six base gluons. 
99 Bertrand’s theorem indicates that under some conditions, pho-

tons and gluons might be described as radial harmonic oscillators. 
100 At least three generations are known. 
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 Coupling 

According to the coupling equation, coupling may occur because 

the two QPDD’s that constitute the coupling take the same location. 

Several reasons can be given for this coupling. The strongest reason 

is that the Qpattern generator produces two patterns that subse-

quently are coupled.  

 

Other reasons are: 

1. Coupling between Qpatterns can be achieved by cou-

pling to each other’s potential functions.  

a) Coupling may occur between the local Qpattern and 

the potentials of very distant Qpatterns. This kind of 

coupling causes inertia. The coupling products ap-

pear to be fermions. 

b) Coupling may occur between the local Qpattern and 

the potentials of locally situated Qpatterns. These 

coupling products appear to be bosons. 
 

The fermion coupling uses the gravitation potential, which is a 

scalar potential. On itself this does not enforce a discrete symmetry. 

(Suggestion: That symmetry can be enforced/induced by involving 

the discrete symmetry of the parameter space and/or the discrete 

symmetry of the virgin Qpattern). 

 

2. Coupling can also occur via induced quasi oscillations 

and or induced quasi rotations. These quasi-oscilla-

tions and quasi-rotations occur in the micro-paths of 

the Qpatterns. Because they differ in their discrete 

symmetry they may take part in a local oscillation 
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where an outbound move is followed by an inbound 

move and vice versa101.  
 

3. For fermions coupling also occurs with the parameter 

RQE and with the historic Qpattern that belongs to 

this RQE. 

12.1 Background potential 

We use the ideas of Denis Sciama102103104. 

The superposition of all real parts of potentials105 of distant Qpat-

terns that emit potential contributions in the form of spherical waves 

produces a uniform background potential. At a somewhat larger dis-

tance 𝑟 these individual scalar potentials diminish in their amplitude 

as 1/𝑟. However, the number of involved Qpatterns increases with 

the covered volume. Further, on average the distribution of the Qpat-

terns is isotropic and uniform. The result is a huge (real) local poten-

tial 𝛷 

 

𝛷 =  − ∫
�̅�0

𝑟
𝑑𝑉

𝑉

=  −�̅�0 ∫
𝑑𝑉

𝑟𝑉

= 2𝜋 𝑅2�̅�0 

 

�̅� =  �̅�0;  �̅� =  𝟎 
 

Apart from its dependence on the average value of �̅�0, 𝛷 is a huge 

constant. Sciama relates 𝛷 to the gravitational constant 𝐺. 

                                                           
101 See: Coupling Qpatterns. 
102 http://arxiv.org/abs/physics/0609026v4.pdf  
103 http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S 
104http://rmp.aps.org/abstract/RMP/v36/i1/p463_1   
105 In fact it is the superposition of all wave fronts that does this. 

(1) 

(2) 

http://arxiv.org/abs/physics/0609026v4.pdf
http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S
http://rmp.aps.org/abstract/RMP/v36/i1/p463_1
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𝐺 = (−𝑐2) ⁄ 𝛷 
 

If a local Qpattern moves in this background potential relative to 

the universe with a uniform speed 𝒗, then a vector potential 𝑨 is gen-

erated.  

 

𝑨   = − ∫
𝒗 �̅�0

𝑐 𝑟
𝑑𝑉

𝑉

 

 
Both �̅�0 and v are independent of r. The product 𝒗 �̅�0 represents 

a current. Together with the constant c they can be taken out of the 

integral. Thus 

 

𝑨 =  𝛷
𝒗

𝑐
 

 

Field theory learns106: 

 

𝕰 =  −𝜵𝜱 −
𝟏

𝒄
· �̇�  

 

If we exclude the first term because it is negligible small, we get: 

 

𝕰 =  −
𝛷

𝑐2
 �̇� = 𝐺 �̇� 

 

The fields 𝛷 and 𝑨 together form a quaternionic potential. How-

ever, this time the fields 𝛷 and 𝑨 do not represent the potential of a 

Qpattern. 

                                                           
106 Q-FORMULÆ 13 

(3) 

(4) 

(5) 

(6) 

(7) 
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12.2 Interpretation 

As soon as an acceleration of a local Qpattern occurs, an extra 

component �̇� of field 𝕰 appears that corresponds to acceleration 

�̇�.107  

In our setting the component 𝜵𝛷 of the field 𝕰 is negligible. With 

respect to this component the items compensate each other’s influ-

ence. This means that if the influenced subject moves with uniform 

speed 𝒗, then 𝕰 ≈ 0. However, a vector potential 𝑨 is present due to 

the movement of the considered local Qpattern. Any acceleration of 

the considered local item goes together with an extra non-zero 𝕰 

field. In this way the universe of particles causes inertia in the form 

of a force that acts upon the scalar potential of the accelerating item.  

 

The amplitude of 𝛷 says something about the number of coupled 

Qpatterns of the selected generation that exist in universe. If it is con-

stant and the average interspacing grows with progression, then the 

universe dilutes with increasing progression. Also the volume of the 

reference continuum over which the integration must be done will 

increase with progression. The total energy of these coupled Qpat-

terns that is contained in universe equals: 

 

 𝐸𝑡𝑜𝑡𝑎𝑙 = √∫ |
�̅�0

𝑟
|

2

𝑑𝑉
𝑉

 

 

The background potential 𝛷 is the superposition of the contribu-

tions of waves that are emitted by distant particles. The emission oc-

curred with super-high frequency. This is the highest frequency that 

                                                           
107 See: Inertia from the coupling equation. 

(1) 
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exists in the HBM. The background potential constitutes an embed-

ding continuum.  

Waves that oscillate with a lower frequency, such as photons and 

radio waves, can be considered as amplitude modulations of the su-

per-high frequency (potential) field. 

 

The enumerator generator uses the background potential as the 

embedding continuum for its embedded products.  

 

The allocation function describes this embedding continuum and 

takes care of its permanence. 

12.3 Isotropic vector potential 

The scalar background potential may be accompanied by a similar 

background vector potential that is caused by the fact that the con-

sidered volume that was investigated in order to calculate the scalar 

background potential is enveloped by a surface that delivers a non-

zero surface integral. The isotropic background vector potential cor-

responds to an isotropic scaling factor. This factor was already intro-

duced in the first phases of the model. 

12.4 Quantum fluid dynamics 

12.4.1 Quaternionic nabla 

The quaternionic nabla stands for  

 

𝛻 ≝ {
𝜕

𝜕𝜏
,

𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
} 

 

𝜓 ≝ 𝜓0 + 𝝍 

 

Here τ stands for the progression parameter. 

(1) 

(2) 
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 𝜙 = 𝛻𝜓 

 

 𝜙0 = ∇0𝜓0 − 〈𝛁, 𝝍〉 
 

 𝝓 = 𝛻0𝝍 + 𝜵𝜓0 + 𝜵 × 𝝍  

 

(3a) is the differential equation for continuous quaternionic distri-

butions. Rearranging shows: 

 

𝛻𝜓 = 𝜙 

 

This is the differential continuity equation. It holds for QPDD’s 

12.4.2 The differential and integral continuity equations 

Let us approach the balance equation from the integral variety of 

the balance equation. Balance equation is another name for continu-

ity equation. 

 

We replace 𝜓 by 𝜌, 𝜓0 by 𝜌0 and 𝝍 by 𝝆 =  𝜌0𝒗/𝑐. 

 

𝜌 ≝ 𝜌0 + 𝝆 

When 𝜌0 is interpreted as a charge density distribution, then the 

conservation of the corresponding charge108 is given by the continu-

ity equation: 

 

Total change within V = flow into V + production inside V 

 

In formula this means: 

 

                                                           
108 Also see Noether’s laws: http://en.wikipedia.org/wiki/Noether%27s_theorem 

(3a) 

(3b) 

(3c) 

(4) 

(1) 

(2) 

http://en.wikipedia.org/wiki/Noether%27s_theorem
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𝑑

𝑑𝜏
∫  𝜌0 𝑑𝑉

𝑉

= ∮ �̂�𝜌0

𝒗

𝑐
 𝑑𝑆

𝑆

+ ∫ 𝑠0 𝑑𝑉

𝑉

 

 

∫ ∇0𝜌0 𝑑𝑉

𝑉

= ∫〈𝛁, 𝝆〉 𝑑𝑉

𝑉

+ ∫ 𝑠0 𝑑𝑉

𝑉

 

 

The conversion from formula (2) to formula (3) uses the Gauss 

theorem109.  

Here �̂� is the normal vector pointing outward the surrounding sur-

face S, 

 𝒗(𝜏, 𝒒) is the velocity at which the charge density 𝜌0(𝜏, 𝒒) enters 

volume V and 𝑠0 is the source density inside V.  

 

In the above formula 𝝆 stands for 

 

𝝆 =  𝜌0𝒗/𝑐  
 

It is the flux (flow per unit area and unit time) of 𝜌0 . 

 

The combination of 𝜌0(𝑞) and 𝝆(𝑞) is a quaternionic skew field 

𝜌(𝑞) and can be seen as a probability density distribution (QPDD).  

 

𝜌 is a function of 𝑞. 

 

𝑞 ≝ 𝑞0 + 𝒒; 𝑞0 =  𝜏 

 

𝜌(𝑞)𝜌∗(𝑞) can be seen as an overall probability density distribu-

tion of the presence of the carrier of the charge.  

𝜌0(𝑞) is a charge density distribution.  

                                                           
109 http://en.wikipedia.org/wiki/Divergence_theorem  

(3) 

(4) 

(5) 

(6) 

http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Divergence_theorem
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𝝆(𝑞) is the current density distribution. 

This results in the law of charge conservation:  

 

𝑠0(𝑞) = ∇0𝜌0(𝑞) ∓ 〈𝛁, (𝜌0(𝑞)𝒗(𝑞) + 𝛁 × 𝒂(𝑞))〉 

 

= ∇0𝜌0(𝑞) ∓ 〈𝛁, 𝝆(𝑞) + 𝑨(𝑞)〉 
 

= ∇0𝜌0(𝑞) ∓ 〈𝒗(𝑞), 𝛁𝜌0(𝑞)〉 ∓ 〈𝛁, 𝒗(𝑞)〉 𝜌0(𝑞) 

 

∓〈𝛁, 𝑨(𝑞)〉 
 

The blue colored ± indicates quaternionic sign selection through 

conjugation of the field 𝜌(𝑞).  

 

The field 𝒂(𝑞) is an arbitrary differentiable vector function. 

 

〈𝛁, 𝛁 × 𝒂(𝑞)〉 = 0 

 

𝑨(𝑞) ≝  𝛁 × 𝒂(𝑞) is always divergence free. In the following we 

will neglect 𝑨(𝑞). 

 

Equation (6) represents a balance equation for charge density. 

What this charge actually is, will be left in the middle. It can be one 

of the properties of the carrier or it can represent the full ensemble 

of the properties of the carrier. 

 

Up to this point the investigation only treats the real part of the 

full equation. The full continuity equation runs: 

 

𝑠(𝑞) = ∇𝜌(𝑞) = 𝑠0(𝑞) + 𝒔(𝑞) 

 

(7) 

(8) 

(9) 
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=  ∇0𝜌0(𝑞) ∓ 〈𝛁, 𝝆(𝑞)〉 ± ∇0𝝆(𝜏, 𝒒)

+  𝛁𝜌0(𝜏, 𝒒) ± (±𝛁 × 𝝆(𝜏, 𝒒)) 

 

= ∇0𝜌0(𝜏, 𝒒) ∓ 〈𝒗(𝑞), 𝛁𝜌0(𝑞)〉 ∓ 〈𝛁, 𝒗𝒒〉 𝜌0(𝑞)   
 

±∇0𝒗(𝑞) + ∇0𝜌0(𝑞) +  𝛁𝜌0(𝑞) 

 

±(±(𝜌0(𝑞) 𝛁 × 𝒗(𝑞) − 𝒗(𝑞) × 𝛁𝜌0(𝑞)) 

 

After splitting into real and imaginary equations, this leads to: 

 

𝑠0(𝑞) = 2∇0𝜌0(𝑞) ∓ 〈𝒗(𝑞), 𝛁𝜌0(𝑞)〉 ∓ 〈𝛁, 𝒗(𝑞)〉 𝜌0(𝑞) 

 

𝒔(𝑞) = ±∇0𝒗(𝑞) ±  𝛁𝜌0(𝑞) 

± (±(𝜌0(𝑞) 𝛁 × 𝒗(𝑞) − 𝒗(𝑞) × 𝛁𝜌0(𝑞))) 

 

The red sign selection indicates a change of handedness by chang-

ing the sign of one of the imaginary base vectors. Conjugation also 

causes a switch of handedness. It changes the sign of all three imag-

inary base vectors. 

 

In its simplest form the full continuity equation runs: 

 

𝑠(𝑞) = ∇𝜌(𝑞) 

 

Thus the full continuity equation specifies a quaternionic distri-

bution 𝑠 as a flat differential ∇𝜌. 

 

When we go back to the integral balance equation, then holds for 

the imaginary parts: 

 

(10) 

(11) 

(12) 
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𝑑

𝑑𝜏
∫ 𝝆 𝑑𝑉

𝑉

= − ∮�̂�𝜌0 𝑑𝑆
𝑆

− ∮�̂� × 𝝆 𝑑𝑆
𝑆

+ ∫ 𝒔 𝑑𝑉

𝑉

 

 

∫ ∇0 𝝆 𝑑𝑉

𝑉

= − ∫ 𝛁𝜌0 𝑑𝑉

𝑉

− ∫ 𝛁 × 𝝆 𝑑𝑉

𝑉

+ ∫ 𝒔 𝑑𝑉

𝑉

 

 

For the full integral equation holds: 

 
𝑑

𝑑𝜏
∫  𝜌 𝑑𝑉

𝑉

+ ∮�̂�𝜌 𝑑𝑆
𝑆

= ∫ 𝑠 𝑑𝑉

𝑉

 

 

∫ ∇ 𝜌 𝑑𝑉

𝑉

= ∫ 𝑠 𝑑𝑉

𝑉

 

 

Here �̂� is the normal vector pointing outward the surrounding sur-

face S, 𝒗(𝑞) is the velocity at which the charge density 𝜌0(𝑞) enters 

volume V and 𝑠0 is the source density inside V. In the above formula 

𝜌 stands for 

 

𝜌 =  𝜌0 + 𝝆 =  𝜌0 +
𝜌0𝒗

𝑐
 

 

It is the flux (flow per unit of area and per unit of progression) of 

𝜌0 .  

𝜏 stands for progression (not observer’s time).  

(13) 

(14) 

(15) 

(16) 

(17) 
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12.5 The coupling equation 

The coupling equation is a special form of the continuity equation. 

𝜓 is a normalized quaternionic distribution. 

 

〈𝜓|𝜓〉 = ∫|𝜓|2 𝑑𝑉 =
𝑉

1 

 

𝛻𝜓 = 𝜙 

 

We also normalize a replacement 𝜑 for 𝜙 by dividing a by a real 

factor 𝑚 

 

𝜙 = 𝑚 𝜑 

 

〈𝜑|𝜑〉 = ∫ |𝜑|2 𝑑𝑉 = 1
𝑉

 

 

This results in the coupling equation (7), which holds for coupled 

field pairs {𝜓, 𝜑} 

 

〈𝜙|𝜙〉 = ∫ |𝜙|2 𝑑𝑉 =
𝑉

𝑚2 

 

〈𝛻𝜓|𝛻𝜓〉 = ∫|𝛻𝜓|2 𝑑𝑉 =
𝑉

𝑚2 

 

This equation (6) does not directly depend on 𝜑, thus it also holds 

for composites. Finally, the coupling equation reads: 

 

𝛻𝜓 = 𝑚 𝜑 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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The quaternionic format of the Dirac equation for the electron is 

a special form of the coupling equation. 

 

𝛻𝜓 = 𝑚 𝜓∗ 

 

The coupling equation appears to hold for elementary particles 

and simple composite particles. For anti-particles hold. 

 

(𝛻𝜓)∗ = 𝑚 𝜑∗ 

 

Due to the fact that the parameter space is not conjugated, equa-

tion (9) differs from equation (7). 

 

The quaternionic format of the Dirac equation for the positron is 

a special form of the coupling equation for anti-particles. 

 

(𝛻𝜓)∗ = 𝑚 𝜓 

 

The coupling equation holds for normalizable quaternionic func-

tions for which the quaternionic nabla exists. These functions can 

play the role of a quaternionic quantum state function of elementary 

particles and of entangled (sub)systems. 

12.6 Path integral 

The coupling factor 𝑚 is related to the standard deviation of the 

step length 𝜎𝑠 = √𝑣𝑠.110 

A large collection of micro-paths can correspond to the same qua-

ternionic density distribution. A smaller set will show a direct rela-

tion of the standard deviation 𝜎𝑠 of the step length with the coupling 

                                                           
110 The computation of the step length variance has much in com-

mon with the computation of Feynman’s path integral. 

(8) 

(9) 

(10) 
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factor 𝑚. The formulation and the success of Feynman’s path inte-

gral indicates that the micro-path with minimal 𝜎𝑠 will be used by 

nature. 

12.7 How to apply the coupling equation 

The coupling equation can be applied to quaternionic functions 

that have a flat parameter space and that are both differentiable via 

the nabla operation and can be normalized, while also the result of 

the nabla operation can be normalized. 

 

Both the QPDD that describes a planned Qpattern and the QPDD 

that describes an swarm fulfill these requirements. However, the 

QPDD of the swarm has a curved parameter space that must be con-

verted to a flat parameter space by the sharp part of the allocation 

function. 

It can also be applied to QPDD’s that represent simple compo-

sites. 

12.8 Energy 

The above deliberation makes |𝜙| to the distribution of the local 

energy and 𝑚 to the total energy of the quantum state function. The 

coupling equation can be split in a real equation and an imaginary 

equation.  

 

𝛻0𝜓0 − 〈𝜵, 𝝍〉  = 𝑚 𝜑0 

 

𝛻0𝝍 + 𝜵𝜓0  + 𝜵 × 𝝍 = 𝑚 𝝋 

 

Bold characters indicate imaginary quaternionic distributions and 

operators. Zero subscripts indicate real distributions and operators.  

The quantum state function of a particle moving with uniform 

speed 𝒗 is given by 

(1) 

(2) 
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𝜓 =  𝜒 +  𝜒0 𝒗 

 

 𝜒0 =  𝜓0  
 

Here 𝜒 stands for quantum state function of the particle at rest.  

We introduce new symbols. In order to indicate the difference 

with Maxwell’s equations we use Gothic capitals: 

 

𝕰 = 𝛻0𝝍 +  𝜵𝜓0 

 

𝕭 = 𝜵 × 𝝍 

 

The local field energy 𝐸 is given by: 

 

𝐸 = |𝜙| = √𝜙0𝜙0 + 〈𝝓, 𝝓〉  
 

= √𝜙0𝜙0 + 〈𝕰, 𝕰〉 + 〈𝕭, 𝕭〉 + 𝟐〈𝕰, 𝕭〉 

 

The total energy is given by the volume integral 

 

𝐸𝑡𝑜𝑡𝑎𝑙 = √∫|𝜙|2 𝑑𝑉
𝑉

 

 

In a static situation the local energy 𝐸 reduces to 

 

𝐸𝑠𝑡𝑎𝑡𝑖𝑐 = √〈𝜵, 𝝍〉2 + 〈𝕰, 𝕰〉 + 〈𝕭, 𝕭〉 
 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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12.8.1 Fourier transform 

In a region of little or no space curvature the Fourier transform of 

the local QPDD can be taken. 

 

𝛻𝜓 = 𝜙 = 𝑚 𝜑 

 

ℳ�̃� = �̃� = 𝑚 �̃� 

 

〈�̃�|ℳ�̃�〉 =  𝑚 〈�̃�|�̃�〉 
 

ℳ = ℳ0 + 𝞛  
 

ℳ0�̃�0 − 〈𝞛, �̃�〉  = 𝑚 �̃�0 

 

ℳ0𝝍 + 𝞛�̃�0  + 𝞛 × �̃�  = 𝑚 �̃� 

 

∫�̃�2 𝑑�̃� =
𝑉

∫(ℳ�̃�)
2

 𝑑�̃� =
𝑉

𝑚2 

 

In general |�̃�〉 is not an eigenfunction of operator ℳ. That is only 

true when |�̃�〉 and |�̃�〉 are equal. For elementary particles they are 

equal apart from their difference in discrete symmetry. 

  

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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 Elementary particles 

The vision of the HBM on elementary particles is derived from 

the quaternionic format of Dirac’s equation for the electron, which 

is a special form of the coupling equation. 

 

𝛻𝜓 = 𝑚 𝜓∗ 

 

This equation is extended to a more general equation that holds 

for all elementary particles. 

 

The coupling uses pairs {𝜓𝑥 , 𝜓𝑦} of two sign flavors of the same 

basic Qpattern and its corresponding QPDD, which is indicated by 

𝜓⓪. The special coupling equation runs: 

 

𝛻𝜓𝑥 = 𝑚 𝜓𝑦  
 

Corresponding anti-particles obey 

 

(𝛻𝜓𝑥)∗ = 𝑚 (𝜓𝑦)∗ 
 

Elementary particles are constituted by the coupling of two 

QPDD’s that belong to the same generation. One of the QPDD’s is 

the quantum state function of the particle. The other QPDD can be 

interpreted to implement the effect of inertia.  

 

Apart from their sign flavors these constituting QPDD’s form the 

same quaternionic distribution. However, the sign flavor may differ 

and their progression must have the same direction. It means that the 

object density distribution is the same, but the signs of the flows of 

the concerned objects differ between the two distributions.  

(1) 

(2) 

(3) 
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The second QPDD only simulates a Qpattern. It represents the 

coupling of the quantum state function to the embedding continuum, 

which is used in constructing the potentials of the particle. Coupling 

of elementary particles is governed by the special coupling equation. 

  

The quantum state function is a description of a mostly virtual 

distribution of discrete objects. Only one element is actual. The sec-

ond QPDD describes a completely virtual distribution of discrete ob-

jects. 

 

As claimed earlier, coupling (also) occurs by embedding the mes-

sage waves in the potential(s) of other particles. 

 

In this specification, the form of the quaternionic Dirac equations 

play a significant, but at the same time a very peculiar role. The fact 

that 𝜓𝑥 and 𝜓𝑦  must be equal apart from a discrete symmetry differ-

ence is very strange and it is highly improbable that this strong rela-

tion is constituted by accident.  

On the other hand it is known that the step stones couple to the 

embedding continuum. Two different types of this embedding con-

tinuum exists.  

The first embedding continuum is formed by the superposition of 

the potentials of distant particles. This type of binding produces fer-

mions.  

The second embedding continuum is formed by the superposition 

of the potentials of local particles. This type of binding produces bos-

ons. 

 

It appears as if the correlation mechanism creates two rather than 

one distribution of step stones in which the descriptor of the first one 

plays the role of the quantum state function, while the descriptor of 
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the second one plays the role of a mirror that has the sign flavor of 

the embedding continuum. 

 

If the first Qpattern (quasi) oscillates, then the second Qpattern 

oscillates asynchronous or partly in synchrony. This situation may 

differ per dimension. This results in 64 elementary particle types and 

64 anti-particle types. Besides of that exist 8 potential types.  

 

The coupling has a small set of observable properties:  

 coupling strength,  

 electric charge,  

 color charge and  

 spin.  
 

Due to the fact that the enumerator creation occurs in configura-

tion space, the coupling affects the local curvature of the involved 

Palestras.  

 

Qpattern QPDD’s that belong to the same generation have the 

same shape. This is explained in the paragraph on the enumeration 

process. The difference between the coupling partners resides in the 

discrete symmetry sets.  

 

Thus, the properties of the coupled pair are completely deter-

mined by the sign flavors of the partners. 

 

HYPOTHESIS 4: If the quaternionic quantum state function of 

an elementary particle couples to an embedding continuum that is 

formed by the potentials of distant particles, then the particle is a 

fermion, otherwise it is a boson. The quantum state functions of anti-
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particles are coupled to canonical conjugates of the corresponding 

embedding continuums.  

 

The fact that for fermions both the reference continuum and the 

reference enumerator set play a crucial role may indicate that the 

Pauli principle is based on this fact. 

 

This paper does not give an explanation for the influence on the 

spin by the fact that the quantum state function is connected to an 

isotropic or an anisotropic Qpattern.  

 

Photons and gluons are not coupled. They modulate the super-

high frequency waves that constitute particle potentials. 

 

In the standard model the eight gluons are constructed from su-

perpositions of the six base gluons. 

13.1 Reference frames 

Each Qpattern possesses a reference frame that represents its cur-

rent location, its orientation and its discrete symmetry. The reference 

frame corresponds with a Cartesian coordinate system that has a 

well-defined origin.  

 

Reference frames of different Qpatterns have a relative position.  

 

A Qpattern does not move with respect to its own reference frame. 

However, reference frames of different Qpatterns may move relative 

to each other.  

 

The reference frames reside in an affine-like space. Interaction 

can take place between reference frames that reside in different HBM 

pages and that are within the range of the interaction speed.  
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Within the same HBM page no interaction is possible. Interaction 

runs from a reference frame to a frame that lays in the future of the 

sender. 

 

Coupling into elementary particles puts the origins of the refer-

ence frames of the coupled Qpatterns at the same location. At the 

same location reference frames are parallel. That does not mean that 

the axes have the same sign. 

13.2 Coupling Qpatterns 

This section uses the fact that coupling is caused by interfering 

with the embedding continuum.  

 

Fermions couple to the embedding continuum that is formed by 

the superposition of the potentials of distant particles.  

Bosons couple to the embedding continuum that is formed by the 

superposition of the potentials of local particles. 

 

The coupling is represented by pairs {𝜓𝑥 , 𝜓𝑦} of two sign flavors 

of the same basic QPDD 𝜓⓪. Thus the corresponding coupling 

equation runs: 

 

𝛻𝜓𝑥 = 𝜓𝑦  

 

The corresponding anti-particles obey 

 

(𝛻𝜓𝑥)∗ = 𝑚 (𝜓𝑦)∗ 
 

The partial anti-phase couplings must use different sign flavors.  

 

(1) 

(2) 



167 

 

The coupling and its effect on local curvature is treated in the sec-

tion on the enumeration process. 
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In the figure below 𝜓⓪ and color N act as the reference sign fla-

vor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13.3 Elementary particle properties 

Elementary particles retain their discrete properties when they are 

contained in composite particles. 

 
Figure 2: Sign flavors 

 

 

Eight sign flavors  

(discrete symmetries) 

Colors N, R, G, B, R̅, G̅, B̅, W 

Right or Left handedness R,L 
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13.3.1 Spin 

HYPOTHESIS 5: The size of the spin relates to the fact whether 

the coupled Qpattern is the reference Qpattern. The reference Qpat-

tern QPDD has the reference sign flavor 𝜓⓪. 

 

Each generation has its own reference Qpattern.  

Fermions couple to the reference Qpattern. Fermions have half 

integer spin.  

Bosons have integer spin.  

The spin of a composite equals the sum of the spins of its compo-

nents. 

13.3.2 Electric charge 

HYPOTHESIS 6: Electric charge depends on the difference and 

direction of the imaginary base vectors for the Qpattern pair. Each 

sign difference stands for one third of a full electric charge. Further 

it depends on the fact whether the handedness differs. If the handed-

ness differs then the sign of the count is changed as well.  

 

The electric charge of a composite is the sum of the electric charge 

of its components. 

Any electric charge of a building block is evenly distributed over 

the 𝑁𝑤 step stones. 

13.3.3 Color charge 

HYPOTHESIS 7: Color charge is related to the direction of the 

anisotropy of the considered Qpattern with respect to the reference 

Qpattern. The anisotropy lays in the discrete symmetry of the imag-

inary part. The color charge of the reference Qpattern is white. The 

corresponding anti-color is black. The color charge of the coupled 

pair is determined by the colors of its members.  
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All composite particles are black or white. The neutral colors 

black and white correspond to Qpatterns that are isotropic with re-

spect to the reference sign flavor. 

Currently, color charge cannot be measured. In the Standard 

Model the existence of color charge is derived via the Pauli principle. 

The color confinement rule111 forbids the generation of individ-

ual particles that have non-neutral color charge. 

13.3.4 Mass 

Mass is related to the internal energy of the Qpattern. More pre-

cisely stated, mass is related to the square root of the volume integral 

of the square of the local field energy 𝐸2 = |𝛻𝜓|2. Any internal ki-

netic energy is included in 𝐸.  

 

𝑚2 = 〈𝛻𝜓|𝛻𝜓〉 = ∫|𝛻𝜓|2 𝑑𝑉
𝑉

 

 

The same mass rule holds for composite particles. The fields of 

the composite particles are dynamic superpositions of the fields of 

their components. 

13.4 Elementary object samples 

With these ingredients we can look for agreements with the stand-

ard model. It appears that the coverage is (over)complete. The larger 

diversity of this HBM table appears to be not (yet) measurable. Also  

the color confinement restriction can reduce observation of elemen-

tary particles. 

                                                           
111 See Color confinement 

(1) 
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For the same generation, the real parts of the natal QPDD’s (that 

contain the scalar density distribution) are all born the same way! In 

this way the Qpatterns become micro states.  

Elementary particles are represented by couplings of two QPDD’s 

that may differ in their discrete symmetries. The differences between 

the discrete symmetries determine the discrete properties of the par-

ticle. 

13.4.1 Photons and gluons 

Photons and gluons are not particles. They are mentioned here 

because they are often categorized as elementary particles. The rea-

son for that is that they represent energy quanta. 

 

Photons and gluons modulate the super-high frequency fields that 

constitute particle potentials. Once emitted, the underlying carrier 

wave fronts flow freely.  

 

Photons are emitted or absorbed when an elementary particle sud-

denly changes its energy. 

 

If a potential emitting particle oscillates, then radio waves modu-

late the carrier waves that leave the particle.  

 

Photons are quantized. Radio waves are not quantized. 

Photons are emitted and absorbed in a fixed number 𝑁𝑤 of pro-

gression steps. Radio waves have no restriction on their emission or 

absorption time. 

 

When the potential emitting particles annihilate, then the poten-

tials keep spreading and flee from their original source. In that way 

special kinds of photons or gluons are created. 
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In the standard model the eight gluons are constructed from su-

perpositions of the six HBM base gluons. 

 

type s-type e-

charge 

c-

charge 

Hand-

edness 

SM 

Name 

{𝜓⑦} boson 0 N R photon 

{𝜓⓪} boson 0 W L photon 

{𝜓⑥} boson 0 R̅ R gluon 

{𝜓①} boson 0 R L gluon 

{𝜓⑤} boson 0 G̅ R gluon 

{𝜓②} boson 0 G L gluon 

{𝜓④} boson 0 B̅ R gluon 

{𝜓③} boson 0 B L gluon 

 

Only at the instant of their generation or annihilation photons and 

gluons couple to the emitter or absorber.  

 

Two types of photons exist. One fades away from its point of gen-

eration. The other concentrates until it reaches the absorber.  

13.4.2 Leptons and quarks 

According to the Standard Model both leptons and quarks com-

prise three generations. They form 22 particles. Neutrinos will be 

treated separately. 

13.4.2.1 Electrons and positrons 

Pair s-

type 

e-

charge 

c-

charge 

Hand-

edness 

SM 

Name 

{𝜓⑦, 𝜓⓪} fer-

mion 

-1 N LR elec-

tron 
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{𝜓⓪, 𝜓⑦} Anti-

fermion 

+1 W RL posi-

tron 

The generations contain the muon and tau generations of the elec-

trons. The coupled lepton Qpatterns quasi-oscillate asynchronously 

in three dimensions. 
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13.4.2.2 Neutrinos 

Neutrinos are fermions and have zero electric charge. They are 

leptons, but they seem to belong to a separate low-weight family of 

(three) generations. Their quantum state function couples to a QPDD 

that has the same sign-flavor. The lowest generation has a very small 

rest mass. 

 

type s-

type 

e-

char

ge 

c-

charge 

Hand-

edness 

SM 

Name 

{𝜓⑦, 𝜓⑦} fermion 0 NN RR neu-

trino 

{𝜓⓪, 𝜓⓪} anti-fer-

mion 

0 WW LL neu-

trino 
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13.4.2.3 Boso-neutrinos 

type s-type e-

charge 

c-

charge 

Han

dedness 

Name 

{𝜓⑥ , 𝜓⑥} boson 0 R̅R̅ RR bneu-

trino 

{𝜓① , 𝜓①} anti- 

boson 

0 RR LL bneu-

trino 

{𝜓⑤ , 𝜓⑤} boson 0 G̅G̅ RR bneu-

trino 

{𝜓② , 𝜓②} anti- 

boson? 

0 GG LL bneu-

trino 

{𝜓④ , 𝜓④} boson? 0 B̅B̅ RR bneu-

trino 

{𝜓③ , 𝜓③} anti- 

boson? 

0 BB LL bneu-

trino 
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13.4.3 Quarks 

quark 

13.4.3.1 Quarks 

Pair s-

type 

e-

charge 

c-

charge 

Han

dedness 

SM 

Name 

{𝜓① , 𝜓⓪} fer-

mion 

-1/3 R LR down

-quark 

{𝜓⑥ , 𝜓⑦} Anti-

fermion 

+1/3 R̅ RL Anti-

down-

quark 

{𝜓② , 𝜓⓪} fer-

mion 

-1/3 G LR down

-quark 

{𝜓⑤ , 𝜓⑦} anti-

fermion 

+1/3 G̅ RL Anti-

down-

quark 

{𝜓③ , 𝜓⓪} fer-

mion 

-1/3 B LR down

-quark 

{𝜓④ , 𝜓⑦} anti-

fermion 

+1/3 B̅ RL Anti-

down-

quark 

{𝜓④ , 𝜓⓪} fer-

mion 

+2/3 B̅ RR up-

quark 

{𝜓③ , 𝜓⑦} anti-

fermion 

-2/3 B LL Anti-

up-quark 

{𝜓⑤ , 𝜓⓪} fer-

mion 

+2/3 G̅ RR up-

quark 

{𝜓② , 𝜓⑦} Anti-

fermion 

-2/3 G LL Anti-

up-quark 

{𝜓⑥ , 𝜓⓪} fer-

mion 

+2/3 R̅ RR up-

quark 
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{𝜓① , 𝜓⑦} anti-

fermion 

-2/3 R LL Anti-

up-quark 

The generations contain the charm and top versions of the up-

quark and the strange and bottom versions of the down-quark. The 

Qpatterns quasi-oscillate asynchronous in one or two dimensions. 
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13.4.3.2 Reverse quarks 

Pair s-type e-

charge 

c-

charge 

Hand

edness 

SM 

Name 

{𝜓⓪ , 𝜓①} boson +1/3 R RL down-

rquark 

{𝜓⑦ , 𝜓⑥} anti-

boson 

-1/3 R̅ LR anti-

down-

rquark 

{𝜓⓪ , 𝜓②} boson +1/3 G RL down-

rquark 

{𝜓⑦ , 𝜓⑤} anti-

boson 

-1/3 G̅ LR anti-

down-

rquark 

{𝜓⓪ , 𝜓③} boson +1/3 B RL down-

rquark 

{𝜓⑦ , 𝜓④} anti-

boson 

-1/3 B̅ LR anti-

down-

rquark 

{𝜓⓪ , 𝜓④} boson -2/3 B̅ RR up-rquark 

{𝜓⑦ , 𝜓③} anti-

boson 

+2/3 B LL anti-up-

rquark 

{𝜓⓪ , 𝜓⑤} boson -2/3 G̅ RR up-rquark 

{𝜓⑦ , 𝜓②} anti-

boson 

+2/3 G LL anti-up-

rquark 

{𝜓⓪ , 𝜓⑥} boson -2/3 R̅ RR up-rquark 

{𝜓⑦ , 𝜓①} anti-

boson 

+2/3 R LL anti-up-

rquark 
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13.4.4 Bosons 

Fermions couple their quantum state function to the standard dis-

crete symmetry version of the background field. Bosons couple their 

quantum state function to one of the non-standard discrete symmetry 

versions of the background field. 

All eight discrete symmetry versions of the background field 

share the same real part. With other words the curvature of the eight 

symmetry versions is exactly identical!  

Thus fermions and massive bosons live in the same gravitation 

potential. 

This coupling of versions implements the same task as the Higgs 

mechanism is supposed to implement 
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13.4.5 W-particles 

The 18 W-particles have indiscernible color mix. 𝑊+and 𝑊− are 

each other’s anti-particle. 

Pair s-type e-

charge 

c-

charge 

Hand-

edness 

SM 

Name 

{𝜓⑥ , 𝜓①} boson -1 R̅R RL 𝑊− 

{𝜓① , 𝜓⑥} anti-

boson 

+1R 𝑅R̅ LR 𝑊+ 

{𝜓⑥ , 𝜓②} boson -1 R̅G RL 𝑊− 

{𝜓② , 𝜓⑥} anti-

boson 

+1 𝐺R̅ LR 𝑊+ 

{𝜓⑥ , 𝜓③} boson -1 R̅B RL 𝑊− 

{𝜓③ , 𝜓⑥} anti-

boson 

+1 𝐵R̅ LR 𝑊+ 

{𝜓⑤ , 𝜓①} boson -1 G̅G RL 𝑊− 

{𝜓① , 𝜓⑤} anti-

boson 

+1 GG̅ LR 𝑊+ 

{𝜓⑤ , 𝜓②} boson -1 G̅G RL 𝑊− 

{𝜓② , 𝜓⑤} anti-

boson 

+1 GG̅ LR 𝑊+ 

{𝜓⑤ , 𝜓③} boson -1 GB̅̅ ̅̅  RL 𝑊− 

{𝜓③ , 𝜓⑤} anti-

boson 

+1 BG̅ LR 𝑊+ 

{𝜓④ , 𝜓①} boson -1 B̅R RL 𝑊− 

{𝜓① , 𝜓④} anti-

boson 

+1 RB̅ LR 𝑊+ 

{𝜓④ , 𝜓②} boson -1 B̅G RL 𝑊− 

{𝜓② , 𝜓④} anti-

boson 

+1 GB̅ LR 𝑊+ 
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{𝜓④ , 𝜓③} boson -1 B̅B RL 𝑊− 

{𝜓③ , 𝜓④} anti-

boson 

+1 BB̅ LR 𝑊+ 

The Qpatterns oscillate differently in multiple dimensions. 
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13.4.6 Z-candidates 

The 12 Z-particles have indiscernible color mix. 

Pair  s-

type 

e-

charg

e 

c-

charg

e 

Hand

edness 

S

M 

Name 

{𝜓② , 𝜓①}  boso

n 

0 GR LL Z 

{𝜓⑤ , 𝜓⑥}  anti-

boson 

0 G̅R̅ RR Z 

{𝜓③ , 𝜓①}  boso

n 

0 BR LL Z 

{𝜓④ , 𝜓⑥}  anti-

boson 

0 R̅B̅ RR Z 

{𝜓③ , 𝜓②}  boso

n 

0 BR LL Z 

{𝜓④ , 𝜓⑤}  anti-

boson 

0 R̅B̅ RR Z 

{𝜓① , 𝜓②}  boso

n 

0 RG LL Z 

{𝜓⑥ , 𝜓⑤}  anti-

boson 

0 R̅G̅ RR Z 

{𝜓① , 𝜓③}  boso

n 

0 RB LL Z 

{𝜓⑥ , 𝜓④}  anti-

boson 

0 R̅B̅ RR Z 

{𝜓② , 𝜓③}  boso

n 

0 RB LL Z 

{𝜓⑤ , 𝜓④}  anti-

boson 

0 R̅B̅ RR Z 

The Qpatterns oscillate differently in multiple dimensions. 
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 Fields 

Field theory exists independent of what it describes. It describes 

fields varying from fluid dynamics, via electromagnetism to gravita-

tion. You can describe scalar fields and vector fields separately or 

combined in a quaternionic field. Apart from that, tensor fields exist. 

 

The most basic types of fields can be seen as representing the dis-

tribution of the density of discrete objects and the corresponding cur-

rent densities. These density distributions are the primary field types. 

They can be combined in quaternionic functions.  

 

Fields can also represent the potentials of the coherent distribu-

tions of discrete objects. Examples of this last category are gravita-

tion fields and electrostatic fields.  

The type of the potential is set by its Green’s function. All these 

fields have many similarities and some differences.  

Object density distributions correspond to scalar potentials.  

Current density distributions correspond to vector potentials. 

Again these potentials can be combined in quaternionic functions. 

 

Only in case of quaternionic density distributions and correspond-

ing potentials the fields describe the same objects, which form the 

coherent distribution of discrete objects that underlies these fields.  

The elements of this distribution are treated as anonymous ob-

jects.  

However, it is also possible to enumerate them and allow each 

individual object to possess a series of properties. For example its 

location, its displacement and its discrete symmetry. The elements 

can also share properties. These shared properties will characterize 

the distribution and the corresponding fields. Typical shared proper-

ties are the discrete symmetries. 
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Some types of fields, such as photons and gluons, can be seen as 

variations (modulations) of an embedding continuum. Here the em-

bedding continuum is formed by superposed potentials that on their 

turn are constituted by super-high frequency carrier waves.  

The corresponding wave fronts are emitted by objects that are el-

ements of the discussed coherent distributions. These wave fronts 

combine in super-high frequency carrier waves. Photons and gluons 

modulate the carrier waves that constitute the potentials. 

14.1 Physical fields 

Elementary particles conserve their properties in higher level 

bindings. These properties are sources to fields that are exposed as 

dedicated potentials. Examples are the gravitational potential field 

and the electrostatic potential field. As stated above these potentials 

are constituted from super-high frequency waves and these are con-

stituted by emitted wave fronts.  

 

As soon as they leave the particle, the corresponding wave fronts 

start their own life and keep flowing away with light speed from their 

original source. These wave fronts form waves that feature a fixed 

super-high frequency.  

 

If the particle oscillates or annihilates or suddenly changes its en-

ergy, then their amplitude of these carrier waves can be modulated. 

We know these amplitude modulations as photons, gluons and radio 

waves.  

 

If the source stays at rest, then the super-high frequency waves 

superpose as a static potential. If the source oscillates, then the emit-

ted stream oscillates as well. The corresponding amplitude modula-

tion has a lower frequency than the frequency of the carrier waves. 
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A special kind of quantized modulation occurs when particles anni-

hilate or when it suddenly changes its energy. The completion of the 

corresponding action takes a fixed number 𝑁𝑤 of progression steps. 

14.1.1 Secondary fields 

If in a certain region a coherent distribution of property carriers 

(charged particles) exist, then that distribution can again be described 

by a density distribution. These fields are secondary fields. When the 

coherent distribution covers large numbers of particles it may be de-

scribed by a quaternionic distribution that contains a scalar potential 

and a vector potential like the QPDD's that describe elementary par-

ticles. 

 

In elementary particles the elements are step stones that are used 

one by one and disappear immediately. In the secondary fields the 

elements are existing and (relative) persistent charged particles. 

 

Besides the photons, the gluons and the radio waves these second-

ary fields are the dynamic physical fields that we know in contem-

porary physics.  

14.2 Gravitation field 

One of the physical fields, the gravitation field, describes the local 

curvature of the reference Palestra. It equals the scalar potential field 

that corresponds to the real part of the quantum state function. 

Now let 𝜙 represent the quaternionic potential of a set of massive 

particles. It is a superposition of single charge potentials.  

 

𝜙 = 𝜙0 + 𝝓 =  ∑ 𝜙𝑖

𝑖

=  ∑ 𝑚𝑖  𝜑𝑖

𝑖

 

 

(1) 
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Potential 𝜙 represents a secondary field. The particles may repre-

sent composites. In that case the mass 𝑚𝑖 includes the internal kinetic 

energy of the corresponding particle. All massive particles attract 

each other. In superpositions, gravitational fields tend to enforce 

each other. 

14.3 Electromagnetic fields 

The electric charge 𝑒𝑖 is represented similarly as 𝑚𝑖, but where 

𝑚𝑖 is always positive, the electric charge 𝑒𝑖 can be either positive or 

negative. Equal signs repel, opposite signs attract each other. Super-

position of the fields must include the sign. In superpositions, arbi-

trary electromagnetic fields tend to neutralize each other. Moving 

electric charges correspond to a vector potential and the curl of this 

vector potential corresponds to a magnetic field. 

 

𝜙 = 𝜙0 + 𝝓 = ∑ 𝑒𝑖  𝜑𝑖

𝑖

 

 

Here 𝜙 is the quaternionic electro potential. It is a superposition 

of single charge potentials 𝜙𝑖. 𝜙0 is the scalar potential. 𝝓 is the 

vector potential. Potential 𝜙 represents a secondary field. The values 

of the electric charge sources 𝑒𝑖 are included in 𝜙. 

 

𝑬 = 𝛻0𝝓 +  𝜵𝜙0 

 

𝑩 = 𝜵 × 𝝓 

 

14.4 Photons and gluons 

Photons and gluons can be described by quaternionic functions. 

Their energy is quantized. 

 

(1) 

(2) 

(3) 
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In configuration space they obey 

 

𝛻2𝜓 = 0 

 

Ensembles of photons and/or gluons are better considered as 

QPDD’s in the canonical conjugated space of the configuration 

space. 

14.5 Radio waves 

Radio waves discern from photons and gluons in the fact that their 

energy is not quantized. Their generation and absorption is not re-

stricted by a fixed number of progression steps.  

14.6 Isotropic and anisotropic potentials 

The propagation of waves is governed by the Huygens principle. 

The correlation vehicle uses this mechanism in order to regenerate 

all wave fronts at every progression step. 

14.6.1 Huygens principle for odd and even number of 
spatial dimension 

The following is taken from 

 http://www.mathpages.com/home/kmath242/kmath242.htm  

 

The spherically symmetrical wave equation in n spatial dimen-

sions can be written as 

 

𝜕2𝜓

𝜕𝑟2
+

𝑛 − 1

𝑟

𝜕𝜓

𝜕𝑟
=

𝜕2𝜓

𝜕𝑡2
 

 

Now suppose we define a new scalar field ϕ by the relation 

 

𝜙(𝑟, 𝑡) = 𝑟(n−1)/2𝜓(𝑟, 𝑡) 

(1) 

(1) 

(2) 

http://www.mathpages.com/home/kmath242/kmath242.htm
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This leads to 

 

𝜕2𝜙

𝜕𝑟2
+

(𝑛 − 1)(𝑛 − 3)

4𝑟2
𝜙 =

𝜕2𝜙

𝜕𝑡2
 

 

If n equals 1, meaning that we have just a single space dimension, 

then the second term on the left hand side vanishes, leaving us with 

a one-dimensional wave equation, with has the well-known general 

solution 

 

𝜓(𝑟, 𝑡) = 𝑓(𝑟 − 𝑡) + 𝑔(𝑟 + 𝑡) 

 

for arbitrary functions f and g. 

 

if n equals 3, i.e., in the case of three spatial dimensions, the spher-

ically symmetrical wave equation reduces again to a one-parametric 

wave equation, in the modified wave function 𝜙 =  𝑟𝜓. Hence the 

general solution in three space dimensions is 

 

𝜓(𝑟, 𝑡) =
𝑓(𝑟 − 𝑡)

𝑟
+

𝑔(𝑟 + 𝑡)

𝑟
 

 

The fact that this solution is divided by 𝑟 signifies that the mag-

nitude of the wave tends to drop as r increases (unlike the one-di-

mensional case, in which a wave would theoretical propagate forever 

with non-diminished strength). Focusing on just the "retarded" com-

ponent of the wave, 𝑓(𝑟 − 𝑡)/𝑟, the fact that the time parameter 𝑡 

appears only in the difference 𝑟 − 𝑡 implies that the (attenuated) 

wave propagates in time with a phase velocity of precisely 1, because 

for any fixed phase 𝛽 we have 𝑟 − 𝑡 = 𝛽 and so 𝑑𝑟/𝑑𝑡 for this phase 

(3) 

(4) 

(5) 
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point is 1. Consequently if 𝑓 is a single pulse, it will propagate out-

ward in a spherical shell at precisely the speed 1, i.e., on the light 

cone. Conversely, it can be shown that the wave function at any point 

in space and time is fully determined by the values and derivatives 

of that function on the past light cone of the point. 

 

Any wave equation for which this is true (i.e., for which disturb-

ances propagate at a single precise speed) is said to satisfy Huygens' 

Principle. The connection with Huygens' original statement about 

secondary wavelets is that each wavelet - with the same speed as the 

original wave - represents a tiny light cone at that point, and Huy-

gens' principle asserts that light is confined to those light cones. 

 

For n equals 2 the extra term in equation (3) does not vanish. We 

can still solve the wave equation, but the solution is not just a simple 

spherical wave propagating with unit velocity. Instead, we find that 

there are effectively infinitely many velocities, in the sense that a 

single pulse disturbance at the origin will propagate outward on infi-

nitely many "light cones" (and sub-cones) with speeds ranging from 

the maximum down to zero. Hence if we lived in a universe with two 

spatial dimensions (instead of three), an observer at a fixed location 

from the origin of a single pulse would "see" an initial flash but then 

the disturbance "afterglow" would persist, becoming less and less in-

tense, but continuing forever, as slower and slower subsidiary 

branches arrive. 

14.6.2 The case of even spatial dimensions 

Now again start from equation (1) and try a solution in the form: 

 

𝜓(𝑟, 𝑡) = 𝑓(𝑟)𝑔(𝑡) 

 

(1) 
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Inserting this into the wave equation and expanding the deriva-

tives by the product rule gives 

 

𝑔
𝜕2𝑓

𝜕𝑟2
+

𝑛 − 1

𝑟
𝑔

𝜕𝑓

𝜕𝑟
= 𝑓

𝜕2𝑔

𝜕𝑡2
 

 

Dividing through by 𝑓𝑔 gives 

 

1

𝑓

𝜕2𝑓

𝜕𝑟2
+

𝑛 − 1

𝑓 𝑟

𝜕𝑓

𝜕𝑟
=

1

𝑔

𝜕2𝑔

𝜕𝑡2
 

 

This decouples into two equations 

 

𝜕2𝑓

𝜕𝑟2
+

𝑛 − 1

𝑟

𝜕𝑓

𝜕𝑟
= 𝑘 𝑓 

 

And 

 

𝜕2𝑔

𝜕𝑡2
= 𝑘 𝑔 

 

If 𝑘 is positive or zero the right hand equation gives “run-away” 

solutions for 𝑔(𝑡), whereas if 𝑘is negative we can choose scaling so 

that 𝑘 =  −1 and then 𝑔(𝑡) satisfies the simple harmonic equation, 

whose solutions include functions of the form 𝑠𝑖𝑛(𝑐𝑡) and 𝑐𝑜𝑠(𝑐𝑡). 

In that case equation (9) can be re-written in the form 

 

𝑟
𝜕2𝑓

𝜕𝑟2
+ (𝑛 − 1)

𝜕𝑓

𝜕𝑟
+ 𝑟 𝑓 = 0 

 

This is the form of a Bessel’s equation. In fact for n=2 the solution 

is the zero order Bessel function 𝐽0(𝑟).  

(2) 

(3) 

(3) 

(4) 

(5) 
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𝐽0(𝑟) =
2

𝜋
∫ sin(cosh(𝜃) 𝑟) 𝑑𝜃

∞

0

 

 

A plot of 𝐽0(𝑟) is shown below. 

  

 
 

 

Inserting 𝑔(𝑡)  =  𝑠𝑖𝑛(𝑐𝑡) gives 

 

𝜓(𝑟, 𝑡) =
1

𝜋
∫ [cos(cosh(𝜃) 𝑟 − 𝑐𝑡)

∞

0

− cos(cosh(𝜃) 𝑟 + 𝑐𝑡)]𝑑𝜃 

(6) 

(7) 
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Hence, instead of the solution being purely a function of 𝑟 ±  𝑐𝑡 

as in the case of odd dimensions, we find that it is an integral of 

functions of 𝑐𝑜𝑠ℎ(𝜃)𝑟 ±  𝑐𝑡. Each value of 𝜃 corresponds to a prop-

agation speed of 𝑐/𝑐𝑜𝑠ℎ(𝜃), so the speeds vary from 𝑐 down to zero. 

This signifies that the wave function at any event is correlated not 

just with the wave function on its “light cone”, but with the wave 

function at every event inside its light cone. 

 

In two dimensions the Huygens principle corresponds to a cen-

tripetal force112 with potential 

 

𝑉 = −
ℏ

8𝑀𝑟2. 

 

14.6.3 Huygens principle applied 

HYPOTHESIS 8: Particles transmit waves in dimensions where 

the discrete symmetry of the quantum state function differs from the 

discrete symmetry of the embedding background.  

 

The correlation mechanism uses the Huygens principle in order to 

restore the potentials at each progression step. The Huygens princi-

ple works differently depending on the number of dimensions in 

which the waves are transmitted. 

 

The characteristics of the potentials that are emitted or absorbed 

by elementary particles are determined by the differences between 

the discrete symmetry set of the quantum state function of the parti-

cle and the symmetry set of the coupled QPDD that represents the 

                                                           
112 http://cds.cern.ch/record/514621/files/0108083.pdf 

(8) 

http://cds.cern.ch/record/514621/files/0108083.pdf
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embedding continuum. This difference determines whether the po-

tentials act in 1, 2 or 3 dimensions. In odd dimensions the persistence 

of the potentials can be explained by the common interpretation of 

the Huygens principle. This common interpretation is that at every 

point of each wave front new waves are generated. This does not 

work for particles that send their waves in two dimensions. This in-

cludes quarks, W-particles and Z-particles. The corresponding mes-

sengers are gluons. For these objects the potentials also act in two 

dimensions. In even dimensions the Huygens principle does not act 

in its normal way. 

The same conditions that determine whether waves are emitted in 

1, 2, or 3 dimensions also determine whether the particle has 1/3, 2/3 

or 3/3 integer electric charge. 

The re-emitted waves consist out of a retarded component and an 

advanced component. These components correspond to outbound in-

teractions and inbound interactions.  

14.7 Discussion 

The particular behavior of the Huygens principle for potential 

contributions that cover even dimensions might explain the excep-

tional strength of the corresponding strong force mechanism. 

 

It appears that fermions with electric charges of ±n/3 e produce n 

dimensional waves that contribute to their electrostatic potential.  

For n=3 the Green’s function is of form 1/r. 

For n=2 the Green’s function is a zero order Bessel function. 

For n=1 the Green’s function is a constant. 
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On the other hand the color confinement principle113 prevents that 

the even dimensional actions of the Huygens principle will ever be-

come observable. 

The gravitation potential is not influenced by the discrete symme-

tries. The corresponding potential contributions are always transmit-

ted isotropic in three dimensions.  

 

The electrostatic potential is controlled by the discrete symmetry 

sets. Depending on the resulting electric charge of the particle the 

electric potential contributions are transmitted in 1, 2 or 3 dimen-

sions.  

 

The correlation mechanism applies the Huygens principle for the 

recreation in each progression step of the corresponding potentials. 

  

                                                           
113 See color confinement. 
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 Inertia 
We use the ideas on inertia of Denis Sciama114115116. 

15.1 Inertia from coupling equation 

In order to discuss inertia we must reformulate the coupling equa-

tion. 

 

𝛻𝜓 = 𝑚 𝜑 

 

𝛻0𝜓0 − 〈𝛻, 𝜓〉  = 𝑚 𝜑0 

 

𝛻0𝜓 + 𝛻𝜓0  + 𝛻 × 𝜓 = 𝕰 + 𝕭 = 𝑚 𝜑 
 

We will write 𝜓 as a superposition 

 

𝜓 =  𝜒 + 𝜒0 𝒗 

 

𝜓0 =  𝜒0 

 

𝝍 =  𝝌 + 𝜒0 𝒗 

 

𝜒 represents the rest state of the object. With respect to progres-

sion, it is a constant.  

 

𝛻0𝜒 = 0 

 

For the elementary particles the coupled distributions { 𝜓 , 𝜑 } 

have the same real part. 

                                                           
114 http://arxiv.org/abs/physics/0609026v4.pdf  
115 http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S 
116http://rmp.aps.org/abstract/RMP/v36/i1/p463_1   

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

http://arxiv.org/abs/physics/0609026v4.pdf
http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S
http://rmp.aps.org/abstract/RMP/v36/i1/p463_1
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𝜓0 =  𝜑0 

 

𝛻0𝝍 =  𝜒0 �̇� 

 

Remember 

 

𝕰 = 𝛻0𝝍 +  𝜵𝜓0 

 

𝜒0 �̇� = 𝕰 − 𝜵𝜓0 

 

In static conditions 𝒗 represents a uniform speed of linear move-

ment. However, if the uniform speed turns into acceleration �̇� ≠ 𝟎, 

then an extra field of size 𝜒0�̇� is generated that counteracts the ac-

celeration. The Qpattern does not change, thus 𝜵𝜓0 does not change. 

Also 𝕭 does not change. This means that the acceleration of the par-

ticle corresponds to an extra 𝕰 field that counteracts the acceleration. 

On its turn it corresponds with a change of the coupling partner 𝜑. 

That change involves the coupling strength 𝑚. The counteraction is 

felt as inertia. 

15.2 Information horizon 

The terms in the integral continuity equation  

 

𝛷 = ∫ ∇𝜓 𝑑𝑉

𝑉

= ∫ 𝜙 𝑑𝑉

𝑉

 

 

can be interpreted as representing the influence of a local object 

onto the rest of the universe or as the influence of the rest of the 

universe onto a local object. In the second case the influence dimin-

ishes with distance and the number of influencers increases such that 

the most distant contributors together poses the largest influence. 

(7) 

(8) 

(9) 

(10) 

(1) 
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These influencers sit at the information horizon. In the history of the 

model they are part of the birth state of the current episode of the 

universe. This was a state of densest packaging. 

The local Qpattern that is described by 𝜓 couples to the historic 

Qpattern 𝜑 for which the RQE acts as a Qpatch and as a Qtarget. 

This historic Qpattern resided in the reference page of the HBM. 
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 Lorentz transformation 

Differences between positions in subsequent members of the se-

quence of HBM pages can be interpreted as displacements. The dis-

placement is a coordinate transformation. For the properties of this 

transformation it does not matter where the displacement starts or in 

which direction it is taken. 

 

The same holds for displacements that concern sequence mem-

bers that are located further apart. The corresponding displacements 

form a group. The displacement is a function of both the position and 

the sequence number. The displacement 𝑧, 𝜏 → 𝑧′, 𝜏′ can be inter-

preted as a coordinate transformation and can be described by a ma-

trix. Here 𝜏 is progression. 

 

[
𝜏′

𝑧′] = [
𝛾 𝛿
𝛽 𝛼

] [
𝜏
𝑧

] 

 

The matrix elements are interrelated. When the displacement con-

cerns a uniform movement, the interrelations of the matrix elements 

become a function of the speed 𝑣. Here 𝑣 is the speed measured as 

displacement per progression interval. The group properties together 

with the isomorphism of space fix the interrelations. 

 

[
𝜏′

𝑧′] = 1/√1 + 𝑘𝑣2 [
1 𝑘𝑣

−𝑣 1
] [

𝜏
𝑧

] 

 

If 𝑘 is positive, then there may be transformations with 𝑘𝑣2 ≫ 1 

which transform time into a spatial coordinate and vice versa. This 

is considered to be unphysical. The Hilbert book model also supports 

that vision. 

 

(1) 

(2) 
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The condition k = 0 corresponds to a Galilean transformation 

 

[
𝜏′

𝑧′] = [
1 0

−𝑣 1
] [

𝜏
𝑧

] 

 

The condition 𝑘 <  0 corresponds to a Lorentz transformation. 

We can set 𝑘𝑐2 = −1, where 𝑐 is an invariant speed that corresponds 

to the maximum of 𝑣. 

 

[
𝜏′

𝑧′] = 1/√1 − 𝑣2/𝑐2 [ 1 −𝑣/𝑐2

−𝑣 1
] [

𝜏
𝑧

] 

 

The Lorentz transformation corresponds with the situation in 

which a maximum speed occurs.  

 

Since in each progression step photons step with a non-zero space 

step and both step sizes are fixed, the speed of the photon at micro-

scopic scale is fixed. No other particle goes faster, so in the model a 

maximum speed occurs. With other words when sequence members 

at different sequence number are compared, then the corresponding 

displacements can be described by Lorentz transformations.  

 

Lorentz transformations introduce the phenomena that go to-

gether with relativity, such as length contraction, time dilatation and 

relativity of simultaneity that occur when two inertial reference 

frames are considered. 

 

∆𝜏𝑐 = (∆𝜏𝑝 −  ∆𝑧𝑝 𝑣/𝑐2)/√1 − 𝑣2/𝑐2 

 

(∆𝜏𝑐)2(1 − 𝑣2/𝑐2) = (∆𝜏𝑝 −  ∆𝑧𝑝 𝑣/𝑐2)
2

 

 

(3) 

(4) 

(5) 
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The term ∆𝑧𝑝 𝑣/𝑐2 introduces time dilatation. If ∆𝜏𝑝 = 0 then de-

pending on 𝑣 and ∆𝑧𝑝 the time difference ∆𝜏𝑐 is non-zero. 

 

These phenomena occur in the Hilbert Book Model when differ-

ent members of the sequence of Hilbert spaces are compared. Usu-

ally the inertial frames are spread over a range of Hilbert book pages. 

Since the members of the sequence represent static status quos, 

the relativity of simultaneity restricts the selection of the inertial 

frames. Only one of the inertial frames can be situated completely in 

a single member of the sequence. In that case the other must be taken 

from a range of sequence elements. 

 

 Gravitation as a descriptor 
The gravitation field describes the local curvature. The sharp al-

location function can act as the base of a quaternionic gravitation 

theory. The sharp allocation function has sixteen partial derivatives 

that combine in a differential. 

17.1 Palestra 

All quantum state functions share their parameter space as affine-

like spaces. Due to the fact that the coupling of Qpatterns affects this 

parameter space, the Palestra is curved. The curvature is not static. 

With other words the Qpatches in the parameter space move and den-

sities in the distribution of these patches change. For potential ob-

servers, the Palestra is the place where everything classically hap-

pens. The Palestra comprises the whole universe. 
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17.1.1 Spacetime metric 

The Palestra is defined with respect to a flat parameter space, 

which is spanned by the rational quaternions117. We already intro-

duced the existence of a smallest rational number, which is used to 

arrange interspace freedom. The specification of the set of Qpatches 

is performed by a continuous quaternionic distribution ℘(𝑥) that acts 

as a (partial) allocation function. This allocation function defines a 

quaternionic infinitesimal interval 𝑑𝑠. On its turn this definition de-

fines a metric118. 

 

𝑑𝑠(𝑥)  = 𝑑𝑠𝜈(𝑥)𝑒𝜈 = 𝑑℘ = ∑
𝜕℘

𝜕𝑥𝜇

𝑑𝑥𝜇

𝜇=0…3

=  𝑞𝜇(𝑥)𝑑𝑥𝜇  

 

= ∑ ∑ 𝑒𝜈

𝜕℘𝜈

𝜕𝑥𝜇

𝑑𝑥𝜇

𝜈=0,…3

𝜇=0…3

= ∑ ∑ 𝑒𝜈𝑞𝜈
𝜇

𝑑𝑥𝜇

𝜈=0,…3

𝜇=0…3

 

 

                                                           
117 http://en.wikipedia.org/wiki/Quaternion_algebra#Quater-

nion_algebras_over_the_rational_numbers 
118 The intervals that are constituted by the smallest rational num-

bers represent the infinitesimal steps. Probably the hair of mathema-

ticians are raised when we treat the interspacing as an infinitesimal 

steps. I apologize for that. 

 

(1) 
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The base 𝑒𝜈 and the coordinates 𝑥𝜇 are taken from the flat param-

eter space of ℘(𝑥). That parameter space is spanned by the quater-

nions. The definition of the quaternionic metric uses a full deriva-

tive 𝑑℘ of the sharp allocation function ℘(𝑥). This full derivative 

differs from the quaternionic nabla 𝛻, which ignores the curvature of 

the parameter space. On its turn 𝑑℘ ignores the blur of 𝒫. 

The allocation function ℘(𝑥) may include an isotropic scaling 

function 𝑎(𝜏) that only depends on progression 𝜏. It defines the ex-

pansion/compression of the Palestra. 

𝑑𝑠 is the infinitesimal quaternionic step that results from the com-

bined real valued infinitesimal 𝑑𝑥𝜇 steps that are taken along the 𝑒𝜇 

base axes in the (flat) parameter space of ℘(𝑥). 

𝑑𝑥0 = 𝑐 𝑑𝜏 plays the role of the infinitesimal space time interval 

d𝑠𝑠𝑡
119. In conventional physics it is considered to be a physical in-

variant. 𝑑𝜏 plays the role of the infinitesimal observed time interval 

and in the HBM it equals the infinitesimal progression interval. The 

progression step is an HBM invariant. Without curvature, 𝑑𝑡 in  

 

‖𝑑𝑠‖  =  𝑐 𝑑𝑡  

 

plays the role of the infinitesimal observer’s time interval. 

 

𝑐2 𝑑𝑡2 =  𝑑𝑠 𝑑𝑠∗ = 𝑑𝑥0
2 + 𝑑𝑥1

2+𝑑𝑥2
2+𝑑𝑥3

2 

 

𝑑𝑥0
2 = 𝑑𝑠𝑠𝑡

2 = 𝑐2 𝑑𝑡2 − 𝑑𝑥1
2−𝑑𝑥2

2−𝑑𝑥3
2 

 

In conventional physics, 𝑑𝑥0
2 is used to define the local spacetime 

metric tensor. With that metric the Palestra is a pseudo-Riemannian 

manifold that has a Minkowski signature. When the metric is based 

                                                           
119 Notice the difference between the quaternionic interval 𝑑𝑠 and 

the spacetime interval 𝑑𝑠𝑠𝑡 

(2) 

(3) 



204 

 

on 𝑑𝑠2, then the Palestra is a Riemannian manifold with a Euclidean 

signature. The Palestra comprises the whole universe. It is the arena 

where everything happens. 

 

For the sharp allocation function holds 

 

𝜕2℘

𝜕𝑥𝜇𝜕𝑥𝜈

=
𝜕2℘

𝜕𝑥𝜈𝜕𝑥𝜇

 

 

For higher-order derivatives hold similar equations.  

 

Due to the spatial continuity of the sharp allocation function 

℘(𝑥), the quaternionic metric as it is defined above is far more re-

strictive than the metric tensor that that is used in General Relativity: 

 

𝑑𝑠2 = 𝑔𝑖𝑘  𝑑𝑥𝑖  𝑑𝑥𝑘 

 

Still 

 

𝑔𝑖𝑘 = 𝑔𝑘𝑖 

 

17.1.2 The Palestra step 

When nature steps with universe (Palestra) wide steps dur-
ing a progression step ∆x0, then in the Palestra a quaternionic 
step ∆s℘ will be taken that differs from the corresponding flat 

step ∆𝑠𝑓 

 

∆𝑠𝑓 = ∆𝑥0 + 𝒊 ∆𝑥1 + 𝒋 ∆𝑥2 + 𝒌 ∆𝑥3 

 

∆𝑠℘ = 𝑞0∆𝑥0 + 𝑞1 ∆𝑥1 + 𝑞2 ∆𝑥2 + 𝑞3 ∆𝑥3 

(4) 

(5) 

(6) 

(1) 

(2) 
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The coefficients qμ are quaternions. The ∆xμ are steps taken in 

the (flat) parameter space of the sharp allocation function ℘(x). 

17.1.3 Pacific space and black regions. 

The sharp allocation function ℘(𝑥) is a continuous quaternionic 

distribution. Like all continuous quaternionic distributions it con-

tains two fields. It is NOT a QPDD. It does not contain density dis-

tributions. 

 

If we treat the Palestra as a continuum, then the parameter space 

of the allocation function is a flat space that it is spanned by the num-

ber system of the quaternions. This parameter space gets the name 

“Pacific space”. This is the space where the parameter RQE’s live. 

If in a certain region of the Palestra no matter is present, then in that 

region the Palestra is hardly curved. It means that in this region the 

Palestra is nearly equal to the parameter space of the allocation func-

tion.  

 

The Pacific space has the advantage that if distributions are con-

verted to this parameter space, then the Fourier transform of the con-

verted distributions is not affected by curvature. 

 

In a region where the curvature is high, the Palestra step comes 

close to zero. At the end where the Palestra step reaches the smallest 

rational value, an information horizon is established.  

For a distant observer, nothing can pass that horizon. The infor-

mation horizon encloses a black region120. Inside that region the 

building blocks are densely packed.  

 

                                                           
120The HBM uses the name black region rather than black hole.  
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The HBM assumes that the building blocks are packed in the sur-

face of a sphere. They keep their micro-path in an adapted form. In 

this way they keep emitting their potentials. By packaging building 

blocks in this way, nature avoids the singularity that often is at-

tributed to black holes. The configuration also supports the findings 

of Bekenstein121 and the corresponding Holographic principle122. 

 

The resulting black body has mass, electric charge and angular 

momentum.  

 

The black region may emit photons. This is known as Hawking 

radiation. Further no information is emitted by this region. 

Due to the fact that no information can escape through the infor-

mation horizon, the inside of the horizon is obscure. No experiment 

can reveal its content other than via the mentioned properties of the 

black region. The black region does not contain a singularity at its 

center.  

17.1.4 Start of the universe. 

At the start of the universe the package density was so high that 

also in that condition only one mixed QPDD can exist. That QPDD 

was a superposition of QPDD’s that have different sign flavors. Only 

when the universe expands enough, multiple individual Qpatterns 

may have been generated. In the beginning, these QPDD’s where 

uncoupled. 

                                                           
121 http://en.wikipedia.org/wiki/Jacob_Bekenstein ;  
122 http://en.wikipedia.org/wiki/Holographic_principle 

http://en.wikipedia.org/wiki/Jacob_Bekenstein
http://en.wikipedia.org/wiki/Holographic_principle
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 Modularization 
A very powerful influencer is modularization. Together with the 

corresponding encapsulation it has a very healthy influence on the 

relational complexity of the ensemble of objects on which modular-

ization works.  

The encapsulation takes care of the fact that most relations are 

kept internal to the module.  

 

When relations between modules are reduced to a few types, then 

the module becomes reusable.  

 

The most influential kind of modularization is achieved when 

modules can be configured from lower order modules. 

 

Elementary particles can be considered as the lowest level of 

modules. All composites are higher level modules. 

 

When sufficient resources in the form of reusable modules are 

present, then modularization can reach enormous heights.  

On earth it was capable to generate intelligent species. 

18.1 Complexity 

Potential complexity of a set of objects is a measure that is 
defined by the number of potential relations that exist be-
tween the members of that set.  

 

If there are n elements in the set, then there exist n*(n-1) potential 

relations. 
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Actual complexity of a set of objects is a measure that is de-
fined by the number of relevant relations that exist between 
the members of the set.  
 
In human affairs and with intelligent design it takes time and other 

resources to determine whether a relation is relevant or not. Only an 

expert has the knowledge that a given relation is relevant.  

Thus it is advantageous to have as little irrelevant potential rela-

tions as is possible, such that mainly relevant and preferably usable 

relations result.  

 

Physics is based on relations. Quantum logic is a set of axioms 

that restrict the relations that exist between quantum logical proposi-

tions.  

Via its isomorphism with Hilbert spaces quantum logic forms a 

fundament for quantum physics.  

 

Classical logic is a similar set of restrictions that define how we 

can communicate logically. Like classical logic, quantum logic only 

describes static relations.  

 

Traditional quantum logic does not treat physical fields and it 

does not touch dynamics. However, the model that is based on tradi-

tional quantum logic can be extended such that physical fields are 

included as well and by assuming that dynamics is the travel along 

subsequent versions of extended quantum logics, also dynamics will 

be treated.  

 

The set of propositions of traditional quantum logic is isomorphic 

with the set of closed subspaces of a Hilbert space. The Hilbert space 

is a mathematical construct in which quantum physicists do their in-

vestigations and calculations.  
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In this way fundamental physics can be constructed. Here holds 

very strongly that only relevant relations have significance. 

18.2 Relational complexity 

We define relational complexity as the ratio of the number 
of actual relations divided by the number of potential rela-
tions. 

18.3 Interfaces 

Modules connect via interfaces.  

Interfaces are used by interactions.  

Interactions run via (relevant) relations.  

 

Relations that act within modules are lost to the outside world of 

the module.  

 

Thus interfaces are collections of relations that are used by inter-

actions.  

Inbound interactions come from the past.  

Outbound interactions go to the future.  

Two-sided interactions are cyclic. They are either oscillations or 

rotations of the inter-actor. 

 

In physics interactions are implemented by potentials. The solu-

tions in the Huygens principle cover both outgoing as well as incom-

ing waves.  

The outbound waves implement outbound interfaces of elemen-

tary particles.  

The inbound waves implement inbound interfaces of elementary 

particles. 
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18.4 Interface types 

Apart from the fact that they are inbound, outbound or cyclic the 

interfaces can be categorized with respect to the type of relations that 

they represent.  

Each category corresponds to an interface type.  

 

An interface that possesses a type and that installs the possibility 

to couple the corresponding module to other modules is called a 

standard interface.  

18.5 Modular subsystems 

Modular subsystems consist of connected modules. They need 

not be modules. They become modules when they are encapsulated 

and offer standard interfaces that makes the encapsulated system a 

reusable object. 

 

The cyclic interactions bind the corresponding modules together.  

 

Like the coupling factor of elementary particles characterizes the 

binding of the pair of Qpatterns will a similar characteristic charac-

terize the binding of modules. 

This binding characteristic directly relates to the total energy of 

the constituted sub-system.  

 

Let 𝜓 represent the renormalized superposition of the involved 

(entangled) distributions. We treat the sources and drains separately. 

 

𝛻𝜓 = 𝜙 = 𝑚 𝜑 

 

∫|𝜓|2 𝑑𝑉 =
𝑉

∫|𝜑|2 𝑑𝑉 = 1
𝑉

 

 

(1) 

(2) 
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∫|𝜙|2 𝑑𝑉 =
𝑉

𝑚2 

 

Here 𝜓 represents a superposition of local sources, while 𝜑 rep-

resents a superposition of drains that themselves might reside at 

distant locations.  

 

And for the anti-particles (that act as drains): 

 

𝛻∗𝜓𝑎
∗ = 𝑚 𝜑𝑎

∗  

 

Here 𝜓𝑎
∗  represents a superposition of local drains, while 𝜑𝑎

∗  rep-

resents a superposition of sources that themselves might reside at 

distant locations. 

 

The whole entangled system contains both local sources and lo-

cal drains that are neutralized by local and distant counterparts. 

The corresponding integral equations must define a closed sys-

tem. 

 

The binding factor is the total energy of the sub-system minus the 

sum of the total energies of the separate constituents. 

18.6 Quantum oscillations 

An interaction that runs via information transfer always runs from 

a previous instant to a later instant. Bidirectional interactions must 

be cyclic. Thus, bidirectional interfaces between system components 

are formed by exchanging messages into two directions or by actual 

oscillations. In case of an interface consisting of oscillating elemen-

tary particles the micro-path of the particle is stretched along the os-

cillation path.  

 

(3) 

(4) 
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For an elementary particle at rest, the singularities that are caused 

by the step stones dig a potential well. In this way a particle creates 

its own inertia. In case of an oscillation, the singularities that accom-

pany the step stones dig a potential ditch that stretches along the os-

cillation path. This ditch forms a geodesic path in which the particle 

can travel freely. These oscillations can be coupled to other potential 

wells or ditches. In this way the nucleus and the electrons are coupled 

in atoms. 

18.7 Relational complexity indicators 

The inner product of two Hilbert vectors is a measure of the rela-

tional complexity of the combination. 

A Hilbert vector represents a linear combination of atomic Hilbert  

propositions.  

 

When all coefficients are equal, then the vector represents an as-

sembly of atoms.  

When the coefficients are not equal, then the vector represents a 

weighted assembly of atoms. 

 

For two normalized vectors |𝑎⟩ and |𝑏⟩: 
 

 〈𝑎|𝑎〉 = 1 

 

 〈𝑏|𝑏〉 = 1 

 

 〈𝑎|𝑏〉 = 0 means |𝑎⟩ 𝑎𝑛𝑑 |𝑏⟩ are not related. 
 
 〈𝑎|𝑏〉 ≠ 0 means |𝑎⟩ 𝑎𝑛𝑑 |𝑏⟩ are related. 
 
 |〈𝑎|𝑏〉| = 1 means |𝑎⟩ 𝑎𝑛𝑑 |𝑏⟩ are optimally related. 
 

(1) 

(2) 

(3) 

(4) 

(5) 
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18.8 Modular actions 

Subsystems that have the ability to choose their activity can 

choose to organize their actions in a modular way.  

 

As with static relational modularization the modular actions re-

duce complexity and for the decision maker it eases control. 

18.9 Random design versus intelligent design 

At lower levels of modularization nature designs modular struc-

tures in a stochastic way. This renders the modularization process 

rather slow. This way of modularization is called random design. 

 

It takes a huge amount of progression steps in order to achieve a 

relatively complicated structure.  

Still the complexity of that structure can be orders of magnitude 

less than the complexity of an equivalent monolith. 

 

As soon as more intelligent subsystems arrive, then these systems 

can design and construct modular systems in a more intelligent way. 

They use resources efficiently.  

This speeds the modularization process in an enormous way. 

18.10 Probability distributions 

Much in quantum physics has to do with the fact that the wave 

function has a direct relation to a probability density distribution and 

that the Fourier transform of this probability density distribution de-

scribes a probability distribution of momenta that describe the mo-

tion of the considered object. 

The HBM relates the wave function to a coherent discrete distri-

bution of step stones that form a stochastic micro-path. During move-

ments or quantum oscillations the micro-path stretches along the os-

cillation or movement path. This is done such that the above relation 
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between locations and momenta is kept. With other words the mech-

anism that controls this, keeps Heisenberg's uncertainty principle in-

tact. 

 

The result of these measures is that under certain conditions the 

step stones can form interference patterns. This leads to the particle-

wave duality of quantum scale objects. 

18.11 Entanglement and Pauli principle 

Entanglement is based on the fact that the quantum state function 

of the considered system or particle is a probability density function 

and that at any progression instant the quantum state function of an 

entangled system equals the superposition of the quantum state func-

tions of its components. Thus the superposition coefficients can be 

functions of progression. 

The definition of entanglement also means that the superposition 

coefficients can be functions of progression. These functions may 

describe motions of the components that are internal to the system. 

These motions are restricted to quantum oscillations. 

Entangled systems obey the swarming conditions. This means 

that they move as a single unit. The third swarming condition re-

quires that the quantum state function has a Fourier transform. The 

fact that internal motions are restricted may be interpreted as the con-

dition that the functions that describe the behavior of the superposi-

tion coefficients must be invariant under Fourier transformation. 

Examples of Fourier invariant function are the Gauss function, 

complex even functions, complex odd functions, functions that de-

scribe spherical harmonics and the functions that describe linear 

quantum harmonics. 

 

The correlation mechanism is involved in the support of modules 

and modular systems. It establishes the effects of the Pauli exclusion 
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principle in these modulus. This can also happen in entangled mod-

ules that live at separate locations. 

This means that the correlation mechanism determines what mod-

ular and entangled systems are. 

In entangled (sub)systems the quantum state function of the 

(sub)system equals the linear combination of the quantum state func-

tions of its constituents. Thus, the superposition de-normalizes the 

effective quantum state functions of the system components123. 

 

For entangled subsystems the coupling equation holds. For anti-

particles the adapted version holds. Entangled systems can comprise 

both sources and drains. The sources and drains can cover 1, 2, or 3 

dimensions. 

 

Entanglement implements a binding mechanism. 

18.11.1 Pauli principle 

If two components of an entangled (sub)system that have the same 

quantum state function are exchanged, then we can take the system 

location at the center of the location of the two components. Now the 

exchange means for bosons that the (sub)system quantum state func-

tion is not affected: 

 

∀𝛼,𝛽{𝛼𝜑(−𝑥) + 𝛽𝜑(𝑥) = 𝛼𝜑(𝑥) + 𝛽𝜑(−𝑥)}  

⇒ 𝜑(−𝑥) = 𝜑(𝑥) 

 

And for fermions that the corresponding part of the (sub)system 

quantum state function changes sign. 

 

                                                           
123 This makes no sense in complex quantum physics, but it does 

make sense in quaternionic quantum physics. 
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∀𝛼,𝛽{𝛼𝜑(−𝑥) + 𝛽𝜑(𝑥) = −𝛼𝜑(𝑥) − 𝛽𝜑(−𝑥)}  

⇒ 𝜑(−𝑥) = −𝜑(𝑥) 

 

This conforms to the Pauli principle. It also indicates that the cor-

relation mechanism, which controls the entanglement, takes care of 

the fact that if one of these two twin components exposes any of its 

properties (e.g. its spin) that it has IMMEDIATE effect on the prop-

erties of the other component. 

18.11.2 Gauge transformations 

In quaternionic quantum mechanics the definition of entangle-

ment indicates what in complex quantum mechanics gauge transfor-

mations mean. When the change of the quaternionic superposition 

coefficients restricts to phase shifts, then the change represents a 

complex gauge transformation. 

 Non-locality 

19.1 Within a particle 

In the Hilbert Book Model, non-locality is due to the fact that na-

ture's building blocks have a set of discrete properties that can be 

observed via indirect means that does not touch their state, while the 

building block may extend over rather large distances.  

 

So measuring the same property at nearly the same instant at quite 

different locations will give the same result.  

If shortly before these measurements were performed the property 

is changed, then it might give the impression that an “instant action 

at a distance” occurred, because neither light nor the wave fronts that 
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constitute the potentials could bridge these locations in the period 

between the two measurements.  

 

The explanation is that the building block at each progression in-

stant moves to a different step stone and that these step stones may 

lay far apart.  

 

Apart from the property measurements, in this process no infor-

mation transfer needs to take place.  

 

At least the first measurement must be done without affecting the 

state of building block. At each arrival at a step stone the building 

block transmits contributions to its potentials. If the measurement 

uses these potentials, then the building block is not affected.  

 

According to this explanation, at least one progression step must 

separate the two measurements. 

19.2 Between particles 

Non-locality between particles means that the reach of the corre-

lation mechanism covers multiple particles. This can be caused by 

the fact that the particles are considered to form a an entangled sys-

tem. In that system the Pauli principle will take its role. It means that 

the participating particles must al take different states. This sounds 

familiar in composites and atoms, but it can also happen in separated 

particles. The coupling of entangled particles and the support of the 

Pauli principle are supported by special capabilities of the correlation 

vehicle. 
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 Principles 

20.1 Huygens principle 

The Huygens principle is applied by the correlation vehicle in or-

der to establish the persistence of the emitted wave fronts. 

20.2 Pauli principle 

The Pauli principle is applied by the correlation vehicle to sets of 

particles and composites that the vehicle considers as coherent sets. 

Such (sub)systems are entangled. 

Within these sets the identical fermions cannot occupy the same 

location. 

20.3 Color confinement 

No free particles have been detected that do not show neutral col-

ors charges. This is the consequence of color confinement. 

 

It appears that the correlation vehicle is restricted in its construc-

tion of elementary particles and composites and can only generate 

and support particles that feature neutral colors.  

 

This has direct consequences for the particles that can exist.  

It means that a large part of the particles of the HBM table do not 

exist as individuals. At the utmost they can appear in color neutral 

composites. 

 

Thus quarks exist only124 in mesons and baryons that have neutral 

color charge. These composites can reconfigure, but cannot disinte-

grate into separate quarks. 

 

                                                           
124 Isolated quarks have a very short live 
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Contemporary physics has translated this habit of the correlation 

vehicle into the existence of a strong force. 

 

This view implies that the correlation vehicle can and will create 

hadrons directly.  

Where elementary particles are created with one single element 

per progression step, the elements of hadrons may be created in pairs 

or triples. 

 

The correlation mechanism uses the Huygens principle in order to 

restore the potentials at each progression step. The Huygens princi-

ple works differently depending on the number of dimensions in 

which the waves are transmitted. 

The HBM suggests that quarks emit their wave fronts in less than 

three dimensions. 

If color confinement restricts particle generation, then emission in 

less than three dimensions might be prohibited or it is confined 

within the realm of the composite. 

 

This means that the wave fronts that are emitted by quarks are 

quickly combined into 3D spherical wave fronts. During this process 

the wave fronts strongly fold and thus curve the embedding contin-

uum and thus forces the particles to stay together. After combination 

this curvature is relaxed and the wave front behaves as a normal 3D 

spherical wave front. 
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 Fundamental particles 
Fundamental particles obey the rules of color confinement. 

Fundamental particles are particles that are generated in one inte-

grated action by the correlation vehicle.  

 

Quarks are not fundamental particles. Electrons, positrons, neu-

trinos, W-particles and Z-particles are fundamental. 

 

The full generation of these fundamental particles takes the same 

number of progression steps as is taken by the full generation of an 

elementary particle.  

 

The set of fundamental particles comprises all elementary parti-

cles that have neutral color charge and all hadrons. 

 

At every progression step all actual step stones of a fundamental 

particles are generated. Mesons contain two Qtargets and baryons 

contain three Qtargets.  

 

Since these multi-Qtarget generations are completely governed by 

the correlation vehicle, it has little sense to consider the interactions 

between the elementary particles that populate mesons or baryons. 

 

Of the strong force interactions only the interactions between had-

rons result. 
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 Events 

22.1 Generations and annihilations  

An event indicates that the enumeration generator changes its 

generation mode and will locally generate another set of Qpatterns 

or no Qpattern at all.  

The generation and annihilation process are both restricted by 

color confinement. 

 

For example it means that an electron-positron pair that get inter-

mixed will be replaced by a muon-anti-muon pair or by a series of 

mesons. But it is also possible that no new Qpattern is created. In-

stead a photon is produced that is carried by the waves that constitute 

the fleeing potential. 

 

Since the Qpattern is generated with a Qtarget at each progression 

step the event has immediate consequences.  

 

Conservation laws govern the annihilation and creation processes. 

22.2 Absorption versus emission 

The Huygens principle allows absorption as well as emission of 

wave fronts.  

Emission of wave fronts takes place at the arrival of a building 

block at the Qtarget.  

 

It is imaginable that this wave front is borrowed from the wave 

fronts that constitute the embedding continuum.  

This can be accomplished by making use of the fact that the em-

bedding continuum is the superposition of the potentials of distant 

building blocks. 

 



222 

 

The amplitude of the new wave front must be initialized at a nor-

malized level. However, events may cause a modulation of this level. 

That modulation occurs during a fixed number 𝑁𝑤 of progression 

steps. The modulation appears as a photon or as a gluon125. 

 

A similar mechanism may also describe the absorption of photons 

or gluons, but here it affects the subsequent Qtargets. This influences 

the movement of the building block as a whole. For example it can 

influence the harmonic oscillation of the building block126. 

 

If the emitting building block oscillates then the emitted carrier 

waves will be modulated. This feature describes radio waves 

22.3 Oscillating interactions 

Oscillating interactions are implemented by cyclic interfaces. 

They consist of a sequence of annihilations and generations, where 

the locations alternate. 

22.4 Movements 

The fact that a particle moves, and the fact that a Qpattern is gen-

erated with only one Qtarget per progression step means that during 

a movement the Qpattern is spread along the path of movement.  

It means that the micro-path is stretched along the path of the 

Qpatch. 

                                                           
125 The fixed number may vary between categories of building 

blocks. E.g. those that produce photons and those that produces glu-

ons. 
126 See Atoms and their electrons. 
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 Atoms and their electrons 
Atoms are composites that are (re)generated under a coherent ac-

tion of the correlation vehicle. The electrons in the atom follow one 

of a collection of planned paths that can be described as spherical 

harmonics. Their natal micro-path is stretched along that selected 

path. As long as the electron keeps the selected path, then they be-

have like free electrons that follow a selected geodesic path. Its total 

energy is affected by this extra movement. This total energy is re-

flected in its mass and thus in its gravitation potential. 

 

If for some reason the electron changes the selection of the spher-

ical harmonic path into a lower energy version , then a cycle of wave 

fronts that are emitted starting from that instant get an impulse and 

becomes modulated. As a consequence, a corresponding photon is 

emitted. 

 

If the local embedding continuum gets modulated, then the corre-

sponding energy can be used to change the selected spherical har-

monic path into a higher energy version. A corresponding photon is 

absorbed. Again this action takes a full generation cycle. In fact it is 

sufficient when a sufficiently long cycle of wave fronts in the em-

bedding continuum are modulated. 

 

According to this picture the spherical harmonics path is not trav-

eled in a continuous way, but instead in a stochastic up and down 

way, similarly as the micro-path is walked when the electron is at 

rest. In this way it becomes comprehensible that during its walk 

along the spherical harmonics path no extra EM signal is transmitted. 
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23.1 Photon emission and absorption. 

The energy of the emitted or absorbed photon corresponds with 

the energy level step. This involves a single energy quant. According 

to observations in conventional physics the involved energy is 

 

𝐸 = ℏ𝜈 

 

This suggests that the Qpattern is generated in 𝑵𝒘 steps. 𝑁𝑤 

might vary per generation. Thus this cycle concerns 𝑁𝑤 step stones. 

In this cycle the emitting or absorbing particle walks along its mi-

cro-path.  

 

In that case the emission of each photon involves a fixed number 

of progression steps and thus a fixed number 𝑁𝑤 of wave fronts that 

carry the photon which modulates the corresponding super-high 

frequency carrier wave.  

 

The above formula also indicates that Planck’s constant is di-

rectly related to the number 𝑁𝑤 of progression steps in a full cycle. 

 

A higher energy photon is produced in a higher number of mod-

ulation periods. Since this occurs in the same Qpattern cycle. The 

frequency grows with energy, as formula (1) shows. 

 

Heisenberg’s uncertainty relation guides the dimensional rela-

tion between Planck’s constant ℏ, proper cycle time ∆𝜏 and energy 

quant ∆𝐸. 

 

∆𝜏 ∙ ∆𝐸 ∝ ℏ 

∆𝜏 = 𝜏𝑐 = 𝑁𝑤 ∙ 𝜏𝑠 

(1) 

(2) 
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23.2 Hadrons, quarks and gluons 

The same things that happen to electrons and photons in atoms 

will happen to quarks and gluons in hadrons. 

23.3 Photon propagation and interference  

The amplitude of the carrier wave reduces with travelled dis-
tance. The emitted photon rides somewhere on the super-high fre-
quency carrier wave. Its presence is described by an object density 
distribution that describes the probability for the photon of being 
at that location. Not the photons, but instead these object density 
distributions control the interference of multiple photons. 

 
The photon keeps its identity. However, after travelling over 

large distances its energy diminishes due to red-shift of its fre-
quency. The red-shift is supposed to be caused by space expansion. 
At large distance the probability of detecting the photon diminishes 
but not its capability to trigger a suitable detector. This explains the 
difference between photons and gravitation. A distant supernova 
can be seen, but cannot be felt as a gravitation ripple. Still both mes-
sages must arrive at the same location at the same instant. 

23.4 Chunks of energy 

The fact that photons are energy quanta and encode their energy 
in their frequency leads to the suggestion that the energy quantum 
is divided in a discrete set of chunks. These chunks have a fixed size 
and are evenly spread over the step stones that configure the mi-
cro-path. It means that in the simplest model in each micro-walk a 
participating step stone at the utmost can change its energy by a 
single energy chunk.  
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The size of the energy chunk depends on absolute progression 
value. This may be due to space expansion, which also red-shifts the 
frequency of the photon. 

 
This also means that a lowest and a largest photon energy exist. 

Their ratio is given by the number 𝑁𝑤 of step stones that belong to 
a building block. 

23.5 Radio waves 

Radio waves have much in common with photons. On the other 

hand its generation process differs. Oscillating electrons produces 

radio waves via their potentials. Here the generation cycle is unlim-

ited. 

23.6 Creation and annihilation 

Creation and annihilation of Qpatterns also take 𝑁𝑤 progression 

steps. It corresponds to the (proper) time that it takes to generate or 

annihilate a photon. 

On the other hand, contrary to the observed time clocks, the crea-

tion and annihilation cycles appear in general not to be synchronized. 

The corresponding cycle can start at any progression step. Only its 

duration is fixed.  

Qpatterns exist in three127 generations and the cycle period (de-

fined by 𝑁𝑤) might differ between these generations. 

23.7 Basic frequencies 

Besides the existing super-high frequency of the carrier wave, 

which is set by the size of the progression step, for each generation 

a second basic frequency of the HBM is set by the cycle period of 

the generation of a building block. 

                                                           
127 For fermions at least three generations are known. 
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 Cosmology 

24.1 Cosmological view 

Even when space was fully densely packed with matter (or an-

other substance) then nothing dynamic would happen. Only when 

sufficient interspacing comes available dynamics becomes possible. 

 

The Hilbert Book Model exploits this possibility. It sees black re-

gions as local returns to the original condition. 

 

The HBM considers fundamental physics as a kind of fluid dy-

namics.  

For the description of quantum physical features it uses the dif-

ferential equations of fluid dynamics.  

For the description of cosmologic features it uses the integral 

equations of fluid dynamics. 

24.2 The cosmological equations 

The integral equations that describe cosmology are: 

 
𝑑

𝑑𝜏
∫  𝜌 𝑑𝑉

𝑉

+ ∮�̂�𝜌 𝑑𝑆
𝑆

= ∫ 𝑠 𝑑𝑉

𝑉

 

 

∫ ∇ 𝜌 𝑑𝑉

𝑉

= ∫ 𝑠 𝑑𝑉

𝑉

 

 

Here �̂� is the normal vector pointing outward the surrounding sur-

face S, 𝒗(𝜏, 𝒒) is the velocity at which the charge density 𝜌0(𝜏, 𝒒) 

enters volume V and 𝑠0 is the source density inside V. In the above 

formula 𝜌 stands for 

 

(1) 

(2) 
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𝜌 =  𝜌0 + 𝝆 =  𝜌0 +
𝜌0𝒗

𝑐
 

 

It is the flux (flow per unit of area and per unit of progression) of 

𝜌0 . 𝑡 stands for progression (not observer’s time). 

24.3 Inversion surfaces 

An inversion surface 𝑆 is characterized by: 

 

∮�̂�𝜌 𝑑𝑆
𝑆

= 0 

 

Potentials and their constituting wave fronts can still pass 

this inversion surface. 

24.4 Entropy 

As a whole, universe expands.  

Locally regions exist where contraction overwhelms the global 

expansion.  

These regions are separated by inversion surfaces. These regions 

are characterized by their inversion surface.  

Within these regions the holographic principle resides.  

 

The fact that the universe as a whole expands means that the av-

erage size of the encapsulated regions increases. 

 

The holographic principle says that the total entropy of the region 

equals the entropy of a black region that would contain all matter in 

the region.  

Black regions represent regions where entropy is optimally 

packed. 

(3) 

(1) 
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Thus entropy is directly related to the interspacing between enu-

merators. With other words, local entropy is related to local curva-

ture. 

24.5 Cosmological history 

The inversion surfaces divide universe into compartments. Think 

that these universe pockets contain matter that is on its way back to 

its natal state.  

 

If there is enough matter in the pocket this state forms a black 

region. The rest of the pocket is cleared from its mass content.  

 

Still the size of the pocket may increase. This corresponds to the 

expansion of the universe.  

 

Inside the pocket the holographic principle governs. The black re-

gion represents the densest packaging mode of entropy. 

 

The pockets may merge. Thus finally a very large part of the uni-

verse may return to its birth state, which is a state of densest packag-

ing of entropy. 

 

Then the resulting mass which is positioned at a huge distance 

will enforce a uniform attraction. This uniform attraction will install 

an isotropic extension of the central package.  

 

This will disturb the densest packaging quality of that package. 

 

The motor behind this is formed by the combination of the attrac-

tion through distant massive particles, which installs an isotropic ex-

pansion and the influence of the small scale random localization 

which is present even in the state of densest packaging. 



230 

 

 

This describes an eternal process that takes place in and between 

the pockets of an affine-like space. 
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24.6 Recapitulation 

The model starts by taking quantum logic as its foundation. Next 

quantum logic is refined to Hilbert logic.  

 

It could as well have started by taking an infinite dimensional sep-

arable Hilbert space as its foundation. However, in that case the spe-

cial role of base vectors would not so easily have been brought to the 

front.  

 

It appears that the atomic propositions of the logic system and the 

base vectors of the Hilbert space play a very crucial role in the model. 

They represent the lowest level of objects in nature that play the the-

ater of our observation.  

 

The atoms are only principally unordered at very small “dis-

tances”.  

They have content.  

 

The Hilbert space offers built-in enumerator machinery that de-

fines the distances and that specifies the content of the represented 

atoms.  

The same can be achieved in a refined version of quantum logic 

that we call Hilbert logic. 

 

In fact we focus on a compartment of universe, while the whole 

universe is considered to be an affine-like space.  

 

The isotropic scaling factor that was assumed in the early phases 

of the model appears to relate to mass carrying particles that exist in 

other compartments at huge distances.  
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In the considered compartment an enumeration process estab-

lishes a kind of coordinate system.  

The master of the enumeration process is the blurred allocation 

function 𝒫. This function has a flat parameter space. 

 

𝒫 = ℘ ∘ 𝒮 

 

At small scales this function becomes a stochastic spatial spread 

function 𝒮 that governs the quantum physics of the model.  

 

The whole function 𝒫 is a convolution of a sharp part ℘ and the 

stochastic spatial spread function 𝒮.  

The differential of ℘ delivers a local metric.  

The spread function appears to be generated by a Poisson gener-

ator which produces Qpatterns. 

 

After a myriad of progression steps the original ordering of the 

natal state of the model is disturbed so much that the natal large and 

medium scale ordering is largely lost.  

However, this natal ordering is returning in the black regions that 

constitute pockets that surround them in universe.  

When the pockets merge into a huge black region, the history 

might restart enforced by the still existing low scale randomization 

and by the isotropic expansion factor, which is the consequence of 

the existence of massive particles at huge distances in the affine-like 

space, which emit gravitation potentials. 

However, another reason might exist. After having absorbed all 

particles that existed in the compartment, the black region keeps ab-

sorbing photons that are emitted by other compartments. This might 

increase the energy of the black region such that it becomes instable 

and implodes. 

 

(1) 
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The model uses a first part where elementary particles are formed 

by the representatives of the atomic propositions of the logic sys-

tems. 

In a second part the formation of composites is described by a 

process called modularization. In that stage, in places where suffi-

cient resources are present, the modularization process is capable of 

forming intelligent species.  

 

This is the start of a new phase of evolution in which the intelli-

gent species get involved in the modularization process and shift the 

mode from random design to intelligent design.  

Intelligent design runs much faster and may use its resources in a 

more efficient and conscientious way. 
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Other subjects 

 Dark stuff 

25.1 Dark matter 

Dark matter is formed by ensembles of particles that do not emit 

photons. These particles can be elementary particles or composites. 

Elementary particles emit photons when they suddenly decrease 

their energy.  

Elementary particles that reside in a state of lowest energy, cannot 

emit photons. Also a smooth transition to a lower state of energy does 

not cause the emission of photons. 

25.2 Dark energy 

Super-high frequency waves that are not modulated, do not carry 

photons. Still these waves can carry potentials, such as gravitation 

potentials and electrostatic potentials. 

In a universe that is divided into compartments the boundaries are 

opaque to particles but are transparent to waves that carry potentials. 

If these waves do not carry photons, then they represent dark energy.  

 Functions that are invariant under 
Fourier transformation. 

A subset of the (quaternionic) distributions have the same 

shape in configuration space and in the linear canonical conju-

gated space. 
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We call them dual space distributions. It are functions that 

are invariant under Fourier transformation128. These functions 

are not eigenfunctions of the Fourier operator. 

The Qpatterns and the harmonic and spherical oscillations 

belong to this class. 

Fourier-invariant functions show iso-resolution, that is, ∆p=

∆q in the Heisenberg’s uncertainty relation. 

26.1 Natures preference 

Nature seems to have a preference for quaternionic distribu-

tions that are invariant under Fourier transformation. 

A possible explanation is the requirement that entangled sys-

tems must obey the swarming conditions. 

 Conclusion  
With respect to conventional physics, this simple model contains 

extra layers of individual objects.  

The most interesting addition is formed by the RQE’s, the 

Qpatches, the Qtargets and the Qpatterns. They represent the atoms 

of the quantum logic sub-model.  

Another addition is formed by the wave fronts that constitute the 

potentials and form super-high frequency carrier waves that are mod-

ulated by EM waves.  

 

The model gives an acceptable explanation for the existence of an 

(average) maximum velocity of information transfer. The two prep-

ositions: 

                                                           
128 Q-Formulӕ contains a section about functions that are invari-

ant under Fourier transformation. 
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 Atomic quantum logic fundament 

 Correlation vehicle 
lead to the existence of fuzzy interspacing of enumerators of the 

Hilbert space base vectors and to dynamically varying space curva-

ture when compared to a flat reference continuum. 

 

Without the freedom that is introduced by the interspacing fuzzi-

ness and which is used by the dynamic curvature, no dynamic behav-

ior would be observable in the Palestra. 

 

In the (re)generation of the model the enumeration process plays 

a crucial role, but we must keep in mind that the choice of the enu-

merators and therefore the choice of the type of correlation vehicle 

is to a large degree arbitrary.  

It means that the Palestra has no natural origin. It is an affine-like 

space.  

 

The choice for quaternions as enumerators seems to be justified 

by the fact that the sign flavors of the quaternions explain the diver-

sity of elementary particles.  

 

The generation process is restricted by color confinement. This 

reduces the number of elementary particles and composites that can 

be observed. 

 

Physicist that base their model of physics on an equivalent of 

the Gelfand triple which lacks a mechanism that creates the free-

dom that flexible interspaces provide, are using a model in which 

no natural curvature and fuzziness can occur. Such a model can-

not feature dynamics. 
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Attaching a progression parameter to that model can only create 

the illusion of dynamics. However, that model cannot give a proper 

explanation of the existence of space curvature, space expansion, 

quantum physics or even the existence of a maximum speed of infor-

mation transfer. 

 

Contemporary physics made its greatest misstep after the nineteen 

thirties when it turned away from the fundamental work of Garret 

Birkhoff and John von Neumann.  

This deviation did not prohibit pragmatic use of the new method-

ology. However, it did prevent deep understanding of that technol-

ogy because the methodology is ill founded. 

 

Doing quantum physics in continuous function spaces is possible, 

but it makes it impossible to find the origins of dynamics, curvature 

and inertia. Most importantly it makes it impossible to find the rea-

son of existence of quantum physics.  

Only the acceptance of the fact that physics is fundamentally 

countable can solve this dilemma. 

Q-FORMULÆ 
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 Introduction 

This compilation starts with sections on quantum logic 

and Hilbert Logic. 

Next lists of formulas for quaternionic algebra and 

quaternionic differentials will be given. These formulae 

are for a significant part derived from Bo Thidé’s book 

“Electromagnetic Field Theory”; 

http://www.plasma.uu.se/CED/Book. I have merely con-

verted the vector formula into quaternionic format.  

 

 

Two types of quaternionic differentiation exist.  

 Flat differentiation uses the quaternionic na-

bla and ignores the curvature of the param-

eter space. 

 Full differentiation uses the allocation func-

tion ℘(𝑥) that defines the curvature of the 

parameter space. 

The text focuses at applications in quantum mechanics, 

in electrodynamics and in fluid dynamics. 
 

http://www.plasma.uu.se/CED/Book
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 Quantum logic 

Elementary particles behave non-classical. They can present 

themselves either as a particle or as a wave. A measurement of the 

particle properties of the object destroys the information that was ob-

tained from an earlier measurement of the wave properties of that 

object.  

With elementary particles it becomes clear that that nature obeys 

a different logic than our old trusted classical logic. The difference 

resides in the modularity axiom. That axiom is weakened. The clas-

sical logic is congruent to an orthocomplemented modular lattice. 

The quantum logic is congruent to an orthocomplemented weakly 

modular lattice. Another name for that lattice is orthomodular lattice. 

  

2.1 Lattices 

A subset of the axioms of the logic characterizes it as a half or-

dered set. A larger subset defines it as a lattice. 

A lattice is a set of elements 𝑎, 𝑏, 𝑐, …that is closed for the con-

nections ∩ and ∪. These connections obey: 

  

 The set is partially ordered. With each pair of elements 

𝑎, 𝑏 belongs an element 𝑐, such that 𝑎 ⊂  𝑐 and 𝑏 ⊂  𝑐.  

 The set is a ∩half lattice if with each pair of elements 𝑎, 𝑏 

an element 𝑐 exists, such that 𝑐 =  𝑎 ∩  𝑏.  
 The set is a ∪half lattice if with each pair of elements 𝑎, 𝑏 

an element 𝑐 exists, such that 𝑐 =  𝑎 ∪  𝑏.  
 The set is a lattice if it is both a ∩half lattice and a ∪half 

lattice. 

 

The following relations hold in a lattice:  
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𝑎 ∩  𝑏 =  𝑏 ∩  𝑎 
 

(𝑎 ∩  𝑏)  ∩  𝑐 =  𝑎 ∩  (𝑏 ∩  𝑐) 
 

𝑎 ∩ (𝑎 ∪  𝑏)  =  𝑎 

 

𝑎 ∪  𝑏 =  𝑏 ∪  𝑎 
 

(𝑎 ∪  𝑏)  ∪  𝑐 =  𝑎 ∪  (𝑏 ∪  𝑐) 
 

𝑎 ∪ (𝑎 ∩  𝑏)  =  𝑎 

 

The lattice has a partial order inclusion ⊂: 

 

a ⊂ b ⇔ a ⊂ b = a 

 

A complementary lattice contains two elements 𝑛 and 𝑒 with each 

element a an complementary element a’ such that: 

 

𝑎 ∩  𝑎’ =  𝑛 
 

𝑎 ∩  𝑛 =  𝑛 
 

𝑎 ∩  𝑒 =  𝑎 

 

𝑎 ∪  𝑎’ =  𝑒 
 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 



241 

 

𝑎 ∪  𝑒 =  𝑒 
 

𝑎 ∪  𝑛 =  𝑎 

 

An orthocomplemented lattice contains two elements 𝑛 and 𝑒 and 

with each element 𝑎 an element 𝑎” such that: 

 

𝑎 ∪  𝑎” =  𝑒 
 

𝑎 ∩  𝑎” =  𝑛 
 

(𝑎”)” =  𝑎 
 

𝑎 ⊂  𝑏 ⟺  𝑏” ⊂  𝑎” 

 

𝑒 is the unity element; 𝑛 is the null element of the lattice 

 

A distributive lattice supports the distributive laws: 

 

𝑎 ∩ (𝑏 ∪  𝑐)  =  (𝑎 ∩  𝑏)  ∪  ( 𝑎 ∩  𝑐) 
 

𝑎 ∪ (𝑏 ∩  𝑐)  =  (𝑎 ∪  𝑏)  ∩  (𝑎 ∪  𝑐) 

 

A modular lattice supports: 

 

(𝑎 ∩  𝑏)  ∪ (𝑎 ∩  𝑐)  
=  𝑎 ∩  (𝑏 ∪ (𝑎 ∩  𝑐)) 

 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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A weak modular lattice supports instead: 

 

There exists an element 𝑑 such that 

 

𝑎 ⊂  𝑐 ⇔  (𝑎 ∪  𝑏) ∩  𝑐 

 =  𝑎 ∪ (𝑏 ∩  𝑐)  ∪ (𝑑 ∩  𝑐) 

 

where 𝑑 obeys: 

 

(𝑎 ∪  𝑏)  ∩  𝑑 =  𝑑 
 

𝑎 ∩  𝑑 =  𝑛 
 

𝑏 ∩  𝑑 =  𝑛 
 

[(𝑎 ⊂  𝑔) 𝑎𝑛𝑑 (𝑏 ⊂  𝑔)  ⇔  𝑑 ⊂  𝑔 

 

In an atomic lattice holds  

 

∃𝑝 𝜖 𝐿 ∀𝑥 𝜖 𝐿 {𝑥 ⊂  𝑝 ⇒  𝑥 =  𝑛} 

 

∀𝑎 𝜖 𝐿 ∀𝑥 𝜖 𝐿 {(𝑎 <  𝑥 <  𝑎 ∩  𝑝) 

 

 ⇒  (𝑥 =  𝑎 𝑜𝑟 𝑥 =  𝑎 ∩  𝑝)} 
 
𝑝 is an atom 

 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 
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Both the set of propositions of quantum logic and the set of sub-

spaces of a separable Hilbert space Ң have the structure of an ortho-

modular lattice. In this respect these sets are congruent. 

In Hilbert space, an atom is a pure state (a ray spanned by a single 

vector). 

 

Classical logic has the structure of an orthocomplemented distrib-

utive modular and atomic lattice. 

Quantum logic has the structure of an orthomodular lattice. That 

is an orthocomplented weakly modular and atomic lattice. The set of 

closed subspaces of a Hilbert space also has that structure.  

2.2 Proposition 

In Aristotelian logic a proposition is a particular kind of sentence, 

one which affirms or denies a predicate of a subject. Propositions 

have binary values. They are either true or they are false. 

Propositions take forms like "This is a particle or a 

wave". In quantum logic "This is a particle." is not a 

proposition. 

In mathematical logic, propositions, also called 

"propositional formulas" or "statement forms", are 

statements that do not contain quantifiers. They 

are composed of well-formed formulas consisting 

entirely of atomic formulas, the five logical connec-

tives129, and symbols of grouping (parentheses etc.). 
                                                           

129 http://en.wikipedia.org/wiki/Logical_connective  

http://en.wikipedia.org/wiki/Logical_connective
http://en.wikipedia.org/wiki/Logical_connective
http://en.wikipedia.org/wiki/Logical_connective
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Propositional logic is one of the few areas of math-

ematics that is totally solved, in the sense that it 

has been proven internally consistent, every theo-

rem is true, and every true statement can be 

proved. Predicate logic is an extension of proposi-

tional logic, which adds variables and quantifiers. 

In Hilbert space a vector is either inside or not in-

side a closed subspace. A proper quantum logical 

proposition is “Vector |f> is inside state s”. 

In Hilbert space, an atomic predicate corresponds 

with a subspace that is spanned be a single vector. 

Predicates may accept attributes and quantifiers. 

The predicate logic is also called first order logic. A 

dynamic logic can handle the fact that predicates 

may influence each other when atomic predicates 

are exchanged. 

2.3 Observation 

In physics, particularly in quantum physics, a system observable 

is a property of the system state that can be determined by some se-

quence of physical operations. An observable can exist without being 

observed. This paper distinguishes between measurement data and 

observables. 
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 The state is considered as a linear combination of ei-

genvectors of an observable. The value of an observ-

able returns the statistical expectation value of the ei-

genvalue of the observable.  

 A measurement transforms the observed state to one 

of the eigenvectors of the observable. What happens 

depends on the characteristics of the measuring 

equipment. The measurement results in one or more 

measurement data. 
 

A particle can reveal its existence in the form of potentials. Meas-

uring a potential does not affect the state of the particle. In general, 

measuring an eigenvalue will alter the state of the particle. This can 

go as far as the annihilation of the particle.  
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 Hilbert logic 

The set of propositions of traditional quantum logic is lattice iso-

morphic  with the set of closed subspaces of a separable Hilbert 

space. However there exist still significant differences between this 

logic system and the Hilbert space. This gap can be closed by a small 

expansion of the quantum logic system.  

Step 1: Require that linear combinations of atomic propositions 

also belong to the logic system. Call such propositions linear prop-

ositions. 

Step 2: introduce the notion of relational coupling between two 

linear propositions. This measure has properties that are similar to 

the properties of the inner product of Hilbert space vectors. 

Step 3: Close the subsets of the new logic system with respect to 

this relational coupling measure. 

The relational coupling measure can have values that are taken 

from a suitable division ring. The resulting logic system will be 

called Hilbert logic.  

The Hilbert logic is lattice isomorphic as well topological isomor-

phic with the corresponding Hilbert space. 

Due to this similarity the Hilbert logic will also feature opera-

tors130. 

In a Hilbert logic linear operators can be defined that have linear 

atoms as their eigen-propositions. The eigenspace of these operators 

is countable. 

Linear propositions are the equivalents of Hilbert vectors. General 

quantum logic propositions are the equivalents of (closed) subspaces 

of a Hilbert space.  

                                                           
130 The Hilbert logic does not feature dynamic operators. 
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The measure of the relational coupling between two linear prop-

ositions is the equivalent of the inner product between two Hilbert 

vectors.  

In a Hilbert logic system the superposition principle holds. A lin-

ear combination of linear proposition is again a linear proposition. 

 Hilbert space isomorphism 

The set of propositions in a quantum logic system is lattice iso-

morphic with the set of closed subspaces of an infinite dimensional 

separable Hilbert space. 

The set of Hilbert propositions in a Hilbert logic system is iso-

morphic with the set of Hilbert vectors of an infinite dimensional 

separable Hilbert space. 

The set of eigenvectors of a normal operator in Hilbert space is 

isomorphic to the set of eigen-atoms of a corresponding operator in 

the Hilbert logic system. 

A coherent distribution of objects that is represented by a QPDD 

corresponds to a set of Hilbert logic propositions that are eigen-at-

oms of a normal operator that resides in the Hilbert logic. In this way 

it also corresponds to a set of Hilbert space base vectors that are ei-

genvectors of a normal operator that resides in the Hilbert space. The 

coherent distribution corresponds to a closed subspace of the Hilbert 

space. It also corresponds to a quantum logic proposition. That quan-

tum logic proposition concerns a building block.  

The atomic Hilbert propositions that span this quantum logic 

proposition form the constituents of the building block. In this way 

it also corresponds to a set of Hilbert space base vectors that are ei-

genvectors of a normal operator that resides in the Hilbert space. The 

coherent distribution corresponds to a closed subspace of the Hilbert 

space. It also corresponds to a quantum logic proposition. That quan-

tum logic proposition concerns a building block.  



248 

 

 About quaternions 

5.1 Notation 

Let x be the position vector (radius vector, coordi-
nate vector) from the origin of the Euclidean space 

ℝ3 coordinate system to the coordinate point 

(𝑥1;  𝑥2;  𝑥3) in the same system and let |𝑥| denote 

the magnitude (‘length’) of 𝑥. Let further 
𝛼(𝒙), 𝛽(𝒙), 𝛾(𝒙), …, be arbitrary scalar fields, 
𝒂(𝒙), 𝒃(𝒙), 𝒄(𝒙), …, arbitrary vector fields, and 

𝑨(𝒙), 𝑩(𝒙), 𝑪(𝒙), …,arbitrary rank two tensor fields in 
this space.  

 

Let 𝑞 be the position relative to the origin of the 
space ℍ that is spanned by the quaternions and that 
is given by the coordinate point (𝑞0;  𝑞1;  𝑞2;  𝑞3)) and 

let |𝑞| denote the norm of 𝑞.  
 
Let * denote complex or quaternionic conjugate 

and † denote Hermitian conjugate (transposition 
and, where applicable, complex or quaternionic 
conjugation). 

5.2 Cayley-Dickson construction 

The Cayley-Dickson construction formula enable the generation 

of a quaternion from two complex numbers: 

 

p = a0 + a1k + i(b0 + b1k) 

 

(1) 
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q = c0 + c1k + i(d0 + d1k) 

 

 (a, b) (c, d) = (ac – db*; a*d + cb) 

 

r = pq 

 

r0= a0c0 – a1c1 – b0d0 – b1d1 

 

rk= a0c1 – a1c0 – b0d1+ b1d0 

 

ri= a0d0 + a1d1 + b0c0 – b1c1 

 

rj= –a1d0 + a0d1 + b0c1+ b1c0 

 

5.3 Warren Smith’s numbers 

All hyper-complex numbers are based on real numbers. Two main 

construction formulas for hyper-complex numbers exist. The Cay-

ley-Dickson construction is the most widely known. The Warren-

Smith construction gives best algorithmic properties at higher di-

mensions. Until the octonions both construction formulas deliver the 

same results. 

The quaternions are the highest dimensional hyper-complex num-

bers that deliver a division ring. 

5.3.1 2n-on construction 

The 2n-ons use the following doubling formula 

 

(𝑎, 𝑏)(𝑐, 𝑑)  = (𝑎 𝑐 – (𝑏 𝑑∗)∗, (𝑏∗𝑐∗)∗

+ (𝑏∗(𝑎∗((𝑏−1)∗𝑑∗)∗)∗)∗) 

 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(1) 
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Up until the 16-ons the formula can be simplified to 

 
(𝑎, 𝑏)(𝑐, 𝑑)  =  (𝑎 𝑐 –  𝑏 𝑑∗, 𝑐 𝑏 + (𝑎∗ 𝑏−1) (𝑏 𝑑)) 

 
Up to the octonions the Cayley Dickson construction delivers the 

same as the 2n-on construction. From n>3 the 2n-ons are ‘nicer’. 

5.3.1.1 2n-ons 

Table of properties of the 2nons.  

See http://www.scorevoting.net/WarrenSmithPages/homepage/nce2.pdf.  

Type name Lose 

1ons Reals.    

2ons Complex 

numbers 

z* = z (the * denotes conjugating);   

the ordering properties that both {z > 0, -z > 

0, or z = 0}  

and {w > 0, z > 0 implies w + z > 0, wz > 

0}. 

4ons Quaterni-

ons 

commutativity ab = ba;  

the algebraic closedness property that every 

univariate polynomial  equation has a root.   

8ons Octo-

nions 

associativity ab · c = a · bc.  

16ons (not Sed-

enions!) 

rightalternativity x · yy = xy · y;  

rightcancellation x = xy · y-1 ;  

flexibility x · yx = xy · x; leftlinearity  (b + 

c)a = ba + ca;  

antiautomorphism ab = ba, (ab)-1 = b-1 a-1 ;  

leftlinearity (b + c)a = ba + ca;  

continuity of the map x → xy;  

Moufang and Bol identities;  

diassociativity  

(2) 

file:///C:/web/NewWebSite/English/Science/scorevoting.net/WarrenSmithPages/homepage/nce2.pdf
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32ons  generalized-smoothness of the map x → xy;  

rightdivision properties that xa = b has (ge-

nerically) a solution x, and the uniqueness of 

such an x;  

the “fundamental theorem of algebra” that 

every polynomial having a unique “asymptoti-

cally  dominant monomial” must have a root; 

Trotter's formula: 

 lim
𝑛→∞

[𝑒𝑥/𝑛𝑒𝑦/𝑛]
𝑛

=  lim
𝑛→∞

(1 +
𝑥+𝑦

𝑛
)

𝑛

=

𝑒𝑥+𝑦  

 

Type Retain 

2nons Unique 2sided multiplicative & additive identity elements 

1 & 0; 

Normmultiplicativity |xy|2 = |x|2·|y|2 ;  

Norm-subadditivity |a + b| ≤ |a| + |b|; 

2sided inverse a-1 = a*/|a|2 (a # 0);  

a** = a;  

(x ± y)* = x* ± y*; 

(a-1) -1 = a;  

(a*) -1 = (a-1)* ;  

|a|2 = |a|2 = a*a;  

Leftalternativity yy · x = y · yx;  

Leftcancellation x = y-1 · yx;  

Rightlinearity a(b + c) = ab + ac;  

rth powerassociativity an am = an+m ;  

Scaling s · ab = sa · b = as · b = a · sb = a · bs = ab · s (s 

real); Powerdistributivity  (ran + sam)b = ran b + sam b (r, s real);  

Vector product properties of the imaginary part: ab - re(ab) 

of the product for pureimaginary 2nons a,b regarded as  (2n  - 

1)vectors; 
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xa,b = a,x*b, xa,xb = |x|2·a,b and 

x,y = x*,y* 

Numerous weakened associativity, commutativity, distribu-

tivity, antiautomorphism, and Moufang and Bol  properties in-

cluding 9coordinate ``niner'' versions of most of those proper-

ties; contains 2n-1ons as subalgebra. 

 

5.3.1.1.1 The most important properties of 2n-ons 

If a,b,x,y are 2n-ons, n ≥ 0, and s and t are scalars (i.e. all coordi-

nates are 0 except the real coordinate) then 

unit: A unique 2n-on 1 exists, with 1·x = x·1 = x. 

zero: A unique 2n-on 0 exists, with 0 + x = x + 0 = x and 0·x = 

x·0 = 0. 

additive properties: x+y = y+x, (x+y)+z = x+(y+z); 

−x exists with x + (−x) = x − x = 0. 

norm: |x|2 = xx* = x*x. 

norm-multiplicativity: |x|2·|y|2 = |x·y|2. 

scaling: s · x·y = s·x · y = x·s · y = x · s·y = x · y·s. 

weak-linearity: (x + s)·y = x·y + s·y and x·(y + s) = x·y + x·s. 

right-linearity: x·(y + z) = x·y + x·z. 

inversion: If x ≠ 0 then a unique x-1 exists, obeying x-1·x = x·x-1 

= 1. It is x-1 = x·|x|-2. 

left-alternativity: x · xy = x2·y. 

left-cancellation: x · x-1·y = y. 

effect on inner products: x·a,b = a, x*·b, x,y = x*, y*,  

x*·a, x-1·b = a,b,  

and x·a,x·b = |x|2·a,b. 

Conjugate of inverse: (x-1)* = (x*)-1. 

Near-anticommutativity of unequal basis elements: ek
2 = −1 

and ek·el
* = −el·ek

*  if k ≠ l.  
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(Note: the case k; l > 0 shows that unequal pure-imaginary basis 

elements anticommute.) 

Alternative basis elements: ek·el · ek = ek · el·ek, el·ek · ek = el · 

ek·ek, and ek·ek ·el = ek · ek·el. (However, when n ≥ 4 the 2n-ons are 

not flexible i.e. it is not generally true that x·y · x = x · y·x if x and 

y are 16-ons that are not basis elements. They also are not right-al-

ternative.) 

Quadratic identity: If x is a 2n-on (over any field F with charF ≠ 

2), then x2 + |x|2 = 2·x re x 

Squares of imaginaries: If x is a 2n-on with re x = 0 (“pure im-

aginary”) then x2 = −|x|2 is nonpositive pure-real. 

Powering preserves imx direction 

5.3.1.1.2 Niners 

Niners are 2n-ons whose coordinates with index > 8 are zero. The 

index starts with 0. 

9-flexibility xp · x = x · px, px · p = p · xp. 

9-similitude unambiguity xp · x-1 = x · px-1, px · p-1 = p · xp-1. 

9-right-alternativity xp · p = x · p2, px · x = p · x2. 

9-right-cancellation xp-1 · p = x, px-1 · x = p. 

9-effect on inner products x, yp = xp, y, xp, yp = |p|2x, y. 

9-left-linearity (x + y)p = xp + yp, (p + q)x = px + qx. 

9-Jordan-identity xp · xx = x(p · xx), py · pp = p(y · pp). 

9-coordinate-distributivity ([x + y]z)0;:::;8 = (xz + yz)0;:::;8. 

9-coordinate-Jordan-identity [xy · xx]0;:::;8 = [x(y · xx)]0;:::;8. 

9-anticommutativity for orthogonal imaginary 2n-ons 

If p, x = re p = re x = 0 then px = −xp. 

9-reflection If |a| = 1 and the geometric reflection operator is de-

fined below then −(refl[a](y))0;:::;8 = (a · y*a)0;:::;8, and –
{refl[a](y)}*

0;:::;8 = (a*y · a*)0;:::;8, and 
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if either a or y is a niner then −refl[a](y) = a · y*a and −refl[a](y) 

= a*y · a*. 

 

refl[�⃗�](𝑡) ≝   𝑡 −  
2〈�⃗�, 𝑡〉

|�⃗�|2
�⃗� 

What holds for the niners, also holds for the octonions. 

5.4 Waltz details 

The 16-ons lose the continuity of the map 𝑥 ⇒  𝑥𝑦. Also, in gen-

eral holds (𝑥 𝑦)𝑥 ≠  𝑥 (𝑦 𝑥) for 16-ons. However, for all 2n-ons the 

base numbers fulfill (𝑒𝑖  𝑒𝑗) 𝑒𝑖  =  𝑒𝑖 (𝑒𝑗  𝑒𝑖). All 2n-ons feature a con-

jugate and an inverse. The inverse only exists for non-zero numbers. 

The 2n-ons support the number waltz  

 

𝑐 =  𝑎 𝑏/𝑎. 
 

Often the number waltz appears as a unitary number waltz 

 

𝑐 =  𝑢∗𝑏 𝑢 
 

where 𝑢 is a unit size number and 𝑢∗ is its conjugate 𝑢 𝑢∗ = 1. 

 

In quaternion space the quaternion waltz 𝑎 𝑏/𝑎 can be written 

as 

 

𝑎 𝑏 / 𝑎 =  𝑒𝑥𝑝(2 𝜋 ĩ 𝜑) 𝑏 𝑒𝑥𝑝(−2 𝜋 ĩ 𝜑) 
 

=  𝑏 – 𝒃⊥  +  𝑒𝑥𝑝(2 𝜋 ĩ 𝜑) 𝒃⊥ 𝑒𝑥𝑝(−2 𝜋 ĩ 𝜑) 
 

=  𝑏 – 𝒃⊥  +  𝑒𝑥𝑝(4 𝜋 ĩ 𝜑)𝒃⊥ 
 

∆𝑏 =  (𝑒𝑥𝑝(4 𝜋 ĩ 𝜑)–  1)𝒃⊥ 

(1) 

(1) 

(2) 

(3) 

(4) 
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=  (𝑐𝑜𝑠(4 𝜋 𝜑) +  ĩ 𝑠𝑖𝑛(4 𝜋 𝜑)–  1) 𝒃⊥ 
 

=  𝑒𝑥𝑝(2 𝜋 ĩ 𝜑) 2  ĩ 𝑠𝑖𝑛 (2 𝜋 𝜑) 𝒃⊥ 
 

‖∆𝑏‖  =  ‖2 𝑠𝑖𝑛(2 𝜋 𝜑) 𝒃⊥‖ 
 

a

b||

2Φ

ab#a
-1

b

b#

aa

aτΦ

aba-1

The transform aba-1 rotates the 

imaginary part b of b around an 

axis along the imaginary part a of 

a over an angle 2Φ that is twice 

the argument Φ of a in the 

complex field spanned by a and 11

a = ||a||exp(2πiΦ)

Δb

# means perpendicular

||  means parallel 

 

 

Figure 1. The rotation of a quaternion by a second quaternion. 

 

(5) 
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Another way of specifying the difference is:  
 

∆𝑏 =  (𝑎 · 𝑏 –  𝑏 · 𝑎)/𝑎 =  2 · (𝒂 × 𝒃)/𝑎 
 

‖∆𝑏‖  = 2 ‖𝒂 × 𝒃‖/ ‖𝑎‖  
 

b#

2Φ

Δb

ab#a
-1

b#2sin2(2πΦ))

b#isin(4πΦ) 

Δb = (-2sin2(2πΦ) + isin(4πΦ))b#

 

Figure 2: The difference after rotation 

  

(6) 

(7) 
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5.5 Spinors and matrices 

In contemporary physics complex probability amplitude distribu-

tions (CPAD’s) are used rather than quaternionic probability density 

distributions (QPDD’s). Spinors and matrices are used to simulate 

QPDD behavior for CPAD’s. 

  



258 

 

5.5.1 Symmetries 

The quaternionic number system exists in sixteen discrete sym-

metry sets (sign flavors). When the real part is ignored, then eight 

different symmetry sets result. The values of a continuous function 

all belong to the same symmetry set. The parameter space of the 

function may belong to a different symmetry set. 

 

 

 

 

Eight sign flavors  

(discrete symmetries) 

Colors N, R, G, B, R̅, G̅, B̅, W 

Right or Left handedness R,L 

 
Figure 3: Sign flavors 
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131The red blocks indicates sign up or down with respect to the 

base sign flavor. For quaternionic distributions the (quaternionic) pa-

rameter space acts as base sign flavor. 

Quaternionic functions can be interpreted as the combination 
of a scalar function and a 3D vector function. The scalar part can 
be interpreted as the representation of an object density distri-
bution. In that case the vector function can be thought to corre-
spond to an associated current density distribution. The discrete 
symmetry values control the direction of the currents. This must 
be determined relative to a reference. 

If we ignore the real part, then only eight discrete symmetries 
result. The next table lists these symmetries in text format; 

 
||ddd||n

||RH|| 
||udd||r||L
H|| 
||dud||g||L
H|| 
||ddu||b||L
H|| 
||duu||B||R
H|| 
||udu||G||R
H|| 
||uud||R||R
H|| 
||uuu||N||L
H|| 
 

 
u=up;d=down; 
n=neutral;r=red;g=green;b=blue; 
B=anti.blue;G=anti.green;R=anti.r

ed;N=anti-neutral 
RH=right handed; LH= left handed. 
 

                                                           
131 This picture has been changed! 
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The 3D Kronecker delta tensor 

𝛿𝒊𝒋 = {
1  if  𝑖 = 𝑗
0 if  𝑖 ≠ 𝑗

 

The fully antisymmetric Levi-Civita tensor 

∊𝒊𝒋𝒌= {

1  if  𝑖, 𝑗, 𝑘 is an even permutation of 1,2,3
0 if at least two of  𝑖, 𝑗, 𝑘  are equal

−1  if  𝑖, 𝑗, 𝑘 is an odd permutation of 1,2,3
 

5.5.2 Spinor 

We use square brackets for indicating spinors. Spinors use real 

component functions 𝜓𝑖 . . Complex component functions 𝜓𝑖would 
result in spinor representations of bi-quaternions. Bi-quaterni-
ons do not form a division ring132. 

A 2×2 spinor is defined by the row: 
 

[𝜓] ≡ [[𝜓0][𝜳]] 

 
[𝜓]‡ ≡ [[𝜳][𝜓0]] 

 
Where 
 

[𝜓0] ≡  [
𝛹0 0
0 𝛹0

] 

 

[𝜳] ≡  [
𝛹3 𝛹1 − 𝑖𝛹2

𝛹1 + 𝑖𝛹2 −𝛹3
] 

 

                                                           
132 The author uses its own notation for spinors and sign flavors 

(1) 

(2) 

(1) 

(2) 

(3) 

(4) 
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Spinors obey133 

 

[𝜳] + [𝝓] =  2[〈𝜳, 𝝓〉] 
 

[𝜳] − [𝝓] = 2 𝑖[𝜳 × 𝝓] 

5.5.2.1 Sign flavors 

The relation with the sign flavors is 

 

[𝜳] = [𝜳]⓪ = [𝝍⓪] 

 [𝜳]① = [𝝍①] 

[𝜳]② = [𝝍②] 

[𝜳]③ = [𝝍③] 

[𝜳∗] = [𝜳∗]⓪ = [𝝍⑦] 

[𝜳∗]① = [𝝍⑥] 

[𝜳∗]② = [𝝍⑤] 

[𝜳∗]③ = [𝝍④] 

5.5.3 Dirac spinors 

The 4×4 spinors target the application in the Dirac equation. 

A general 4×4 spinor is defined by the column: 
 

[
[𝜓]

[𝜙∗]‡] ≡ [
[𝛹0] [𝜳]

[−𝝓] [𝜙0]
] 

 

A compacted spinor ]𝛹[ is a 1×4 matrix consisting of real func-

tions that represent all sixteen sign flavors of a QPDD. 

                                                           
133 http://en.wikipedia.org/wiki/Spinors_in_three_dimensions 

(5) 

(6) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(1) 
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]𝛹[ ≡ [
[𝜓]

[𝜓∗]‡] = [
[𝛹0] [𝜳]

[−𝜳] [𝛹0]
] 

 

= [

𝛹0                       0   
0                  𝛹0

−𝛹3 −𝛹1 + 𝑖𝛹2

−𝛹1 − 𝑖𝛹2 +𝛹3

𝛹3 𝛹1 − 𝑖𝛹2

𝛹1 + 𝑖𝛹2 −𝛹3

𝛹0         0 
0          𝛹0

]  

5.5.4 Spinor base 

The 𝛂 and 𝛽 matrices form the base of spinor ]𝛹[ and its elements 

 

𝛼1 ≡ [
0 𝒊

−𝒊 0
] 

 

𝛼2 ≡ [
0 𝒋

−𝒋 0
] 

 

𝛼3 ≡ [
0 𝒌

−𝒌 0
] 

 

𝛽 ≡ [
0 1
1 0

] 

 

𝒊, 𝒋 and 𝒌 represent imaginary base vectors of the simulated qua-

ternion. 𝛽 represents the conjugation action for the spinor. 

 

A relation exist between 𝛼1, 𝛼2, 𝛼3 and the Pauli134 matrices 

 𝜎1, 𝜎2, 𝜎3: 

 

𝜎1 ≡ [
0  1
1 0

] , 𝜎2 ≡ [ 
0 −𝑖
𝑖 0

] , 𝜎3 ≡ [
1 0
0 −1

]

                                                           
134 http://en.wikipedia.org/wiki/Pauli_matrices  

(2) 

(1) 

(2) 

(3) 

(4) 

(5) 

http://en.wikipedia.org/wiki/Pauli_matrices
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1 ⟼ 𝐼, 𝒊 ⟼  𝜎1, 𝒋 ⟼  𝜎2, 𝒌 ⟼  𝜎3 

5.5.5 Gamma matrices 

This combination is usually represented in the form of gamma 

matrices. 

In Dirac representation, the four contravariant gamma matrices 

are 

 

𝛾0 ≡ [

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

] , 𝛾1 ≡ [

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

],  

 

𝛾2 ≡ [

0 0 0 −𝑖
0 0 𝑖 0
0 𝑖 0 0

−𝑖 0 0 0

] , 𝛾3 ≡ [

0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

]  

 

It is useful to define the product of the four gamma matrices as 

follows: 

 

𝛾5 ≡ 𝑖 𝛾0 𝛾1 𝛾2 𝛾3 = [

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

] 

 

The gamma matrices as specified here are appropriate for acting 

on Dirac spinors written in the Dirac basis; in fact, the Dirac basis is 

defined by these matrices. In the Dirac basis135: 

 

                                                           
135 http://en.wikipedia.org/wiki/Gamma_matrices#Dirac_basis  

(6) 

(1) 

(2) 

http://en.wikipedia.org/wiki/Covariance_and_contravariance
http://en.wikipedia.org/wiki/Gamma_matrices#Dirac_basis
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𝛾0 ≡ [
𝐼 0
0 −𝐼

] , 𝛾𝑘 = [ 0 𝜎𝑘

−𝜎𝑘 0
] ,

 𝛾5 = [
0 𝐼
𝐼 0

] 

 

This corresponds with 𝛼𝑘 = 𝛾𝑘, 𝛽 =  𝛾5. 

Apart from the Dirac basis, a Weyl basis exists 

 

𝛾0 =  𝛾𝛽 = [
0 𝐼
𝐼 0

] , 𝛾𝑘 = [ 0 𝜎𝑘

−𝜎𝑘 0
] ,

 𝛾5 = [
−𝐼 0
0 𝐼

] 

 

The Weyl basis has the advantage that its chiral projections136 take 

a simple form: 

 

𝜓𝐿 = ½ (1 −  𝛾5)[𝜓] = [
𝐼 0
0 0

] [𝜓] 

 

𝜓𝑅 = ½ (1 +  𝛾5)[𝜓] = [
0 0
0 𝐼

] [𝜓]  

 

[𝜓∗] = [
0 1
1 0

] [𝜓] 

  

                                                           
136 http://en.wikipedia.org/wiki/Chirality_(physics)  

(3) 

(4) 

(5) 

(6) 

(7) 

http://en.wikipedia.org/wiki/Chirality_(physics)
http://en.wikipedia.org/wiki/Chirality_(physics)
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 Quaternionic differentiation 

6.1 Differentiation in flat space 

We treat quaternionic distributions as if they pos-
sess a continuous parameter space. The differential 

vector operator 𝜵 is in Cartesian coordinates given 
by 

 

𝛁 = ∑ 𝒆𝑖

3

𝑖=1

𝜕

𝜕𝑥𝑖
 

 

The flat quaternionic differential operator 𝛻 is in 
Cartesian coordinates given by 

 

∇= ∑ 𝑒𝑖

3

𝑖=0

∇𝑖= ∑ 𝑒𝑖

3

𝑖=0

𝜕

𝜕𝑥𝑖
;   𝑒 = (1, 𝒊, 𝒋, 𝒌) 

 

∇𝑓 = ∑ ∑ 𝑒𝑖𝑒𝑗

3

𝑗=0

𝜕𝑓𝑗

𝜕𝑥𝑖

3

𝑖=0

 

(1) 

(2) 

(3) 
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6.2 Differentiation in curved space 

The allocation function ℘(𝑥) has a flat parameter 

space that is spanned by the rational or the real quaterni-

ons137. However, in this section we treat the E-type 

℘(𝑥) as if it has a continuous parameter space
138

. That 

makes it possible to use regular differential calculus. The 

full quaternionic difference operator d℘ is given by 

 

d℘ = ∑ 𝑞𝜇

3

𝜇=0

𝑑𝑥𝜇 = ∑
𝜕℘

𝜕𝑥𝜇
𝑑𝑥𝜇

3

𝜇=0

= ∑ 𝑒𝜇 ∑
𝜕℘𝜈

𝜕𝑥𝜇
𝑑𝑥𝜇

3

𝜇=0

3

𝜈=0

 

 

Here the coefficients 𝑞𝜇 are quaternionic coefficients, 

which are determined by the quaternionic allocation 

function ℘(𝑥).  

℘(𝑥) defines a curved target space. This curved space 

can act as parameter space to other quaternionic distribu-

tions. 

 

                                                           
137 http://en.wikipedia.org/wiki/Quaternion_algebra#Quater-

nion_algebras_over_the_rational_numbers 
138 See section on quaternionic distributions. 

(1) 

(2) 
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𝑞𝜇 =
𝜕℘

𝜕𝑥𝜇
;   ℘ = ∑ 𝑒𝜈℘𝜈

3

𝜈=0

 

 
The allocation function ℘(𝑥) may include an isotropic scaling 

function 𝑎(𝜏) that only depends on progression 𝜏. It defines the ex-

pansion/compression of the curved space. 

 

The quaternionic infinitesimal interval 𝑑℘ defines the 

quaternionic metric of the curved space that is defined by 

℘(𝑥). 
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 Coordinate systems 

7.1 Cylindrical circular coordinates 

7.1.1 Base vectors 

7.1.2 Cartesian to cylindrical circular 

 

𝜌 = 𝑥1 𝑐𝑜𝑠( 𝜃) + 𝑥2 𝑠𝑖𝑛( 𝜃)  
 

𝜑 = −𝑥1 𝑠𝑖𝑛( 𝜃) + 𝑥2 𝑐𝑜𝑠( 𝜃) 

 

𝑧 = 𝑥3 

7.1.3 Cylindrical circular to Cartesian 

 

𝑥1 = 𝝆 𝑐𝑜𝑠( 𝜃) − 𝝋 𝑠𝑖𝑛( 𝜃)  
 

𝑥2 = 𝜌 𝑠𝑖𝑛( 𝜃) + 𝝋 𝑐𝑜𝑠( 𝜃) 

 

𝑥3 = 𝑧 

7.1.4 Directed line element 

 

𝑑𝑙 =  𝑑𝑥 
𝒙

|𝒙|
 = 𝒆𝝆𝑑𝜌 + 𝒆𝝋𝜌𝑑𝜑 + 𝒆𝒛𝑑𝑧 

7.1.5 Solid angle element 

 

𝑑Ω = sin(𝜃) 𝑑𝜃 𝑑𝜑 

(1) 

 

(3) (2) 

(3) 

(1) 

(2) 

(3) 

(1) 

(1) 
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7.1.6 Directed area element 

 

𝑑𝑺 = 𝒆𝒓 𝑟
2 𝑑𝛺 + 𝒆𝜽 𝑟 𝑠𝑖𝑛( 𝜃) 𝑑𝑟 𝑑𝜑 + 𝒆𝝋  𝑟 𝑑𝑟 𝑑𝜃  

7.1.7 Volume element 

 

𝑑𝑉 = 𝑑𝑥3 = 𝑑𝑟 𝑟2 𝑑Ω 

7.1.8 Spatial differential operators 

 

𝛼 =  𝛼(𝑟, 𝜃, 𝜑) 
𝒂 = 𝒂(𝑟, 𝜃, 𝜑) 

 
Gradient 

∇𝛼 = 𝒆𝒓 

𝜕𝛼

𝜕𝑟
+ 𝒆𝜽  

1

𝑟

𝜕𝛼

𝜕𝜃
+ 𝐞𝝋

1

𝑟 𝑠𝑖𝑛( 𝜃)

𝜕𝛼

𝜕𝜑
 

 

Divergence 

〈𝛁, 𝒂〉 =
1

 𝑟2

𝜕(𝑟2𝛼𝑟)

𝜕𝑟
+

1

𝑟 𝑠𝑖𝑛( 𝜃)

𝜕(𝑎𝜃 𝑠𝑖𝑛( 𝜃))

𝜕𝜃
+

1

𝑟 𝑠𝑖𝑛( 𝜃)

𝜕𝑎𝜑

𝜕𝜑
 

Curl 

𝛁 × 𝒂 = 𝒆𝒓 

1

𝑟 𝑠𝑖𝑛( 𝜃)
( 

𝜕(𝑎𝜑 𝑠𝑖𝑛( 𝜃))

𝜕𝜃
−

𝜕𝑎𝜑

𝜕𝜑
)

+  𝒆𝜽  
1

𝑟
 (

1

𝑠𝑖𝑛( 𝜃)

𝜕𝛼𝑟

𝜕𝜑
−

𝜕𝑎𝜑

𝜕𝑟
) 

 

+𝒆𝝋
1

𝑟
 (

𝜕𝑟 𝑎𝜑

𝜕𝑟
−

𝜕𝑎𝑟

𝜕𝜃
) 

The Laplacian 

(1) 

(1) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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∇2𝛼 =
1

 𝑟2

𝜕

𝜕𝑟
  (𝑟2

𝜕𝛼

𝜕𝑟
) +

1

𝑟2 𝑠𝑖𝑛( 𝜃)

𝜕

𝜕𝜃
  (𝑠𝑖𝑛( 𝜃)

𝜕𝛼

𝜕𝜃
)

+
1

𝑟2 𝑠𝑖𝑛2( 𝜃)

𝜕2𝛼

𝜕𝜑2
 

7.2 Polar coordinates  

The equivalent to rectangular coordinates in quaternion space is 

(aτ, ax, ay, az) 

 

𝑎 =  𝑎𝜏  +  𝒊 𝑎𝑥  +  𝒋 𝑎𝑦  ±  𝒊 𝒋 𝑎𝑧  

 

The equivalent to polar coordinates in quaternion space is 

 

 

aτ  =  ‖a‖ cos(ψ)  
 

ax  =  ‖a‖ sin(ψ) sin(θ) cos(φ)  

 

ay  =  ‖a‖ sin(ψ) sin(θ) sin(φ)  

 

𝑎𝑧  =  ‖𝑎‖ 𝑠𝑖𝑛(𝜓) 𝑐𝑜𝑠(𝜃) 
 

𝑠𝑖𝑛(𝜓), where 𝜓 = (0, 𝜋), is known as the (imaginary) amplitude 

of the quaternion.  

Angle 𝜃 = (0, 𝜋) is the (co-)latitude and angle 𝜑 = (0,2𝜋) is the 

longitude.  

For any fixed value of 𝜓, 𝜃 and 𝜑 parameterize a 2-sphere of ra-

dius 𝑠𝑖𝑛(𝜓), except for the degenerate cases, when 𝜓 equals 0 or 𝜋, 

in which case they describe a point. 

 

This suggests the following structure of the argument 𝜦 = ĩ · 𝜓 

 

(1) 

(2) 

(3) 

(4) 

(5) 
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𝑎 =  ‖𝑎‖ 𝑒𝑥𝑝(ĩ · 𝜓)  
 

=  ‖𝑎‖ (𝑐𝑜𝑠(𝜓)  +  ĩ 𝑠𝑖𝑛(𝜓)) 
 

=  𝑎𝜏 + ‖𝑎‖ ĩ 𝑠𝑖𝑛(𝜓) =  𝑎𝜏 + 𝒂 
 

The imaginary number ĩ may take any direction. This shows that 

for quaternions exponential functions only work for (local) abstrac-

tions to complex number sub-systems. It also means that the notions 

of Lie groups works in complex number systems, but not in general 

in quaternionic number systems. 

7.3 3 sphere 

A 3-sphere is a compact, connected, 3-dimensional manifold 

without boundary. It is also simply-connected. What this means, 

loosely speaking, is that any loop, or circular path, on the 3-sphere 

can be continuously shrunk to a point without leaving the 3-sphere. 

The Poincaré conjecture139 proposes that the 3-sphere is the only 

three dimensional manifold with these properties (up to homeo-

morphism)140. 

The round metric on the 3-sphere in these coordinates is given by 

 

𝑑𝑠2 =  𝑑𝜓2 + 𝑠𝑖𝑛2(𝜓) (𝑑𝜃2 +  𝑠𝑖𝑛2(𝜃)𝑑𝜑2) 
 

The volume form is given by 

 

𝑑𝑉 = 𝑠𝑖𝑛2(𝜓) 𝑠𝑖𝑛(𝜃) 𝑑𝜓 ^ 𝑑𝜃 ^ 𝑑𝜑 
 

                                                           
139 http://en.wikipedia.org/wiki/Poincar%C3%A9_conjecture  
140 http://en.wikipedia.org/wiki/3-sphere  

(6) 

(7) 

(8) 

(1) 

(2) 

http://en.wikipedia.org/wiki/Poincar%C3%A9_conjecture
http://en.wikipedia.org/wiki/Poincar%C3%A9_conjecture
http://en.wikipedia.org/wiki/3-sphere
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The 3-dimensional volume (or hyperarea) of a 3-sphere of radius 

r is 

 

2 𝜋2 𝑟3  
 

The 4-dimensional hypervolume (the volume of the 4-dimen-

sional region bounded by the 3-sphere) is 

 

½ 𝜋2 𝑟4  

 

The 3-sphere has constant positive sectional curvature equal to 

1/𝑟2. 

The 3-sphere has a natural Lie group structure SU(2) given by 

quaternion multiplication. 

The 3-sphere admits non-vanishing vector fields (sections of its 

tangent bundle). One can even find three linearly-independent and 

non-vanishing vector fields. These may be taken to be any left-invar-

iant vector fields forming a basis for the Lie algebra of the 3-sphere. 

This implies that the 3-sphere is parallelizable. It follows that the 

tangent bundle of the 3-sphere is trivial. 

There is an interesting action of the circle group 𝕋 on 𝕊3 giving 

the 3-sphere the structure of a principal circle bundle known as the 

Hopf bundle. If one thinks of  𝕊3 as a subset of 𝑪2, the action is given 

by 

 

(𝑧1, 𝑧2) 𝜆 =  (𝑧1 𝜆, 𝑧2 𝜆) ∀𝜆  𝕋. 
 

The orbit space of this action is homeomorphic to the two-sphere 

𝕊2. Since 𝕊3 is not homeomorphic to 𝕊2 × 𝕊1, the Hopf bundle is 

nontrivial. 

(3) 

(4) 

(5) 
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7.4 Hopf coordinates 

Another choice of hyperspherical coordinates, (𝜂, 𝜉1, 𝜉2), makes 

use of the embedding of 𝕊3 in 𝑪2. In complex coordinates 

(𝑧1, 𝑧2)  𝑪2 we write 

 

𝑧1 = 𝑒𝑥𝑝(ĩ 𝜉1) 𝑠𝑖𝑛(𝜂) 
 

𝑧2  =  𝑒𝑥𝑝(ĩ 𝜉2) 𝑐𝑜𝑠(𝜂) 
 

Here 𝜂 runs over the range 0 to 𝜋/2, and 𝜉1 and 𝜉2 can take any 

values between 0 and 2𝜋. These coordinates are useful in the descrip-

tion of the 3-sphere as the Hopf bundle 

 

𝕊1 →𝕊3 → 𝕊2 

 

For any fixed value of η between 0 and 𝜋/2, the coordinates 

(𝜉1, 𝜉2) parameterize a 2-dimensional torus. In the degenerate cases, 

when 𝜂 equals 0 or 𝜋/2, these coordinates describe a circle. 

The round metric on the 3-sphere in these coordinates is given by 

 

𝑑𝑠2 = 𝑑𝜂2 + 𝑠𝑖𝑛2(𝜂) (𝑑𝜁1
2 + 𝑐𝑜𝑠2(𝜂) 𝑑 𝜁2

2)  
and the volume form by 

 

𝑑𝑉 =  𝑠𝑖𝑛(𝜂) 𝑐𝑜𝑠(𝜂) 𝑑𝜂^𝑑𝜁1^𝑑𝜁2 

7.5 Group structure 

Because the set of unit quaternions is closed under multiplication, 

𝕊3 takes on the structure of a group. Moreover, since quaternionic 

multiplication is smooth, 𝕊3 can be regarded as a real Lie group. It is 

a non-abelian, compact Lie group of dimension 3. When thought of 

as a Lie group 𝕊3 is often denoted 𝑆𝑝(1) or U(1, ℍ). 

(1) 

(2) 

(3) 

(4) 

(5) 



274 

 

It turns out that the only spheres which admit a Lie group structure 

are 𝕊1, thought of as the set of unit complex numbers, and 𝕊3, the set 

of unit quaternions. One might think that 𝕊7, the set of unit octo-

nions, would form a Lie group, but this fails since octonion multipli-

cation is non-associative. The octonionic structure does give 𝕊7 one 

important property: parallelizability141. It turns out that the only 

spheres which are parallelizable are 𝕊1, 𝕊3, and 𝕊7. 

By using a matrix representation of the quaternions, ℍ, one ob-

tains a matrix representation of 𝕊3. One convenient choice is given 

by the Pauli matrices: 

 

(𝑎τ  +  𝑎𝑥 · 𝐢 + 𝑎y · 𝐣 +  𝑎𝑧 · 𝐤)

= [
𝑎τ  +  ĩ · 𝑎𝑥 𝑎y  +  ĩ · 𝑎𝑧

−𝑎y  +  ĩ · 𝑎𝑧 𝑎τ  −  ĩ · 𝑎𝑥
] 

 

This map gives an injective algebra homomorphism from H to the 

set of 2×2 complex matrices. It has the property that the absolute 

value of a quaternion q is equal to the square root of the determinant 

of the matrix image of q. 

The set of unit quaternions is then given by matrices of the above 

form with unit determinant. This matrix subgroup is precisely the 

special unitary group SU(2). Thus, 𝕊3 as a Lie group is isomorphic 

to SU(2). 

Using our hyperspherical coordinates (𝜂, 𝜉1, 𝜉2) we can then write 

any element of SU(2) in the form 

 

[
exp(ĩ · ξ1) · sin(η) exp(ĩ · ξ2) · cos(η)

−exp(ĩ · ξ2) · cos(η) exp(−ĩ · ξ1) · sin(η)
] 

 

                                                           
141 http://en.wikipedia.org/wiki/Parallelizability  

(1) 

(2) 

http://en.wikipedia.org/wiki/Parallelizability
http://en.wikipedia.org/wiki/Parallelizability


275 

 

Another way to state this result is if we express the matrix repre-

sentation of an element of SU(2) as a linear combination of the Pauli 

matrices. It is seen that an arbitrary element U  SU(2) can be written 

as 

 

𝑈 =  𝛼𝜏 · 1 + ∑ 𝛼𝑛 𝑰𝒏

𝑛=𝑥,𝑦,𝑧

 

The condition that the determinant of U is +1 implies that the co-

efficients 𝛼𝑛  are constrained to lie on a 3-sphere. 

7.6 Versor 

Any unit quaternion 𝑢 can be written as a versor: 

 

𝑢 = 𝑒𝑥𝑝(ĩ  𝜓) = 𝑐𝑜𝑠(𝜓) +  ĩ  𝑠𝑖𝑛(𝜓) 
 

This is the quaternionic analogue of Euler's formula. Now the unit 

imaginary quaternions all lie on the unit 2-sphere in Im ℍ so any 

such ĩ can be written: 

 

ĩ =  𝒊 𝑐𝑜𝑠(𝜑) 𝑠𝑖𝑛(𝜃) +  𝒋 𝑠𝑖𝑛(𝜑) 𝑠𝑖𝑛(𝜃) +  𝒌 𝑐𝑜𝑠(𝜃)  

7.7 Symplectic decomposition 

Quaternions can be written as the combination of two complex 

numbers and an imaginary number k with unit length. 

𝑞 =  𝑎 +  𝑏𝒋; where 𝑎 =  𝑤 +  𝑥𝒊; and 𝑏 =  𝑦 +  𝑧𝒊 

 

𝑞 =  𝑤 +  𝑥𝒊 +  𝑦𝒋 +  𝑧𝒌 
  

(3) 

(1) 

(2) 
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7.8 Quaternionic algebra 

𝑎 = (𝑎0, 𝑎1, 𝑎2, 𝑎3) = ∑ 𝑒𝜇

3

𝜇=0

a𝜇

= 𝑎0 + 𝒊 𝑎1 + 𝒋 𝑎2 + 𝒌 𝑎3 =  𝑎0 + 𝒂 
𝑎∗ = 𝑎0 − 𝒂 
𝑎∗𝑎 = 𝑎 𝑎∗ = |𝑎|2 

〈𝒂, 𝒃〉 = ∑ 𝑎𝜇

3

𝜇=1

𝑏𝜇 = 𝛿𝜇𝜈𝑎𝜇𝑏𝜈 = |𝒂||𝒃| cos (𝜃) 

𝒂 × 𝒃 = −𝒃 × 𝒂 = ±(∊𝒊𝒋𝒌  𝒆𝒊𝑎𝑗𝑏𝑘) 

𝑎 𝑏 =  𝑎0𝒃 +  𝑏0 𝒂 − 〈𝒂, 𝒃〉 ± 𝒂 × 𝒃 
The colored ± indicates the handedness of the vector 

cross product. 
𝒂 𝒃 =  −〈𝒂, 𝒃〉 ± 𝒂 × 𝒃 
𝑎 (𝑏 + 𝑐) = 𝑎 𝑏 + 𝑎 𝑐 
(𝑎 +  𝑏) 𝑐 =  𝑎 𝑐 +  𝑏 𝑐 
(𝑎 𝑏)𝑐 =  𝑎(𝑏 𝑐) 
〈𝒂, 𝒃 × 𝒄〉 =  〈𝒂 × 𝒃, 𝒄〉 
𝒂 × (𝒃 × 𝒄) = 𝒃〈𝒂, 𝒄〉 − 𝒄〈𝒂, 𝒃〉 
(𝒂 × 𝒃) × 𝒄 = 𝒃〈𝒂, 𝒄〉 − 𝒂〈𝒃, 𝒄〉 
𝒂 × (𝒃 × 𝒄) + 𝒃 × (𝒄 × 𝒂) + 𝒄 × (𝒂 × 𝒃) = 0 
〈𝒂 × 𝒃, 𝒄 × 𝒅〉 = 〈𝒂, 𝒃 × (𝒄 × 𝒅)〉

= 〈𝒂, 𝒄〉〈𝒃. 𝒅〉 − 〈𝒂, 𝒅〉〈𝒃. 𝒄〉 
(𝒂 × 𝒃) × (𝒄 × 𝒅) = 〈𝒂 × 𝒃, 𝒅〉𝒄 − 〈𝒂 × 𝒃, 𝒄〉𝒅 

  

 (1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 
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 Quaternionic distributions 

We consider four kinds of quaternionic distributions  

A. Distributions of rational quaternions with a discrete 

parameter space. That parameter space must be flat 

and it is spanned by the rational quaternions142.  The 

A-type quaternionic distribution has a countable set 

of values. 

B. Distributions of rational quaternions with a continu-

ous parameter space. That parameter space may be 

curved. The curvature is defined by a continuous 

quaternionic function. The B-type quaternionic dis-

tribution has a countable set of values. It inherits the 

sign flavor of the quaternionic function that defines 

the curvature of its parameter space. 

C. Continuous quaternionic distributions with a contin-

uous parameter space. That parameter space may be 

curved. The curvature is defined by a continuous 

quaternionic function. The C-type quaternionic dis-

tributions inherit the sign flavor of the quaternionic 

distribution that defines the curvature of their pa-

rameter space. The C-type quaternionic function can 

be split in a real scalar function and a real 3D vector 

                                                           
142 http://en.wikipedia.org/wiki/Quaternion_algebra#Quater-

nion_algebras_over_the_rational_numbers 

http://en.wikipedia.org/wiki/Quaternion_algebra%23Quaternion_algebras_over_the_rational_numbers
http://en.wikipedia.org/wiki/Quaternion_algebra%23Quaternion_algebras_over_the_rational_numbers
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function. The real scalar function can be interpreted 

as an object density distribution and the 3D vector 

function can be interpreted as the associated current 

density distribution. 

D. A convolution of a continuous quaternionic function 

with a discrete flat parameter space consisting of ra-

tional quaternions and a 3D stochastic generator of 

rational quaternionic target values. The D-type qua-

ternionic distribution has a countable set of values. It 

corresponds to a collection of coherent B-type distri-

butions, where the continuous function generates the 

curvature of the parameter space for the B-type dis-

tributions, which are generated by the stochastic pro-

cess. 

 

8.1 Basic properties of  continuous quaternionic distri-
butions  

For simplicity we confine to quaternionic distributions with flat 

parameter space. A continuous quaternionic distribution contains a 

scalar field in its real part and a vector field in its imaginary part. 

𝑓(𝑥) =  𝑓0(𝑥) + 𝒇(𝑥) 

𝑎 𝑓(𝑥) =  𝑎0𝒇(𝑥) +  𝑓0(𝑥) 𝒂 − 〈𝒂, 𝒇(𝑥)〉 ± 𝒂 × 𝒇(𝑥) 

𝑓(𝑥) 𝑏 =  𝑓0(𝑥)𝒃 +  𝑏0 𝒇(𝑥) − 〈𝒇(𝑥), 𝒃〉 ± 𝒇(𝑥) × 𝒃 

The distributions follow the rules for the quaternion algebra.  

𝑎 (𝑓(𝑥) + 𝑔(𝑥)) = 𝑎 𝑓(𝑥) + 𝑎 𝑔(𝑥) 

(𝑎 +  𝑏)𝑓(𝑥) =  𝑎 𝑓(𝑥) +  𝑏 𝑓(𝑥) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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𝑓(𝑥) 𝑔(𝑥) =  𝑓0(𝑥)𝒈(𝑥) +  𝑔0 (𝑥)𝒇(𝑥) − 〈𝒇(𝑥), 𝒈(𝑥)〉
± 𝒇(𝑥) × 𝒈(𝑥) 

(𝑓(𝑥)𝑔(𝑥))ℎ(𝑥)  =  𝑓(𝑥)(𝑔(𝑥) ℎ(𝑥)) 

8.1.1 Symmetries 

Continuous quaternionic distributions keep the same discrete 

symmetries (sign flavor) throughout their domain. The sign flavor of 

the parameter space acts as reference sign flavor. 

8.1.2 Differentials 

The quaternionic nabla acts similarly as a normal quaternion 

∇ (𝑓(𝑥) + 𝑔(𝑥)) = ∇ 𝑓(𝑥) + ∇ 𝑔(𝑥) 

∇ 𝑓(𝑥) =  ∇0𝒇(𝑥) +  𝛁𝑓0(𝑥)  − 〈𝛁, 𝒇(𝑥)〉 ± 𝛁 × 𝒇(𝑥) 

However 

∇(𝑏 𝑐) ≠ (∇ 𝑏)𝑐   
and 

∇(𝑏 𝑐) ≠ (∇ 𝑏)𝑐 +  𝑏 ∇ 𝑐  
Further 

〈𝛁, 𝛁〉𝛼 ≡ 𝛁𝟐𝛼 

〈𝛁 × 𝛁, 𝐚〉 = 0 

〈𝛁, 𝛁 × 𝒂〉 = 0 
𝛁 × 𝛁α = 𝟎 
𝛁 𝒃 =  −〈𝛁, 𝒃〉 ± 𝛁 × 𝒃 
𝛁 (𝛼 𝛽) = 𝛼𝛁  𝛽 +  𝛽𝛁 𝛼 
𝛁 (𝛼 𝒂) = 𝛼𝛁 ×  𝒂 − 𝛼〈𝛁, 𝒂〉 + ( 𝛁 𝛼)𝒂 
〈𝛁, 𝛼 𝒂〉 = 𝒂𝛁𝛼 + 𝛼〈𝛁, 𝒂〉 
〈𝛁, 𝒂 × 𝒃〉 =  〈𝒃, 𝛁 × 𝒂〉 − 〈𝒂, 𝛁 × 𝒃〉  
〈𝛁 𝛼, 𝛁 𝛽〉 = 〈𝛁, 𝛼𝛁 𝛽〉 − 𝜶𝛁𝟐𝛽 
〈𝛁 𝛼, 𝛁 × 𝒂〉 = −𝛁 , 𝒂 × 𝛁α 
〈𝛁 ×  𝒂, 𝛁 ×  𝒃〉 = 〈𝒃, 𝛁 × (𝛁 × 𝒂)〉 − 〈𝒂, 𝛁 × (𝛁 × 𝒃)〉 
𝛁 × (α𝐚) = 𝛼𝛁 × 𝒂 − 𝒂 × 𝛁𝛼 

(7) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
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𝛁 × (𝛼𝛁𝛽) = (𝛁𝛼) × ∇𝛽 

  
(18) 
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 The separable Hilbert space Ң 

We will specify the characteristics of a generalized quaternionic 

infinite dimensional  separable Hilbert space. The adjective “quater-

nionic” indicates that the inner products of vectors and the eigenval-

ues of operators are taken from the number system of the quaterni-

ons. Separable Hilbert spaces can be using real numbers, complex 

numbers or quaternions. These three number systems are division 

rings. 

9.1 Notations and naming conventions 

{fx}x means ordered set of fx . It is a way to define functions. 

The use of bras and kets differs slightly from the way Dirac uses 

them. 

  

|f> is a ket vector, f> is the same ket 

<f| is a bra vector, <f is the same bra 

  

A is an operator.  

|A is the same operator 

A† is the adjoint operator of operator A.   

A| is the same operator as A† 

| on its own, is a nil operator 

|A| is a self-adjoint (Hermitian) operator 

  

We will use capitals for operators and lower case for quaternions, 

eigenvalues, ket vectors, bra vectors and eigenvectors. Quaternions 

and eigenvalues will be indicated with italic characters. Imaginary 

and anti-Hermitian objects are often underlined and/or indicated in 

bold text. 

  

∑k means: sum over all items with index k. 
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∫x means: integral over all items with parameter x. 

9.2 Quaternionic Hilbert space 

The Hilbert space is a linear space. That means for the elements 

|f>, |g> and |h> and numbers a and b: 

9.2.1 Ket vectors 

For ket vectors hold 

 

|f> + |g> = |g> + |f> = |g + f> 

 

(|f> + |g>) + |h> = |f> + (|g> + |h>) 

 

|(a + b) f > = |f>·a + |f>·b 

 

(|f> + |g>)·a = |f>·a + |g>·a 

 

|f>·0 = |0> 

 

|f>·1 = |f> 

 

Depending on the number field that the Hilbert space supports, a 

and b can be real numbers, complex numbers or (real) quaternions. 

9.2.2 Bra vectors 

The bra vectors form the dual Hilbert space Ң† of Ң . 

  

<f| + <g| = <g| + <f| = |g + f> 

 

 (<f| + <g|) + <h| = <f| + (<g| + <h|) 

 

<f (a + b)> = <f|·a + <f|·b = a*·<f| + b*·<f| 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(1) 

(2) 
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 (<f| + <g|)·a = <f|·a + <g|·a = a*·<f| + a*·<g| 

 
0·<f| = <0| 

 

1·<f| = <f| 

9.2.3 Scalar product 

The Hilbert space contains a scalar product, also called inner 

product, <f|g> that combines Ң and Ң† in a direct product that we 

also indicate with Ң. 

For Hilbert spaces the values of inner products are restricted to 

elements of a division ring. 

The scalar product <f|g> satisfies: 

 

<f|g + h> = <f|g> + <f|h> 

 

<f|{|g>·a}g = {<f|g>}g·a 

  

With each ket vector |g> in Ң belongs a bra vector <g| in Ң† such 

that for all bra vectors <f| in Ң† 

 

<f|g> = <g|f>* 

 

<f|f> = 0 when |f> = |0> 

 

<f|a g> = <f|g>·a = <g|f>*·a = <g a|f>* = (a*·<g|f>)* = 

<f|g>·a 

 

(3) 

(4) 

(5) 

(6) 

(1) 

(2) 

(3) 

(4) 

(5) 
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In general is <f|a g> ≠ <f a|g>. However for real numbers r holds 

<f|r g> = <f r|g> 

 

Remember that when the number field consists of quaternions, 

then also <f|g> is a quaternion and a quaternion q and <f|g> do in 

general not commute. 

 

The scalar product defines a norm: 

 

||f|| = √(<f|f>) 

 

And a distance: 

 

D(f,g) = ||f – g|| 

 

The Hilbert space Ң is closed under its norm. Each converging 

row of elements of converges to an element of this space. 

9.2.4 Separable 

 In mathematics a topological space is called separable if it con-

tains a countable dense subset; that is, there exists a sequence 

{𝑥𝑛}𝑛=1
∞  of elements of the space such that every nonempty open sub-

set of the space contains at least one element of the sequence. 

Every continuous function on the separable space Ң is determined 

by its values on this countable dense subset. 

9.2.5 Base vectors 

The Hilbert space Ң is separable. That means that a countable 

row of elements {fn>} exists that spans the whole space. 

  

(6) 

(7) 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Topological_space
http://en.wikipedia.org/wiki/Countable_set
http://en.wikipedia.org/wiki/Dense_(topology)
http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Open_subset
http://en.wikipedia.org/wiki/Open_subset
http://en.wikipedia.org/wiki/Continuous_function
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If <fn|fm> = δ(m,n) = [1 when n = m; 0 otherwise]  

then {|fn>} forms an orthonormal base of the Hilbert space. 

A ket base {|k>}of Ң is a minimal set of ket vectors |k> that to-

gether span the Hilbert space Ң. 

Any ket vector |f> in Ң can be written as a linear combination of 

elements of {|k>}. 

  

|f> = ∑k (|k>·<k|f>) 

  

A bra base {<b|}of Ң† is a minimal set of bra vectors <b| that 

together span the Hilbert space Ң†. 

Any bra vector <f| in Ң† can be written as a linear combination of 

elements of {<b|}. 

  

<f| = ∑b (<f|b>·<b|) 

  

Usually base vectors are taken such that their norm equals 1. Such 

a base is called an othonormal base. 

 

9.2.6 Operators 

Operators act on a subset of the elements of the Hilbert space.  

9.2.6.1 Linear operators 

An operator Q is linear when for all vectors |f> and |g> for which 

Q is defined and for all quaternionic numbers a and b: 

 

|Q·a f> + |Q·b g> = |a·Q f> + |b·Q g> = |Q f>·a + |Q g>·b 

= 

  

(1) 

(2) 

(1) 
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Q (|f>·a + |g>·b) = Q (|a f> + |b g>) 

 

B is colinear when for all vectors |f> for which B is defined and 

for all quaternionic numbers a there exists a quaternionic number c 

such that: 

 

|B·a f> = |a·B f> = |B f> c·a·c-1 

If |f> is an eigenvector of operator A with quaternionic eigenvalue 

a, then is |b f> an eigenvector of A with quaternionic eigenvalue 

b·a·b-1. 

A| = A† is the adjoint of the normal operator A. |A is the same as 

A. 

  

<f A| g> = <fA†|g>* 

 

A† † = A 

 

(A·B) † = B†·A† 

  

|B| is a self adjoint operator. 

| is a nil operator.  

 

The construct |f><g| acts as a linear operator. |g><f| is its adjoint 

operator. 

 

∑n {|fn>·an·<fn|}, 

 

 where a n is real and acts as a density function. 

 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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The set of eigenvectors of a normal operator form an orthonormal 

base of the Hilbert space. 

A self adjoint operator has real numbers as eigenvalues. 

 

{<q|f>}q is a function f(q) of parameter q.  

{<g|q>}q is a function g(q) of parameter q. 

  

When possible, we use the same letter for identifying eigenvalues, 

eigenvalues and the corresponding operator. 

So, usually |q> is an eigenvector of a normal operator Q with ei-

genvalues q.  

  

{q} is the set of eigenvalues of Q.  

{q}q is the ordered field of eigenvalues of q. 

{|q>}q  is the ordered set of eigenvectors of Q. 

{<q|f>}q is the Q view of |f>. 

9.2.6.2 Normal operators 

The most common definition of continuous operators is: 

  

A continuous operator is an operator that creates images such that 

the inverse images of open sets are open.  

  

Similarly, a continuous operator creates images such that the in-

verse images of closed sets are closed. 

If |a> is an eigenvector of normal operator A with eigenvalue a 

then  

< 𝑎|𝐴|𝑎 > = < 𝑎|𝑎|𝑎 > = < 𝑎|𝑎 >  𝑎 

indicates that the eigenvalues are taken from the same number 

system as the inner products. 

  

A normal operator is a continuous linear operator. 
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A normal operator in Ң creates an image of Ң onto Ң. It transfers 

closed subspaces of Ң into closed subspaces of Ң.  

  

Normal operators represent continuous quantum logical observa-

bles.  

  

The normal operators N have the following property. 

  

N: Ң  Ң 

  

N commutes with its (Hermitian) adjoint N† 

  

N·N† = N†·N 

  

Normal operators are important because the spectral theorem 

holds for them.  

Examples of normal operators are 

  

 unitary operators: U† = U−1 , unitary operators are 

bounded; 

 Hermitian operators (i.e., self-adjoint operators): N† = N;  

 Anti-Hermitian or anti-self-adjoint operators: N† = −N;  

 Anti-unitary operators: I† = −I = I−1 , anti-unitary opera-

tors are bounded;  

 positive operators: N = MM†  

 orthogonal projection operators: N = N† = N2  

9.2.6.3 Spectral theorem 

For every compact self-adjoint operator T on a real, complex or 

quaternionic Hilbert space Ң, there exists an orthonormal basis of Ң 

consisting of eigenvectors of T. More specifically, the orthogonal 

(1) 

(2) 

http://en.wikipedia.org/wiki/Orthonormal_basis
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complement of the kernel (null space) of T admits, either a finite or-

thonormal basis of eigenvectors of T, or a countable infinite or-

thonormal basis {en} of eigenvectors of T, with corresponding ei-

genvalues {λn} ⊂ R, such that λn → 0. Due to the fact that Ң is 

separable the set of eigenvectors of T can be extended with a base of 

the kernel in order to form a complete orthonormal base of Ң. 

 

If T is compact on an infinite dimensional Hilbert space Ң, then 

T is not invertible, hence σ(T), the spectrum of T, always contains 0. 

The spectral theorem shows that σ(T) consists of the eigenvalues {λn} 

of T, and of 0 (if 0 is not already an eigenvalue). The set σ(T) is a 

compact subset of the real line, and the eigenvalues are dense in σ(T). 

 

 A normal operator has a set of eigenvectors that spans the whole 

Hilbert space Ң.  

In quaternionic Hilbert space a normal operator has quaternions 

as eigenvalues.  

 

The set of eigenvalues of a normal operator is NOT compact. This 

is due to the fact that Ң is separable. Therefore the set of eigenvectors 

is countable. As a consequence the set of eigenvalues is countable. 

Further, in general the eigenspace of normal operators has no finite 

diameter.  

 

A continuous bounded linear operator on Ң has a compact eigen-

space. The set of eigenvalues has a closure and it has a finite diame-

ter.  

9.2.6.4 Eigenspace 

The set of eigenvalues {q} of the operator Q form the eigenspace 

of Q 

http://en.wikipedia.org/wiki/Countable_set
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9.2.6.5 Eigenvectors and eigenvalues 

For the eigenvector |q> of normal operator Q holds  

 

|Q q> = |q q> = |q>·q 

 

<q Q†| = <q q*| = q*·<q| 

 

∀|𝑓>  ∈ Ң [{< 𝑓|𝑄 𝑞 >}𝑞 =  {< 𝑓|𝑞 > 𝑞}𝑞 =  {< 𝑞 𝑄†|𝑓 >∗}𝑞

= {𝑞∗ < 𝑞|𝑓 >∗}𝑞] 

 

The eigenvalues of 2n-on normal operator are 2n-ons. For Hilbert 

spaces the eigenvalues are restricted to elements of a division ring. 

  

𝑄 =  ∑ I𝑗𝑄𝑖

𝑛−1

𝑗=0

 

 

The 𝑄𝑗  are self-adjoint operators. 
  

(1) 

(2) 

(3) 

(4) 
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9.2.6.6 Generalized Trotter formula 

For bounded operators {𝐴𝑗} hold: 

 

lim
𝑛→∞

(∏ 𝑒𝐴𝑗/𝑛

𝑝

𝑗=1

)

𝑛

= exp (∑ 𝐴𝑗

𝑝

𝑗=1

)

=  lim
𝑛→∞

(1 +
∑ 𝐴𝑗

𝑝
𝑗=1

𝑛
)

𝑛

 

In general  

 

exp (∑ 𝐴𝑗

𝑝

𝑗=1

)  ≠  ∏ 𝑒𝐴𝑗

𝑝

𝑗=1

 

 

In the realm of quaternionic notion the Trotter formula is confus-

ing. 

9.2.6.7 Unitary operators 

For unitary operators holds: 

  

U† = U−1 

Thus 

  

U·U† = U†·U =1 

 

Suppose U = I + C where U is unitary and C is compact. The 

equations U U* = U*U = I and C = U − I show that C is normal. The 

spectrum of C contains 0, and possibly, a finite set or a sequence 

(1) 

(2) 

(1) 

(2) 
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tending to 0. Since U = I + C, the spectrum of U is obtained by shift-

ing the spectrum of C by 1. 

The unitary transform can be expressed as: 

 

U = exp(Ĩ·Φ/ħ) 

 

ħ = h/(2·π) 

 

Φ is Hermitian. The constant h refers to the granularity of the ei-

genspace. 

Unitary operators have eigenvalues that are located in the unity 

sphere of the 2n-ons field.  

The eigenvalues have the form: 

  

u = exp(i·φ/ħ) 

 

φ is real. i is a unit length imaginary number in 2n-on space. It 

represents a direction.  

u spans a sphere in 2n-on space. For constant i, u spans a circle in 

a complex subspace.  

9.2.6.7.1 Polar decomposition 
Normal operators N can be split into a real operator A and a uni-

tary operator U. U and A have the same set of eigenvectors as N. 

  

N = ||N||·U = A·U 

 

N = A·U = U·A  

 

= A· exp(Ĩ·Φ)/ħ) 

(3) 

(4) 

(5) 

(1) 

(2) 
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= exp (Φr+ Ĩ·Φ)/ħ)  

 

Φr is a positive normal operator. 

9.2.6.8 Ladder operator 

9.2.6.8.1 General formulation 

Suppose that two operators X and N have the com-

mutation relation: 

 [N, X] = c·X 

for some scalar c. If |n> is an eigenstate of N with eigenvalue 

equation, 

 

|N n> = |n>∙n 

 

then the operator X acts on |n> in such a way as to shift the eigen-

value by c: 

 

|N·X n> = |(X·N + [N, X]) n> 

= |(X·N + c·X) n> 

= |X·N n> + |X n>·c 

= |X n>·n + |X n>·c 

= |X n>·(n+c) 

 

In other words, if |n> is an eigenstate of N with eigenvalue n then 

|X n> is an eigenstate of N with eigenvalue n + c.  

(1) 

(2) 

(3) 
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The operator X is a raising operator for N if c is real and positive, 

and a lowering operator for N if c is real and negative. 

If N is a Hermitian operator then c must be real 

and the Hermitian adjoint of X obeys the commu-

tation relation: 

[N, X†] = - c·X† 

In particular, if X is a lowering operator for N then X† is a raising 

operator for N and vice-versa. 

9.2.7 Unit sphere of Ң 

The ket vectors in Ң that have their norm equal to one form to-

gether the unit sphere  of Ң. 

Base vectors are all member of the unit sphere. The eigenvectors 

of a normal operator are all member of the unit sphere.  

The end points of the eigenvectors of a normal operator form a 

grid on the unit sphere of Ң. 

9.2.8 Bra-ket in four dimensional space 

The Bra-ket formulation can also be used in transformations of 

the four dimensional curved spaces. 

The bra 〈𝑓 is then a covariant vector and the ket 𝑔〉 is a contra-

variant vector. The inner product acts as a metric.  

𝑠 = 〈𝑓|𝑔〉 

The effect of a linear transformation 𝐿 is then given by 

𝑠𝐿 = 〈𝑓|𝐿𝑔〉 
The effect of a the transpose transformation 𝐿† is then given by 

(4) 

(1) 

(2) 
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〈𝑓𝐿† |𝑔〉 = 〈𝑓|𝐿𝑔〉 

For a unitary transformation 𝑈 holds: 

〈𝑈𝑓|𝑈𝑔〉 = 〈𝑓|𝑔〉 
 

These definitions work for curved spaces with a Euclidian signa-

ture as well as for curved spaces with a Minkowski signature. 

〈∇𝑓|∇𝑔〉 = 〈𝑓|∇2g〉 = 〈𝑓|⧠g〉 

9.2.9 Closure 

The closure of Ң means that converging rows of vectors converge 

to a vector of Ң. 

  

In general converging rows of eigenvalues of Q do not converge 

to an eigenvalue of Q. 

Thus, the set of eigenvalues of Q is open.  

At best the density of the coverage of the set of eigenvalues is 

comparable with the set of 2n-ons that have rational numbers as co-

ordinate values. 

With other words, compared to the set of real numbers the eigen-

value spectrum of Q has holes. 

The set of eigenvalues of operator Q includes 0. This means that 

Q does not have an inverse. 

  

The rigged Hilbert space Ħ can offer a solution, but then the direct 

relation with quantum logic is lost. 

 

9.2.10 Canonical conjugate operator P 

The existence of a canonical conjugate represents a stronger re-

quirement on the continuity of the eigenvalues of canonical eigen-

values.  

(3) 

(4) 

(5) 
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Q has eigenvectors {|q>}q and eigenvalues q. 

P has eigenvectors {|p>}p and eigenvalues p. 

For each eigenvector |q> of Q we define an eigenvector |p> and 

eigenvalues p of P such that: 

  

< 𝑞|𝑝 > = < 𝑝|𝑞 >∗ =  𝑒𝑥𝑝 (ȋ · 𝑝 · 𝑞/ħ) 
 

ħ =  ℎ/(2𝜋) is a scaling factor. < 𝑞|𝑝 > is a quaternion. ȋ is a 

unit length imaginary quaternion. 

9.2.11 Displacement generators 

Variance of the scalar product gives: 

 

𝒊 ħ 𝛿 < 𝑞|𝑝 > =  −𝑝 < 𝑞|𝑝 > 𝛿𝑞 
 

𝒊 ħ 𝛿 < 𝑝|𝑞 > =  −𝑞 < 𝑝|𝑞 > 𝛿𝑝 
 

In the rigged Hilbert space Ħ the variance can be replaced by dif-

ferentiation.  

Partial differentiation of the function <q|p> gives: 

 

𝒊 ħ 𝜕/𝜕𝑞𝑠 < 𝑞|𝑝 > =  −𝑝𝑠 < 𝑞|𝑝 > 
 

𝒊 ħ
𝜕

𝜕𝑝𝑠

< 𝑝|𝑞 > =  −𝑞𝑠 < 𝑝|𝑞 > 

9.3 Quaternionic L² space 

The space of quaternionic measurable functions is a separable 

quaternionic Hilbert space. For example quaternionic probability 

density distributions are measurable.143 

                                                           
143 http://en.wikipedia.org/wiki/Lp_space#Lp_spaces 

(1) 

(1) 

(2) 

(3) 

(4) 
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This space is spanned by an orthonormal basis of quaternionic 

measurable functions. The shared affine-like versions of the param-

eter space of these functions is called Palestra144. When the Palestra 

is non-curved, then this base has a canonical conjugate, which is the 

quaternionic Fourier transform of the original base. 

As soon as curvature of the Palestra arises, this relation is dis-

turbed. 

With other words: “In advance the Palestra has a virgin state.” 

  

                                                           
144 The name Palestra is suggested by Henning Dekant’s wife Sa-

rah. It is a name from Greek antiquity. It is a public place for training 

or exercise in wrestling or athletics 
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 Gelfand triple 

The separable Hilbert space only supports countable orthonormal 

bases and countable eigenspaces. The rigged Hilbert space Ħ that 

belongs to a separable Hilbert space Ң is a Gelfand triple. It supports 

non-countable orthonormal bases and continuum eigenspaces. 

A rigged Hilbert space is a pair (Ң, 𝛷) with Ң a Hilbert space, 𝛷 a 

dense subspace, such that 𝛷 is given a topological vector space 

structure for which the inclusion map i is continuous. Its name is 

not correct, because it is not a Hilbert space. 

Identifying Ң with its dual space Ң*, the adjoint to i is the map 

𝑖∗: Ң = Ң∗ → 𝛷∗ 

The duality pairing between 𝛷 and 𝛷∗ has to be compatible with 

the inner product on Ң, in the sense that: 

 

〈𝑢, 𝑣〉𝛷×𝛷∗ = (𝑢, 𝑣)Ң 

 

whenever 𝑢 ∈ 𝛷 ⊂ Ң and 𝑣 ∈ Ң =  Ң∗ ⊂ 𝛷∗. 

 

The specific triple (𝛷 ⊂ Ң ⊂ 𝛷∗) is often named after 

the mathematician Israel Gelfand). 

Note that even though 𝛷 is isomorphic to 𝛷∗ if 𝛷 is a 

Hilbert space in its own right, this isomorphism is not the 

(1) 

(2) 

http://en.wikipedia.org/wiki/Topological_vector_space
http://en.wikipedia.org/wiki/Inclusion_map
http://en.wikipedia.org/wiki/Israel_Gelfand
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same as the composition of the inclusion i with its adjoint 

i* 

𝑖∗𝑖: 𝛷 ⊂ Ң = Ң∗ → 𝛷∗ 

10.1 Understanding the Gelfand triple 

The Gelfand triple of a real separable Hilbert space can be under-

stood via the enumeration model of the real separable Hilbert space. 

This enumeration is obtained by taking the set of eigenvectors of a 

normal operator that has rational numbers as its eigenvalues. Let the 

smallest enumeration value of the rational enumerators approach 

zero. Even when zero is reached, then still the set of enumerators is 

countable. Now add all limits of converging rows of rational enu-

merators to the enumeration set. After this operation the enumeration 

set has become a continuum and has the same cardinality as the set 

of the real numbers. This operation converts the Hilbert space into 

its Gelfand triple and it converts the normal operator in a new oper-

ator that has the real numbers as its eigenspace. It means that the 

orthonormal base of the Gelfand triple that is formed by the eigen-

vectors of the new normal operator has the cardinality of the real 

numbers. It also means that linear operators in this Gelfand triple 

have eigenspaces that are continuums and have the cardinality of the 

real numbers145. The same reasoning holds for complex number 

based Hilbert spaces and quaternionic Hilbert spaces and their re-

spective Gelfand triples. 

  

                                                           
145 This story also applies to the complex and the quaternionic Hil-

bert spaces and their Gelfand triples. 

(3) 
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 Fourier transform 

The Fourier transformation is a linear operator. This transform 

transfers functions to another parameter space. As a consequence the 

Fourier transform has no eigenvalues, but the Fourier transform 

knows functions that are invariant under Fourier transformation. 

The Fourier transform cannot cope with functions that have 

curved parameter spaces. However, it is possible to reduce the pa-

rameter space to a domain in which the Fourier transform keeps ac-

ceptable accuracy. Another possibility is that the target function is 

flattened, such that its parameter space becomes flat. 

The Fourier transform transfer a orthonormal set of base functions 

into a new a orthonormal set such that each member of the new set 

can be written as a linear combination of members of the old set such 

that none of the coefficients is zero. In fact all coefficients have the 

same norm. 

The Fourier transform converts the nabla operator into an operator 

that does not differentiate but multiplies the converted function with 

a factor. That operator will be called a momentum operator. 

The Fourier transform has an inverse. It turns the momentum op-

erator into the nabla operator. 

The Fourier transform converts convolution of two functions into 

the multiplication of the two functions and vice versa.  

In order to simplify the discussion we restrict it to the case that 

the parameter spaces of the functions are not curved.  

11.1 Fourier transform properties 

11.1.1 Linearity 

The Fourier transform is a linear operator 

ℱ(𝑔(𝑞)) =  �̃�(𝑝) (1) 
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ℱ(𝑎 𝑔(𝑞) + 𝑏 ℎ(𝑞)) =  𝑎 �̃�(𝑝) + 𝑏 ℎ̃(𝑝) 

 

11.1.2 Differentiation 

Fourier transformation converts differentiation into multiplication 

with the canonical conjugated coordinate. 

 

g(𝑞) = ∇𝑓(𝑞) 

 

g̃(𝑝) = p𝑓(𝑝) 

 
g(𝑞) = ∇𝑓(𝑞) =  ∇0𝑓0(𝑞) ∓ 〈𝛁, 𝒇(𝑞)〉 ± ∇0𝒇(𝑞)

+  𝛁𝑓0(𝑞) ± (±𝛁 × 𝒇(𝑞)) 

 

g̃(𝑘) = k𝑓(𝑘) =  k0𝑓0̃(𝑘) ∓ 〈𝐤, �̃�(𝑘)〉 ± k0�̃�(𝑘)

+  𝐤𝑓0(𝑘) ± (±𝐤 × �̃�(𝑘)) 

 

For the imaginary parts holds: 

 

𝐠(𝑞) =  ±∇0𝒇(𝑞) +  𝛁𝑓0(𝑞) ± (±𝛁 × 𝒇(𝑞)) 

 

�̃�(𝑘) = ±k0�̃�(𝑘) +  𝐤𝑓0(𝑘) ± (±𝐤 × �̃�(𝑘)) 

 

By using  

 

𝛁 × 𝛁𝑓0(𝑞) = 𝟎 

 

and 

 

(2) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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〈𝛁, 𝛁 × 𝒇(𝑞)〉 = 0 

 

It can be seen that for the static part (∇0𝑓(𝑞) = 0) holds: 

 

𝐠(𝑞) =  𝛁𝑓0(𝑞) ± (±𝛁 × 𝒇(𝑞)) 

 

�̃�(𝑘) =  𝐤𝑓0(𝑘) ± (±𝐤 × �̃�(𝑘)) 

11.1.3 Parseval’s theorem 

Parseval’s theorem runs: 

 

∫ 𝑓∗(𝑞) ∙ 𝑔(𝑞) ∙ 𝑑𝑉𝑞 =  ∫𝑓∗(𝑝) ∙ �̃�(𝑝) ∙ 𝑑𝑉𝑝 

 

This leads to 

 

∫|𝑓(𝑞)|2 ∙ 𝑑𝑉𝑞 =  ∫|𝑓(𝑝)|
2

∙ 𝑑𝑉𝑝 

11.1.4 Convolution 

Through Fourier transformation a convolution changes into a sim-

ple product and vice versa. 

 

ℱ(𝑓(𝑞) ∘ 𝑔(𝑞)) =  𝑓(𝑝) ∙ �̃�(𝑝) 

11.2 Helmholtz decomposition 

The Helmholtz decomposition splits the static vector field 𝑭 in a 

(transversal) divergence free part 𝑭𝒕 and a (one dimensional longitu-

dinal) rotation free part 𝑭𝒍.  

 

𝑭 = 𝑭𝒕 + 𝑭𝒍 = 𝛁 × 𝒇 − 𝛁𝑓0 

(8) 

(9) 

(10) 

(1) 

(2) 

(1) 

(1) 
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Here 𝑓0 is a scalar field and 𝒇 is a vector field. In quaternionic 

terms 𝑓0 and 𝒇 are the real and the imaginary part of a quaterni-
onic field 𝑓. 𝑭 is an imaginary quaternionic distribution. 

 

The significance of the terms “longitudinal” and “transversal” can 

be understood by computing the local three-dimensional Fourier 

transform of the vector field 𝑭, which we call �̃�. Next decompose 

this field, at each point 𝒌, into two components, one of which points 

longitudinally, i.e. parallel to 𝒌, the other of which points in the trans-

verse direction, i.e. perpendicular to 𝒌.  

 

�̃�(𝒌) = �̃�𝒍(𝒌) + �̃�𝒕(𝒌)  
 

〈𝒌, �̃�𝒕(𝒌)〉 = 0 

 

𝒌 × �̃�𝒍(𝒌) = 𝟎 

 

The Fourier transform converts gradient into multiplication and 

vice versa. Due to these properties the inverse Fourier transform 

gives: 

 

𝑭 = 𝑭𝒍 + 𝑭𝒕  
 

〈𝛁, 𝑭𝒕〉 = 0 

 

𝛁 × 𝑭𝒍 = 𝟎  

 

So, this split indeed conforms to the Helmholtz decomposition. 

 

This interpretation relies on idealized circumstance in which the 

decomposition runs along straight lines. This idealized condition is 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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not provided in a curved parameter space. In curved parameter space  

the decomposition and the interpretation via Fourier transformation 

only work locally and with reduced accuracy. 

11.2.1 Quaternionic Fourier transform split 

The longitudinal Fourier transform represents only part of the full 

quaternionic Fourier transform. It depends on the selection of a radial 

line 𝒌(𝑞) in p space that under ideal conditions runs along a straight 

line. 

 

ℱ𝐤(𝑔(𝑞)) =  ℱ(𝑔(𝑞), 𝒌(𝑞)) 

 

Or 

 

ℱ∥(𝑔(𝑞)) ≝  ℱ (𝑔∥(𝑞))  

 

It relates to the full quaternionic Fourier transform Ƒ 

 

ℱ(𝑔(𝑞)) =  �̃�(𝑝) 

 

The inverse Fourier transform runs: 

 

ℱ−1(�̃�(𝑝)) =  𝑔(𝑞) 

 

The split in longitudinal and transverse Fourier transforms corre-

sponds to a corresponding split in the multi-dimensional Dirac delta 

function. 

 

11.3 Fourier integral 

For the bra-ket inner product holds: 

(1) 

(2) 

(3) 

(4) 
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< 𝑞|�̌� 𝑓 > =  ħ · ∇𝑞< 𝑞|𝑓 > =  ħ · ∇𝑞𝑓∗(𝑞) =   g(𝑞) 

 

=   ∫ < 𝑞|𝑝 >·< 𝑝|𝑔 >

𝒑

 

 

The static imaginary part is 

 

< 𝑞|�̌� 𝑓 > =  ħ · 𝛁𝑞 < 𝑞|𝑓 > =  ħ · 𝛁𝑞𝒇∗(𝑞) =   𝐠(𝑞) 

 

=  𝐼𝑚 (∫ < 𝑞|𝑝 >·< 𝑝|𝒈 >

𝒑

)

= ∫ 𝐼𝑚(< 𝑞|𝑝 >·< 𝑝|𝒈 >)

𝒑

 

 

= ∫ 𝐼𝑚(< 𝑞|𝑝 >·< 𝑝|𝒈𝒍 >)

𝒑

+ ∫ 𝐼𝑚(< 𝑞|𝑝 >·< 𝑝|𝒈𝒕

𝒑

>) 

 

= ∫ 𝐼𝑚(< 𝑞|𝑝 >· �̃�𝒍(𝑝))

𝒑

+ ∫ 𝐼𝑚(< 𝑞|𝑝 >· �̃�𝒕(𝑝))

𝒑

 

 

(1) 

(2) 
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The left part is the longitudinal inverse Fourier transform of field 

�̃�(𝑝). 

The right part is the transverse inverse Fourier transform of field 

�̃�(𝑝). 

For the Fourier transform of 𝐠(𝑞) holds the split: 

 

�̃�(𝑝) =  ∫ 𝐼𝑚(< 𝑝|𝑞 >· 𝒈𝒍(𝑞))

𝒒

+ ∫ 𝐼𝑚(< 𝑝|𝑞 >· 𝒈𝒕(𝑞))

𝒑

 

 

=  ∫ 𝐼𝑚(< 𝑝|𝑞 >· 𝒈(𝑞))

𝒒

 

 

The longitudinal direction is a one dimensional (radial) space. The 

corresponding transverse direction is tangent to a sphere in 3D. Its 

direction depends on the field 𝐠(𝑞) or alternatively on the combina-

tion of field 𝑓 and the selected (ideal) coordinate system �̌�. 

For a weakly curved coordinate system Ϙ̌ the formulas hold with 

a restricted accuracy and within a restricted region. 

11.3.1 Alternative formulation 

The reference S. Thangavelu146 provides an alternative specifica-

tion of the multidimensional Fourier transform . 

11.4 Functions invariant under Fourier transform 

In this section we confine to a complex part of the Hilbert space. 

See http://en.wikipedia.org/wiki/Hermite_polynomials.  

                                                           
146 http://www.math.iitb.ac.in/atm/faha1/veluma.pdf 

(3) 

http://www.math.iitb.ac.in/atm/faha1/veluma.pdf
http://en.wikipedia.org/wiki/Hermite_polynomials
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There exist two types of Hermite polynomials: 

 

1. The probalist’s Hermite polynomials: 

 

𝐻𝑛
𝑝𝑟𝑜𝑏(𝑧) = (−1)𝑛 exp(½𝑧2) 

𝑑𝑛

𝑑𝑧𝑛  exp(−½𝑧2). 

  

 

2. The physicist’s Hermite polynomials 

 

𝐻𝑛
𝑝ℎ𝑦𝑠(𝑧) = (−1)𝑛 exp(𝑧2)

𝑑𝑛

 𝑑𝑥𝑛
 exp(−𝑧2)

= exp(½𝑧2) (𝑧 −
𝑑

𝑑𝑧
)  exp(−½𝑧2) 

 

These two definitions are not exactly equivalent; either is a rescal-

ing of the other: 

 

𝐻𝑛
𝑝ℎ𝑦𝑠(𝑧) = 2𝑛/2 𝐻𝑛

𝑝𝑟𝑜𝑏
(𝑧√2) 

 

In the following we focus on the physicist’s Hermite polynomials. 

 

The Gaussian function φ(z) defined by  

 

𝜑(𝑥)  =  𝑒𝑥𝑝(−𝜋 𝑧2) 
 

is an eigenfunction of F. It means that its Fourier transform has 

the same form. 

As ℱ4 =  I  any λ in its spectrum 𝜎 (ℱ)  satisfies λ4 = 1: Hence,  

 

𝜎 (ℱ)  =  {1; −1;  𝑖; −𝑖}.  

(1, 2) 

𝐻𝑛
𝑝ℎ𝑦𝑠(𝑧)

= 2𝑛/2 𝐻𝑛
𝑝𝑟𝑜𝑏

(𝑧√2) 

(3) 

(4) 

(5) 
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We take the Fourier transform of the expansion: 

𝑒𝑥𝑝(−½ 𝑧2 +  2 𝑧 𝑐 – 𝑐2)  

=   ∑ 𝑒𝑥𝑝(−½ 𝑧2) 𝐻𝑛(𝑧) 𝑐𝑛

∞

𝑛=0

/𝑛! 

First we take the Fourier transform of the left hand side: 

 
1

√2𝜋
 ∫ 𝑒𝑥𝑝(−𝒌 𝑧 𝑝𝑧) 𝑒𝑥𝑝(−½ 𝑧2  +  2 𝑧 𝑐 – 𝑐2)

∞

𝑧=−∞

 𝑑𝑧 

=  𝑒𝑥𝑝(−½ 𝑝𝑧
2  −  2 𝒌 𝑝𝑧 𝑐 
+  𝑐2) 

=   ∑ 𝑒𝑥𝑝(−½ 𝑝𝑧
2) 𝐻𝑛(𝑝𝑧) (−𝒌 𝑐)𝑛/𝑛!

∞

𝑛=0

 

The Fourier transform of the right hand side is 

given by 

1

√2𝜋
 ∑  ∫ 𝑒𝑥𝑝(−𝒌 𝑧 𝑝𝑧)

∞

𝑧=−∞

∞

𝑛=0

· 𝑒𝑥𝑝(−½ 𝑧2) 𝐻𝑛(𝑧) 𝑐𝑛/𝑛!  𝑑𝑧 

(6) 

(7) 

(8) 
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Equating like powers of c in the transformed ver-

sions of the left- and right-hand sides gives 

1

√2𝜋
 ∫ exp(−𝒌 𝑧 𝑝𝑧) ·

∞

𝑧=−∞

𝑒𝑥𝑝(−½ 𝑧2) 𝐻𝑛(𝑧) 𝑐𝑛/𝑛!  𝑑𝑧  

=  (−𝒌)𝑛

· exp(−½ 𝑝𝑧
2) 𝐻𝑛(𝑝𝑧) 

𝑐𝑛

𝑛!
 

Let us define the Hermite functions 𝜓𝑛(𝑧) 

 

𝜓𝑛(𝑧)  ≝   < 𝑧|𝜓𝑛 > = c𝑛 exp(−½ 𝑧2) 𝐻𝑛(𝑧)  
 

|ℱ 𝜓𝑛 > =  |𝜓𝑛 >  (−𝒌)𝑛 

 

with suitably chosen cn so as to make 

 

‖𝜓𝑛‖2  =  1  

 

c𝑛 =
1

√2𝑛𝑛! √𝜋
 

 

The importance of the Hermite functions lie in the following the-

orem. 

 

“The Hermite functions ψn; n  N form an orthonormal ba-

sis for L2(R)” 

(9) 

(10) 

(11) 

(12) 

(13) 
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Consider the operator  

 

𝐻 =  −½
𝑑2

𝑑𝑧2 +  ½ 𝑧2  

 

Apply this to ψn(z): 

 

𝐻 · 𝜓𝑛(𝑧) =  (½ +  𝑛) 𝜓𝑛(𝑧)  
 

Thus, ψn is an eigenfunction of H. 

 

Let f =  ψ4k+j be any of the Hermite functions. Then we have 

 

 ∑ 𝑓(𝑦 +  𝑛) · exp(−2 𝜋 𝒌 𝑥 (𝑦 + 𝑛))

∞

𝑛=−∞

 

 

=  (−𝒌)𝑗   ∑ 𝑓(𝑥 +  𝑛) 𝑒𝑥𝑝(2 𝜋 𝒌 𝑛 𝑦)

∞

𝑛=−∞

 

 

 

The vectors |ψn> are eigenvectors of the Fourier transform opera-

tor with eigenvalues (-k)n. The eigenfunctions ψn(x) represent eigen-

vectors |ψn> that span the complex Hilbert space Ңk. 

For higher n the central parts of 𝜓𝑛(𝑥) and |𝜓𝑛(𝑥)|2 become a 

sinusoidal form. 

 

(14) 

(15) 

(16) 
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Figure 4 

A coherent state147 is a specific kind of state148 of the quantum 

harmonic oscillator whose dynamics most closely resemble the os-

cillating behavior of a classical harmonic oscillator system. The 

ground state is a squeezed coherent state149. 

  

                                                           
147 http://en.wikipedia.org/wiki/Coherent_state  
148 States 
149 Canonical conjugate: Heisenberg’s uncertainty 

http://en.wikipedia.org/wiki/Coherent_state
http://en.wikipedia.org/wiki/Coherent_state
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11.5 Special Fourier transform pairs 

Functions that keep the same form through Fourier transformation 

are: 

 

𝑓(𝑞) = exp (−|𝑞|2) 

 

𝑓(𝑞) =  
1

|𝑞|
 

 

𝑓(𝑞) = 𝑐𝑜𝑚𝑏(𝑞)  

 

The comb function consists of a set of equidistant Dirac delta 

functions. 

 

Other examples of functions that are invariant under Fourier 

transformation are the linear and spherical harmonic oscillators and 

the solutions of the Laplace equation. 

11.6 Complex Fourier transform invariance properties 

Each even function 𝑓(𝑞)  ⟺  𝑓(𝑝) induces a Fourier invariant: 

 

ℎ(𝑞) = √2𝜋 𝑓(𝑞) +  𝑓(𝑞). 

 

ℎ̃(𝑞) =  √2𝜋 ℎ(𝑞)  

 

Each odd function 𝑓(𝑞)  ⟺  𝑓(𝑝) induces a Fourier invariant: 

 

ℎ(𝑞) = √2𝜋 𝑓(𝑞) −  𝑓(𝑞). 

 

A function 𝑓(𝑞) is invariant under Fourier transformation if and 

only if the function 𝑓 satisfies the differential equation  

 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 
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𝜕2𝑓(𝑞)

𝜕𝑞2 − 𝑡2𝑓(𝑞) = 𝛼 𝑓(𝑞), for some scalar 𝛼 ∈ 𝐶. 

 

The Fourier transform invariant functions are fixed apart from a 

scale factor. That scale factor can be 1, k, -1 or –k. k is an imaginary 

base number in the longitudinal direction. 

 

Fourier-invariant functions show iso-resolution, that is, ∆p= ∆q 

in the Heisenberg’s uncertainty relation. 

 

For proves see: http://www2.ee.ufpe.br/codec/isoresolu-

tion_vf.pdf.  

  

(4) 

http://www2.ee.ufpe.br/codec/isoresolution_vf.pdf
http://www2.ee.ufpe.br/codec/isoresolution_vf.pdf


314 

 

 Quaternionic probability density dis-
tributions 

Continuous quaternionic distributions contain a scalar field in 

their real part and an associated vector field in their imaginary part. 

In a quaternionic probability density distribution (QPDD), the scalar 

field can be interpreted as a distribution of the density of property 

carriers. The associated vector field can be interpreted as a distribu-

tion of the current density of these carriers. The squared modulus of 

the value of the QPDD can be interpreted as the probability density 

of the presence of the carrier of the charge at the location that is spec-

ified by the parameter. The charge can be any property of the carrier 

or it stands for the ensemble of the properties of the carrier. The 

QPDD inherits the sign flavor of the quaternionic distribution that 

defines the curvature of its parameter space. 

If a QPDD is an E-type quaternionic distribution, then a continu-

ous quaternionic function defines the curvature of the parameter 

space of the QPDD. The carriers can be interpreted as the function 

values of this allocation function. In this case the carriers are tiny 

patches of the parameter space of the QPDD. Their charge is formed 

by the discrete symmetry set (sign flavor) of the QPDD. This type of 

QPDD is suitable for application in quantum fluid dynamics. 

If a QPDD is a D-type quaternionic distribution, then a continuous 

quaternionic function defines the curvature of the parameter space of 

the QPDD. The carriers can be interpreted as elements of a medium 

like a gas or a fluid. This type of QPDD is suitable for application in 

conventional fluid dynamics. 

12.1 Potential functions 

Each charge carrier corresponds to a potential function. In com-

bination the charge carriers correspond to an integral potential.  If the 
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charge carrier distribution is sufficiently localized, then the integral 

potential function approaches the form of the single carrier potential 

function. 

12.2 Dynamic potential 

If the charge carrier distribution is generated in a rate of one tem-

porary element per progression step, then the potential of the single 

carriers is transmitted at that same rate. This transmission is per-

formed by spherical waves that extend in the embedding continuum. 

The waves slightly fold the continuum. An integration of these ef-

fects over a series of progression steps will then show the static inte-

gral potential function. 

 

12.3 Differential equation 

For QPDD’s the equation for the differential can be interpreted as 

a differential continuity equation. Another name for continuity equa-

tion is balance equation. The differential continuity equation is 

paired by an integral continuity equation. The differential equation 

runs: 

 

𝑔(𝑞) = 𝑔0(𝑞) + 𝒈(𝑞) = ∇𝑓(𝑞) 

 

= ∇0𝑓0(𝑞) ∓ 〈𝛁, 𝒇(𝑞)〉 
 

±∇0𝒇(𝑞) +  𝛁𝑓0(𝑞)

± (±𝛁

× 𝒇(𝑞)) 

12.4 Continuity equation 

Let us approach the balance equation from the integral variety of 

the balance equation. 

(1) 
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When 𝜌0(𝑞) is interpreted as a charge density distribution, then 

the conservation of the corresponding charge150 is given by the con-

tinuity equation: 

 

Total change within V = flow into V + production in-

side V 

In formula this means: 

 
𝑑

𝑑𝜏
∫  𝜌0 𝑑𝑉

𝑉

= ∮ �̂�𝜌0

𝒗

𝑐
 𝑑𝑆

𝑆

+ ∫ 𝑠0 𝑑𝑉

𝑉

 

 

∫ ∇0𝜌0 𝑑𝑉

𝑉

= ∫〈𝛁, 𝝆〉 𝑑𝑉

𝑉

+ ∫ 𝑠0 𝑑𝑉

𝑉

 

 

The conversion from formula (2) to formula (3) uses the Gauss 

theorem151. Here �̂� is the normal vector pointing outward the sur-

rounding surface S, 𝒗(𝜏, 𝒒) is the velocity at which the charge den-

sity 𝜌0(𝜏, 𝒒) enters volume V and 𝑠0 is the source density inside V. 

In the above formula 𝝆 stands for 

𝝆 =  𝜌0𝒗/𝑐  
 

It is the flux (flow per unit area and unit time) of 𝜌0 . 

 

The combination of 𝜌0(𝜏, 𝒒) and 𝝆(𝜏, 𝒒) is a quaternionic skew 

field 𝜌(𝜏, 𝒒) and can be seen as a probability density distribution 

(QPDD). 

 

𝜌 ≝ 𝜌0 + 𝝆 

                                                           
150 Also see Noether’s laws: http://en.wikipedia.org/wiki/Noether%27s_theorem 
151 http://en.wikipedia.org/wiki/Divergence_theorem  

(1) 

 

(2) 

(3) 

(4) 

(5) 

http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Noether%27s_theorem
http://en.wikipedia.org/wiki/Divergence_theorem
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𝜌(𝜏, 𝒒)𝜌∗(𝜏, 𝒒) can be seen as an overall probability density dis-

tribution of the presence of the carrier of the charge. 𝜌0(𝜏, 𝒒) is a 

charge density distribution. 𝝆(𝜏, 𝒒) is the current density distribu-

tion. 

This results in the law of charge conservation:  

 

𝑠0(𝜏, 𝒒) = ∇0𝜌0(𝜏, 𝒒)

∓ 〈𝛁, (𝜌0(𝜏, 𝒒)𝒗(𝜏, 𝒒) + 𝛁 × 𝒂(𝜏, 𝒒))〉 

 

= ∇0𝜌0(𝜏, 𝒒) ∓ 〈𝛁, 𝝆(𝜏, 𝒒) + 𝑨(𝜏, 𝒒)〉 
 

= ∇0𝜌0(𝜏, 𝒒) ∓ 〈𝒗(𝜏, 𝒒), 𝛁𝜌0(𝜏, 𝒒)〉
∓ 〈𝛁, 𝒗(𝜏, 𝒒)〉 𝜌0(𝜏, 𝒒) 

 

∓〈𝛁, 𝑨(𝜏, 𝒒)〉 
 

The blue colored ± indicates quaternionic sign selection through 

conjugation of the field 𝜌(𝜏, 𝒒). The field 𝒂(𝜏, 𝒒) is an arbitrary dif-

ferentiable vector function. 

 

〈𝛁, 𝛁 × 𝒂(𝜏, 𝒒)〉 = 0 

 

𝑨(𝜏, 𝒒) ≝  𝛁 × 𝒂(𝜏, 𝒒) is always divergence free. In the follow-

ing we will neglect 𝑨(𝜏, 𝒒). 

 

Equation (6) represents a balance equation for charge density. 

What this charge actually is, will be left in the middle. It can be one 

of the properties of the carrier or it can represent the full ensemble 

of the properties of the carrier. 

 

(6) 

(7) 
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Up to this point the investigation only treats the real part of the 

full equation. The full continuity equation runs: 

 

𝑠(𝜏, 𝒒) = ∇𝜌(𝜏, 𝒒) = 𝑠0(𝜏, 𝒒) + 𝒔(𝜏, 𝒒) 

 

=  ∇0𝜌0(𝜏, 𝒒) ∓ 〈𝛁, 𝝆(𝜏, 𝒒)〉 ± ∇0𝝆(𝜏, 𝒒)
+  𝛁𝜌0(𝜏, 𝒒)

± (±𝛁 × 𝝆(𝜏, 𝒒)) 

 

= ∇0𝜌0(𝜏, 𝒒) ∓ 〈𝒗(𝜏, 𝒒), 𝛁𝜌0(𝜏, 𝒒)〉
∓ 〈𝛁, 𝒗(𝜏, 𝒒)〉 𝜌0(𝜏, 𝒒)  

 

±∇0𝒗(𝜏, 𝒒) + ∇0𝜌0(𝜏, 𝒒)
+  𝛁𝜌0(𝜏, 𝒒) 

 

±(±(𝜌0(𝜏, 𝒒) 𝛁 × 𝒗(𝜏, 𝒒)

− 𝒗(𝜏, 𝒒)

× 𝛁𝜌0(𝜏, 𝒒)) 

 

𝑠0(𝜏, 𝒒) = 2∇0𝜌0(𝜏, 𝒒) ∓ 〈𝒗(𝑞), 𝛁𝜌0(𝜏, 𝒒)〉
∓ 〈𝛁, 𝒗(𝜏, 𝒒)〉 𝜌0(𝜏, 𝒒) 

 

𝒔(𝜏, 𝒒) = ±∇0𝒗(𝜏, 𝒒) ±  𝛁𝜌0(𝜏, 𝒒) 

 

± (±(𝜌0(𝜏, 𝒒) 𝛁 × 𝒗(𝜏, 𝒒) − 𝒗(𝜏, 𝒒)

× 𝛁𝜌0(𝜏, 𝒒))) 

 

The red sign selection indicates a change of handedness by chang-

ing the sign of one of the imaginary base vectors. Conjugation also 

(8) 

(9) 

(10) 
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causes a switch of handedness. It changes the sign of all three imag-

inary base vectors. 

In its simplest form the full continuity equation runs: 

 

𝑠(𝒒, 𝜏) = ∇𝜌(𝒒, 𝜏) 

 

Thus the full continuity equation specifies a quaternionic distri-

bution 𝑠 as a flat differential ∇𝜌. 

 

When we go back to the integral balance equation, then holds for 

the imaginary parts: 

 
𝑑

𝑑𝜏
∫ 𝝆 𝑑𝑉

𝑉

= − ∮�̂�𝜌0 𝑑𝑆
𝑆

− ∮�̂� × 𝝆 𝑑𝑆
𝑆

+ ∫ 𝒔 𝑑𝑉

𝑉

 

 

∫ ∇0 𝝆 𝑑𝑉

𝑉

= − ∫ 𝛁𝜌0 𝑑𝑉

𝑉

− ∫ 𝛁 × 𝝆 𝑑𝑉

𝑉

+ ∫ 𝒔 𝑑𝑉

𝑉

 

 

For the full integral equation holds: 

 
𝑑

𝑑𝜏
∫  𝜌 𝑑𝑉

𝑉

+ ∮�̂�𝜌 𝑑𝑆
𝑆

= ∫ 𝑠 𝑑𝑉

𝑉

 

 

∫ ∇ 𝜌 𝑑𝑉

𝑉

= ∫ 𝑠 𝑑𝑉

𝑉

 

 

Here �̂� is the normal vector pointing outward the surrounding sur-

face S, 𝒗(𝜏, 𝒒) is the velocity at which the charge density 𝜌0(𝜏, 𝒒) 

enters volume V and 𝑠0 is the source density inside V. In the above 

formula 𝜌 stands for 

(4) 

(5) 

(6) 

(7) 
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𝜌 =  𝜌0 + 𝝆 =  𝜌0 +
𝜌0𝒗

𝑐
 

 

It is the flux (flow per unit of area and per unit of progression) of 

𝜌0 . 𝑡 stands for progression (not observer’s time). 

  

(8) 
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12.5 Fluid dynamics 

The quaternionic continuity equation is the foundation of quater-

nionic fluid dynamics. Depending on the nature of the streaming me-

dium, this branch of physics exists in two forms. 

 In conventional fluid dynamics the streaming charge 

carriers are elements of a gas or a liquid. 

 In quantum fluid dynamics the streaming charge car-

riers are tiny patches of the parameter space of the 

QPDD. They correspond to the target values of an E-

type quaternionic allocation function ℘(𝑥). This 

function has a flat parameter space that is spanned 

by the rational quaternions. 

It means that in quantum fluid dynamics the coupling of 

QPDD’s can affect the local curvature. 

12.5.1 Coupling equation 

In its simplest form the continuity equation runs: 

 

𝛻𝜓 = 𝜑 

 

The continuity equation couples the local distribution ψ to a 

source φ. 

The coupling strength can be made explicit. This results in the 

coupling equation. 

 

𝛻𝜓 = 𝑚 𝜙 

 

Here 𝑚 is the coupling factor and 𝜙 is the adapted source. 



322 

 

  



323 

 

 Conservation laws 

The following holds for all QPDD’s!!! 

Only the interpretation tells whether the QPDD concerns a quan-

tum state function, a photon, a gluon or the field of a single charge, 

a field of a set of charges or a field corresponding to the density dis-

tribution of eventually moving charge carriers. 

13.1 Differential potential equations 

Let 𝜙(𝑞) define a quaternionic potential. The potential corre-

sponds to a charge density distribution 𝜙0(𝑞) and a current density 

distribution 𝝓(𝑞).  

Note: This means that the following holds for any QPDD! 

 

𝜙(𝑞) = 𝜌0(𝑞) + 𝝆(𝑞) = 𝜌0(𝑞) + 𝜌0(𝑞)𝒗(𝑞) 

 

The gradient and curl of ϕ(q) are related. In configuration space 

holds: 

 

𝔉(𝑞) ≝ ∇𝜙(𝑞) =  ∇0𝜙0(𝑞) ∓ 〈𝛁, 𝝓(𝑞)〉 ± ∇0𝝓(𝑞)

±  𝛁𝜙0(𝑞) ± (±𝛁 × 𝝓(𝑞)) 

 

𝕰(𝑞) ≝  −𝛁𝜙0(𝑞) 

 

𝕭(𝑞)  ≝  𝛁 × 𝜙(𝑞) 

 

𝔉(𝑞) ≝ ∇𝜙(𝑞) =  𝔉0(𝑞) + 𝕱(𝑞) 

 

𝔉0(𝑞) =  ∇0𝜙0(𝑞) ∓ 〈𝛁, 𝝓(𝑞)〉 

 

𝕱(𝑞) =  ∓𝕰(𝑞) ±  𝕭(𝑞) ± ∇0𝝓(𝑞) 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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Note: When the velocity 𝒗 in 𝝓 changes, then an extra term 

∇0𝝓(𝑞) is added to equation (7). 

13.1.1 Maxwell 

In Maxwell equations, the electric field 𝑬(𝒓, 𝑡) is defined as: 

 

𝑬(𝒓, 𝑡) ≡  −𝛁𝜙0(𝒓, 𝑡) −
𝜕𝝓(𝒓, 𝑡)

𝜕𝑡
= 𝕰(𝒓, 𝑡) −

𝜕𝝓(𝒓, 𝑡)

𝜕𝑡
 

 

This is a remarkable decision, because �̇� can have components 

along 𝕰 and components along 𝕭, while 𝕰 and 𝕭 are mutually per-

pendicular. 

Further: 

 

〈𝛁, 𝑬(𝒓, 𝑡)〉 =  −𝛁2𝜙0(𝒓, 𝑡) −
𝜕〈𝛁, 𝝓(𝒓, 𝑡)〉

𝜕𝑡
 

 

=
𝜌0(𝒓, 𝑡)

𝜀0

−
𝜕〈𝛁, 𝝓(𝒓, 𝑡)〉

𝜕𝑡
 

 

In Maxwell equations, B(r) is defined as: 

 
𝑩(𝒓, 𝑡) ≡  𝛁 × 𝝓(𝒓, 𝑡) = 𝕭(𝒓, 𝑡) 

 

Further: 

 

𝛁 × 𝑬(𝒓, 𝑡) = − 
𝜕𝑩(𝒓, 𝑡)

𝜕𝑡
 

 

〈𝛁, 𝑩(𝒓, 𝑡)〉 = 0 

 

(1) 

(2) 

(3) 

(4) 

(5) 
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𝛁 × 𝑩(𝒓, 𝑡) =  𝜇0(𝝆 + 𝜀0
𝜕𝑬

𝜕𝑡
) 

13.2 Gravity and electrostatics 

Gravity and electrostatics can be treated by the same equations. 

Description Gravity Electrostat-

ics 
Field 𝒈 = −𝛁 φ 𝑬 = −𝛁 φ 

Force 𝑭 = 𝑚𝒈 𝑭 = 𝑄𝑬 

Gauss law 〈𝛁, g〉 = −4𝜋𝐺𝜌 〈𝛁, E〉 =
𝜌

𝜀
 

Poisson law 
∆𝜑 = 〈 𝜵, 𝜵𝜑〉 

∆𝜑 = 4𝜋𝐺𝜌 ∆𝜑 = −
𝜌

𝜀
 

Greens func-

tion 

−1

|𝒓|
 

1

|𝒓|
 

Single charge 

potential 
𝜑 = −

4𝜋𝐺𝑚

|𝒓|
 𝜑 =

𝑄

4𝜋𝜀|𝒓|
 

Single charge 

field 
𝑔 = −

4𝜋𝐺𝑚

|𝒓|2
𝒓 𝑬 =

𝑄

4𝜋𝜀|𝒓|2
𝒓 

Two charge 

force 
𝑭 = −

4𝜋𝐺𝑚1𝑚2

|𝒓|3
𝒓 𝑭 =

𝑄1𝑄2

4𝜋𝜀|𝒓|3
𝒓 

Mode attracting repelling 

13.3 Flux vector 

The longitudinal direction k of field 𝕰(𝑞) and the direction i of 

field 𝕭(𝑞) fix two mutual perpendicular directions. This generates 

curiosity to the significance of the direction 𝐤 × 𝐢. With other words 

what happens with 𝕰(𝑞) × 𝕭(𝑞).   
 

The flux vector  𝕾(𝑞) is defined as: 

 

 𝕾(𝑞) ≝  𝕰(𝑞) × 𝕭(𝑞) 

(6) 

(1) 
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13.4 Conservation of energy 

 

〈𝛁, 𝕾(𝑞)〉 = 〈𝕭(𝑞), 𝛁 × 𝕰(𝑞)〉 − 〈𝕰(𝑞), 𝛁 × 𝕭(𝑞)〉 
 

= −〈𝕭(𝑞), ∇0𝕭(𝑞)〉 − 〈𝕰(𝑞), 𝝓(𝑞)〉
− 〈𝕰(𝑞), ∇0𝕭(𝑞)〉 

 

= −½∇0(〈𝕭(𝑞), 𝕭(𝑞)〉 + 〈𝕰(𝑞), 𝕰(𝑞)〉)
− 〈𝕰(𝑞), 𝝓(𝑞)〉 

 

The field energy density is defined as: 

 

𝑢𝑓𝑖𝑒𝑙𝑑(𝑞) = ½(〈𝕭(𝑞), 𝕭(𝑞)〉 + 〈𝕰(𝑞), 𝕰(𝑞)〉)

=  𝑢𝕭(𝑞) + 𝑢𝕰(𝑞) 

 

𝕾(𝑞) can be interpreted as the field energy current density. 

The continuity equation for field energy density is given by: 

 

∇0𝑢𝑓𝑖𝑒𝑙𝑑(𝑞) + 〈𝛁, 𝕾(𝑞)〉 =  −〈𝕰(𝑞), 𝝓(𝑞)〉

=  −𝜙0(𝑞)〈𝕰(𝑞), 𝒗(𝑞)〉 
 

This means that 〈𝕰(𝑞), 𝝓(𝑞)〉 can be interpreted as a source term. 

13.4.1 Interpretation in physics  

Despite the fact that the above equations hold for any QPDD, we 

give here the physical interpretations when 𝕰 is the electric field and 

𝕭 is the magnetic field. 

𝜙0(𝑞)𝕰(𝑞) represents force per unit volume. 

𝜙0(𝑞)〈𝕰(𝑞), 𝒗(𝑞)〉 represents work per unit volume, or, in 

other words, the power density. It is known as the Lorentz power 

(1) 

(2) 

(3) 
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density and is equivalent to the time rate of change of the mechanical 

energy density of the charged particles that form the current 𝝓(𝑞). 

 

∇0𝑢𝑓𝑖𝑒𝑙𝑑(𝑞) + 〈𝛁, 𝕾(𝑞)〉 = −∇0𝑢𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙(𝑞) 

 

∇0𝑢𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 = 〈𝕰(𝑞), 𝝓(𝑞)〉 = 𝜙0(𝑞)〈𝕰(𝑞), 𝒗(𝑞)〉 

 

∇0 ( 𝑢𝑓𝑖𝑒𝑙𝑑(𝑞) + 𝑢𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙(𝑞)) = −〈𝛁, 𝕾(𝑞)〉 

 

Total change within V = flow into V + production in-

side V 

 

𝑢(𝑞) = 𝑢𝑓𝑖𝑒𝑙𝑑(𝑞) + 𝑢𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙(𝑞)

= 𝑢𝐵(𝑞) + 𝑢𝐸(𝑞) + 𝑢𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙(𝑞) 

 

𝑈 = 𝑈𝑓𝑖𝑒𝑙𝑑 + 𝑈𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 = 𝑈𝐵 + 𝑈𝐸 + 𝑈𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙

= ∫ 𝑢 𝑑𝑉

𝑉

 

 
𝑑

𝑑𝑡
∫ 𝑢 𝑑𝑉

𝑉

= ∮〈�̂�, 𝕾〉𝑑𝑆
𝑆

+ ∫ 𝑠0 𝑑𝑉

𝑉

 

 

Here the source s0 is zero. 

13.4.2 How to interpret Umechanical 

𝑈𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙  is the energy of the private field (state function) of 

the involved particle(s). 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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13.5 Conservation of linear momentum 

𝕾(𝑞) can also be interpreted as the field linear momentum den-

sity. The time rate change of the field linear momentum density is: 

 

∇0𝕾(𝑞) = 𝒈𝑓𝑖𝑒𝑙𝑑(𝑞) = ∇0 𝕰(𝑞) × 𝕭(𝑞) + 𝕰(𝑞)

× ∇0𝕭(𝑞) 

 

= (𝛁 × 𝕭(𝑞) − 𝝆(𝑞)) ×  𝕭(𝑞) − 𝕰(𝑞) × 𝛁

× 𝕰(𝑞) 

 

𝑮(𝕰) = 𝕰 × (𝛁 ×  𝕰) = 〈𝛁𝕰 , 𝕰〉 − 〈𝕰, 𝕰〉
= ½𝛁〈𝕰 , 𝕰〉 − 〈𝕰, 𝕰〉 

 

= −𝛁(𝕰𝕰) + ½𝛁〈𝕰 , 𝕰〉 + 〈𝛁 , 𝕰〉𝕰 

 

= −𝛁(𝕰𝕰 + ½𝟏𝟑〈𝕰 , 𝕰〉) + 〈𝛁 , 𝕰〉𝕰 

 

𝑮(𝕭) = 𝕭 × (𝛁 ×  𝕭)
= −𝛁(𝕭𝕭 + ½𝟏𝟑〈𝕭 , 𝕭〉) + 〈𝛁 , 𝕭〉𝕭 

 

𝑯(𝕭) =  −𝛁(𝕭𝕭 + ½𝟏𝟑〈𝕭 , 𝕭〉) 

 

∇0𝕾(𝑞) = 𝑮(𝕭) + 𝑮(𝕰) − 𝝆(𝑞) ×  𝕭(𝑞) 

 

= 𝑯(𝕰) + 𝑯(𝕭) − 𝝆(𝑞) × 𝕭(𝑞) + 〈𝛁 , 𝕭〉𝕭
+ 〈𝛁 , 𝕰〉𝕰 

 

= 𝑯(𝕰) + 𝑯(𝕭) − 𝝆(𝑞) ×  𝕭(𝑞)
− 𝜌0(𝑞) 𝕰(𝑞) 

 

= 𝑯(𝕰) + 𝑯(𝕰) − 𝒇(𝑞) = 𝓣(𝑞) − 𝒇(𝑞) 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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𝒯(q) is the linear momentum flux tensor. 

The linear momentum of the field contained in volume V sur-

rounded by surface S is: 

 

𝑷𝑓𝑖𝑒𝑙𝑑 = ∫ 𝒈𝑓𝑖𝑒𝑙𝑑  𝑑𝑉

𝑉

= ∫  𝜌0𝝓 𝑑𝑉

𝑉

+ ∫  〈∇𝝓, 𝕰〉 𝑑𝑉 + ∮〈�̂�, 𝕰𝑨〉𝑑𝑆
𝑆

𝑉

 

 

𝒇(𝑞) = 𝝆(𝑞) ×  𝕭(𝑞) + 𝜌0(𝑞) 𝕰(𝑞) 

 

Physically, 𝒇(𝑞) is the Lorentz force density. It equals the time 

rate change of the mechanical linear momentum density 𝒈𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 . 

 

𝒈𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙(𝑞) =  𝜌0𝑚(𝑞)𝒗(𝑞) 

 

The force acted upon a single particle that is contained in a vol-

ume V is: 

 

𝑭 = ∫ 𝒇 𝑑𝑉
𝑉

= ∫(𝝆 ×  𝕭 + 𝜌0 𝕰) 𝑑𝑉
𝑉

 

 

Brought together this gives: 

 

∇0 (𝒈𝑓𝑖𝑒𝑙𝑑(𝑞) + 𝒈𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙(𝑞)) =  −〈𝛁, 𝓣(𝑞)〉 

 

This is the continuity equation for linear momentum. 

(7) 

(8) 

(9) 

(10) 

(11) 
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The component 𝒯ij is the linear momentum in the i-th direction 

that passes a surface element in the j-th direction per unit time, per 

unit area. 

 

Total change within V = flow into V + production in-

side V 

 

𝒈(𝑞) = 𝒈𝑓𝑖𝑒𝑙𝑑(𝑞) + 𝒈𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙(𝑞) 

 

𝑷 = 𝑷𝑓𝑖𝑒𝑙𝑑 + 𝑷𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 = ∫ 𝒈 𝑑𝑉

𝑉

 

 
𝑑

𝑑𝑡
∫ 𝒈 𝑑𝑉

𝑉

= ∮〈�̂�, 𝓣〉𝑑𝑆
𝑆

+ ∫ 𝒔𝒈 𝑑𝑉

𝑉

 

 

Here the source sg = 0. 

13.6 Conservation of angular momentum 

13.6.1 Field angular momentum 

The angular momentum relates to the linear momentum. 

 

𝒉(𝒒𝑐) = (𝒒 − 𝒒𝑐) × 𝒈(𝑞) 

 

𝒉𝑓𝑖𝑒𝑙𝑑(𝒒𝑐) = (𝒒 − 𝒒𝑐) × 𝒈𝑓𝑖𝑒𝑙𝑑(𝑞) 

 

𝒉𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙(𝑞) = (𝒒 − 𝒒𝑐) × 𝒈𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙(𝑞) 

 

𝓚(𝒒𝑐) = (𝒒 − 𝒒𝑐) × 𝓣(q) 

 

(12) 

(13) 

(14) 

(15) 

(1) 

(2) 

(3) 

(4) 
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This enables the balance equation for angular momentum: 

 

∇0 (𝒉𝑓𝑖𝑒𝑙𝑑(𝒒𝑐) + 𝒉𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙(𝒒𝑐)) =  −〈𝛁, 𝓚(𝒒𝑐)〉 

 

Total change within V = flow into V + production in-

side V 

 

𝑱 = 𝑱𝑓𝑖𝑒𝑙𝑑 + 𝑱𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 = ∫ 𝒉 𝑑𝑉

𝑉

 

 
𝑑

𝑑𝑡
∫ 𝒉 𝑑𝑉

𝑉

= ∮〈�̂�, 𝓚〉𝑑𝑆
𝑆

+ ∫ 𝒔𝒉 𝑑𝑉

𝑉

 

 

Here the source sh = 0. 

 

For a localized charge density contained within a volume V holds 

for the mechanical torsion: 

 

𝜏(𝒒𝑐) = ∫(𝒒′ − 𝒒𝑐) × 𝒇(𝑞′)𝑑𝑉

𝑉

 

 

= ∫(𝒒′ − 𝒒𝑐) × (ρ0(𝑞′)𝕰(𝑞′) +  𝒋(𝑞′)  

𝑉

×  𝕭(𝑞′))𝑑𝑉 

 

= 𝑄(𝒒 − 𝒒𝑐) × (𝕰(𝑞) +  𝒗(𝑞)  ×  𝕭(𝑞)) 

 

𝑱𝑓𝑖𝑒𝑙𝑑(𝒒𝑐) = 𝑱𝑓𝑖𝑒𝑙𝑑(𝟎) + 𝒒𝑐 × 𝑷(𝑞) 

 

(5) 

(6) 

(7) 

(8) 

(9) 
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Using 

 

〈𝛁𝒂, 𝒃〉 = 𝒏𝜈

𝜕𝑎𝜇

𝜕𝑞𝜈

𝑏𝜇 

 

〈𝒃, 𝛁𝒂〉 = 𝒏𝜇

𝜕𝑎𝜇

𝜕𝑞𝜈

𝑏𝜇 

 

holds 

 

𝑱𝑓𝑖𝑒𝑙𝑑(𝟎) = ∫ 𝒒′ × 𝕾(𝑞′)𝑑𝑉

𝑉

= ∫ 𝒒′ × 𝕰(𝑞′) × 𝛁 × 𝝓(𝑞′) 𝑑𝑉

𝑉

 

 

= ∫(𝒒′ × 〈(𝛁𝝓), 𝕰〉 − 〈𝒒′ × 𝕰, (𝛁𝝓)〉) 𝑑𝑉

𝑉

 

 

= ∫𝒒′ × 〈(𝛁𝝓), 𝕰〉𝑑𝑉
𝑉

 

 

+ ∫ 𝕰 × 𝝓 𝑑𝑉

𝑉

− ∫〈𝛁, 𝕰𝒒′
𝑉

× 𝝓〉𝑑𝑉

+ ∫(𝒒′
𝑉

× 𝝓)〈𝛁, 𝕰〉𝑑𝑉 

13.6.2 Spin 

Define the non-local spin term, which does not depend on qʹ as: 

(10) 

(11) 

(12) 
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𝜮𝑓𝑖𝑒𝑙𝑑 = ∫ 𝕰(𝑞) × 𝝓(𝑞)𝑑𝑉

𝑉

 

 

Notice 

 

𝝓(𝑞) × 𝛁𝜙0(𝑞) = 𝜙0𝛁 × 𝝓(𝑞) + 𝛁 × (𝜙0(𝑞)𝝓(𝑞)) 

 

And 

 

𝑳𝑓𝑖𝑒𝑙𝑑(𝟎) = ∫𝒒′ × 〈(𝛁𝝓), 𝕰〉𝑑𝑉
𝑉

+ ∫𝒒′ × 𝜌0𝝓𝑑𝑉
𝑉

 

 

Using Gauss: 

 

∫〈𝛁, 𝒂〉𝑑𝑉 =
𝑉

∮〈�̂�, 𝒂〉𝑑𝑆
𝑆

 

And 

 

𝜌0 = 〈𝛁, 𝕰〉 
 

Leads to: 

𝑱𝑓𝑖𝑒𝑙𝑑(𝟎) = 𝜮𝑓𝑖𝑒𝑙𝑑 + 𝑳𝑓𝑖𝑒𝑙𝑑(𝟎) + ∮〈�̂�, 𝕰𝒒′ × 𝝓〉𝑑𝑆
𝑆

 

13.6.3 Spin discussion 

The spin term is defined by: 

 

𝜮𝑓𝑖𝑒𝑙𝑑 = ∫ 𝕰(𝑞) × 𝝓(𝑞)𝑑𝑉

𝑉

 

(1) 

2) 

(3) 

(4) 

(5) 

(1) 
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In free space the charge density ρ0 vanishes and the scalar poten-

tial ϕ0 shows no variance. Only the vector potential ϕ may vary 
with q0. Thus: 

 
𝕰 = 𝛁𝜙0 − ∇0𝝓 ≈ −∇0𝝓 

 

𝜮𝑓𝑖𝑒𝑙𝑑 ≈ ∫(∇0𝝓(𝑞)) × 𝝓(𝑞)𝑑𝑉

𝑉

 

 

Depending on the selected field Σfield has two versions that dif-
fer in their sign. These versions can be combined in a single op-
erator: 

 

𝜮𝑓𝑖𝑒𝑙𝑑 =  [
𝜮+

𝑓𝑖𝑒𝑙𝑑

𝜮−
𝑓𝑖𝑒𝑙𝑑

] 

 

If 
𝝓(𝑞)

|𝝓(𝑞)|
 can be interpreted as tantrix (𝑞0) ) and 

∇0𝝓(𝑞)

|∇0𝝓(𝑞)|
 can be 

interpreted as the principle normal 𝑵(𝑞0), then 
(∇0𝝓(𝑞))×𝝓(𝑞)

|(∇0𝝓(𝑞))×𝝓(𝑞)|
 can 

be interpreted as the binormal 𝕭(𝑞0).  
From these quantities the curvature and the torsion152 can be 

derived. 
 

[

�̇�(𝑡)

�̇�(𝑡)

�̇�(𝑡)

] =  [

0 κ(t) 0
−κ(t) 0 τ(t)

0 −τ(t) 0
] [

𝑻(𝑡)
𝑵(𝑡)

𝑩(𝑡)
] 

                                                           
152Path characteristics  

(2) 

(3) 

(4) 

(5) 
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deduced model, 33 
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315 



339 

 

quaternionic density 
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electron-positron pair, 219 
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fuzziness, 47, 138, 145 
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impingement of a quantum, 49 

impulse, 221 

in synchrony, 164 

inbound waves, 207 

inertia, 111, 135, 147, 150, 162, 

194 

origin of inertia, 119 

inertial reference frame, 145 

infinitesimal coordinate time 

interval, 201 

infinitesimal observed time 

interval, 201 

infinitesimal quaternionic step, 

201 

infinitesimal space time interval, 

201 

information 

information set, 118 

information horizon, 117, 196, 

203 

information transfer, 215 

inner product 

inner product of QPDD’s, 142 

inner product, 53, 69 

inner product, 281 

inner vector product, 60 

instant, 214 

instant action at a distance, 214 

integrated action, 218 

intelligent species, 205, 231 

interaction, 165, 207, 218 

cyclic interactions, 208 

inbound interaction, 207 

interaction speed, 165 

oscillating interactions, 220 

outbound interactions, 207 

two-sided interaction, 207 

interface, 207 

cyclic interfaces, 220 

inbound interfaces, 207 

interface type, 208 

outboundinterface, 207 

standard interface, 208 

standard interfaces, 208 

interfere, 114 

interference, 49, 118 

interference of photons, 223 
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