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I. INTRODUCTION

Imagine for a moment an endless diamond, completely
solid and pristine. No flaws or gaps in the structure. Sup-
pose at some point in the density of the material some-
thing strange occurs in that a deformation appears out of
nowhere which splits into two waves. Should these two
waves interact again with each other, the deformation
disappears. However should they separate enough then
one of the waves, which we shall call the baryon wave, is
stable by itself. This wave has the strange property that
it is a traveling decrease in density of the diamond. There
is no“other” material, only the decrease in something we
shall have to think of as the vacuum (energy) density.
The wave apparently has the ability to pass through or
combine into structures with other baryon waves but has
no ability to disappear back into a pristine diamond if
there is no second deformation wave present, which we do
not cover in this essay. Suppose that a certain combina-
tion of these first waves were to become sentient. Would
they be able to detect that they are a moving wave or
would their perceptions lead them to a misunderstand-
ing of how these waves effect the very substance that
they are traveling within and so not realize there exists
another class of solutions for tensors (scalars, vectors and
so on)? Is there a way to determine that the actual den-
sity is a fairly good model for their universe? If so, what
mathematics would be required in order to describe it
much better than other models which the sentient waves
have based on their physical perceptions? It is due to
this question that we present our proposed answer of a
modification of calculus. In order to fully describe the
baryon wave, the dimensions they create with their pres-
ence, the limited radius distortions they cause and even
the substance itself we must re-evaluate our understand-
ing of calculus in order to model them as the derivatives
of finite Action area integrals. We propose that in order
to understand how the universe stores information, we
must have a foundational basis for these areas, and in or-
der to understand how it processes information we must
ensure that we have within the literature all classes of
its derivatives (directional derivatives, divergence, etc.).
We do not go into details in this essay, but our proposed
future path is to accomplish this via a modification of
Gunnar Nordström’s gravitational theory, an early com-
peting model to General Relativity worked on by Nord-
ström, Einstein and Fokker (see [1] for a recent review).
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This model was discarded by Einstein and others since
it did not predict gravitational lensing, a problem which
our modification would seem to have the possibility of
remedying (see final assertions). Therefore in this essay
we introduce our different view point of calculus, named
“Area” Calculus in order to distinguish the concept from
the mainstream variety which we will refer to as “Single
Function” Calculus.

II. AREA CALCULUS

We will first give a simple graphical understanding of
the meaning, followed by a more formulaic explanation
using the same techniques as Riemann sums. We avoid a
formal drawn out proof in order to keep the essay open to
a wider audience but still provide the ability to intuitively
understand and reproduce a proof that Single Function
Calculus is a simplification of Area Calculus.

In order to do this, we need to re-examine the concept
of differentiation and integration from their most basic
proof in graphical form. We start with a regular rectangle
where the top and the bottom are line segments such that
each is a function of x denoted as y∗1 and y∗2 (Fig. 1).
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FIG. 1. Lines segments as two functions

We do not yet place these onto a coordinate plot as
a solid line (Fig. 2) on the x axis can lead to an in-
correct proof. We then incorporate multiple rectangles
(A,B,C,D) (Fig. 3), of equal length (∆x = x2 − x1) and
height (∆y = y∗1−y∗2) with an area of ((y∗1−y∗2)∗(x2−x1)).
Each horizontal line segment has a particular |y∗1 |,|y∗2 | of
−∞ > y∗ <∞ as measured from an unknown zero point.
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FIG. 2. Misleading solid axes

A B C D

FIG. 3. Rectangles

Note that if we continue adding on rectangles with
the same width and height (E,F,G,H) (Fig. 4), that

A B C D E F G H

FIG. 4. Adding area via rectangles

the rate of the addition of area is constant (rate of
change of addition of area=area next-area pre-
vious). Should we instead add on blocks of decreasing
area (E’,F’,G’,H’)(Fig. 5), then the rate of the addition
of area is decreasing.

From Fig. 6, we can see that a reflection of the rect-
angles about the lower line segment does not change the
rate of the addition of area. It is still either constant,
decreasing or similarly increasing (Figs. 7, 8) should we
add on blocks of greater area (E”,F”,G”,H”).

We assume in this new interpretation of calculus that
area is axiomatic such that the x and y line segments
are simply the boundaries used to denote it. We contend
it is extremely misleading to only incorporate these line
segments (and their instantaneous rates of change) into
a proof without also taking into consideration the area
they bound. We designate the top line in all plots, even
after reflection, as a variation of y1 and the bottom line
as a variation of y2.

Let us now use the standard proof technique of tak-
ing the number of individual rectangles to infinity by de-
creasing the width of each rectangle. It is important to
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FIG. 5. Addition of area decreasing

A B C D E' F' G' H'

FIG. 6. Reflected but area still decreasing

always maintain in mind that whereas the width of ∆x
is decreasing, the distance between the line segments of
∆y∗ is not as line segments y∗1 and y∗2 are two separate
functions of x. We must, however, denote the change in
each individual line segment function as ∆y∗1 and ∆y∗2 as
we take into account the decrease in ∆x to zero (Fig. 9).

Thus we obtain an instantaneous rate of
change of the addition of area (or the instan-
taneous change in area of rectangles of zero

width) as dy1−dy2
dx ≡ lim∆x→ 0

∆y∗1−∆y∗2
∆x =

limh→ 0
(f1(x+h)−f1(x))−(f2(x+h)−f2(x))

(x+h)−x . To reiterate,

although x2 − x1 = ∆x → dx we must understand
that y∗1 − y∗2 = ∆y∗1 − ∆y∗2 → dy1 − dy2, not just the
single function form dy! This would appear to be an
extremely fundamental mistake.

Let us put some numerical values in to provide a bet-
ter understanding. Let y1 = 10 − 1

x and let y2 = 8.

The Area derivative is dy1−dy2
dx =

d(10− 1
x−8)

dx = 1
x2 . If

we should reflect the area about y2 we now have y1 = 8
and y2 = 6 + 1

x . The Area derivative is unchanged at
dy1−dy2

dx =
d(8−(6+ 1

x ))

dx = 1
x2 despite incorporating a func-

tion with a slope of opposite sign. This is a proof that
derivation happens with respect to the secondary con-
stant function (since differentiation of +∞ or−∞ doesn’t
seem reasonable), not whether the points that make up
a line are changing positively or negatively (Figs. 10 and
11). For Area figures here on out, it can be understood
that a reflection of the area does not change the direc-
tional derivative.

III. ANTI-DIFFERENTIATION

Let us now take the derivative form of the previous sec-
tion and use a similar technique used for Riemann Sums.
Assuming that y2 or y1 is a constant function (we do not
go into it now, but if both are constants then this would
seem to be a truer definition of an Einstein manifold with
R = nk = n(y1 − y2)) and the area has been reflected,

then dy1−dy2
dx = dy1

dx = −dy2
dx . Graphically, these both re-

produce the same function relative to the y=0 on the x
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FIG. 7. Area increasing

A B C D E'' F'' G''H''

FIG. 8. Reflected but area still increasing

axis ( 1
x2 in our example). During integration (mind you,

we are only talking about regular Euclidean geometry
here), there is no difference between the answer numeri-
cally given through standard Single Function techniques,
however Area Calculus views the “area under the curve”
of y1 as instead the “area between the functions” of y1

and y2, providing a major proof difference during the
process of anti-differentiation. From Figure 12 the x axis
must be a separate function y = 0 which has an indefi-
nite integral form of

∫
0dx = k, where k is an arbitrary

constant.
Thus

∫
d(y1 − y2)dx =

∫
(d(y1))− 0)dx = (

∫
dy1dx)−

(
∫

0dx) = (y1 + c)− (k). Noting that we can swap func-
tions since dy1 = −dy2, this demonstrates those dual
functions within Area Calculus that are viable solutions,
including ((10− 1

x )− 8), (8− (6 + 1
x )) and ((0− 1

x )− 0).

IV. POISSON EQUATION

In Figure 13 we have the graphical basis of the Poisson
equation where the first derivative of the field potential
is force (per unit test mass) and the second derivative is
the definition of energy density.

Attempts at incorporating the Cosmological Constant
from the linearized field equation of 1−2Φ into Newton’s
Law of Gravity using the Poisson equation leads to the
equation ([2], Pg. 186) (using a positive Φ)

~g = −∇Φ = −GM

r2
~̂r +

Λc2r

3
~̂r.

There is no known way to reconcile a theoretical relation-
ship between the observed magnitudes of M and Λ in this
equation (“probably the worst theoretical prediction in
the history of physics!”). However, comparing the Pois-
son potential plot against the requirements of Area Cal-
culus in Figure 13 we see hidden assumptions that y1 has
been ignored, y2 = 0− β

x and that the area has no finite
boundaries (not quantized) since |(y2)| → 0 as x → ∞
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FIG. 9. Reflected line segments into continuous functions

directional derivative vectors

along a line

directional derivative vectors

along a line, change direction for 

a reflection

FIG. 10. Reflected line segments into continuous functions

and |(y2)| → −∞ as x→ 0. We are not aware that either
of these boundary conditions match any known empiri-
cal evidence, how quantized energy levels can effect out
to spatial infinity nor what justification is used that all
changes must happen from “zero”.

Comparing the Area Calculus version of the Poisson
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FIG. 11. Reflected line segments into continuous functions

equation against the linearized gravity portion demon-
strates some short comings to incorporating the Cosmo-
logical Constant into GR (Fig. 14). From the most basic
of linear solutions, it makes no sense where to place a
multiple of the metric into a plot that already contains
the metric and its perturbations. Where does Λg00 go in
relation to the g00 = 1 line and how can it possibly be
permissible for them both to occupy the same plot?

V. ACCELERATING EXPANSION

In Figures 15 and 16, we have a rough analogy of two
regions when the majority of gravitational effects would
appear attractive from y2, and in Figure 17 when the
majority of effects would appear repulsive from y1. As a
graphical analogy, we also offer Fig. 18. In Figure 19 we
show how this corresponds to a NASA illustration of a
late onset of accelerating expansion.

VI. ASSERTIONS

From the preceding sections we assert some observa-
tions for using calculus to model physical theory:

• All ranks of tensors require two functions to fully

dy  = - dy
1 2

reflected

directional derivatives cannot

be based on a single function

dy  = - dy
1 2

reflected

dy -0 =   0- dy
1 2
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dy -dy =   dy - dy
1 2 1 2
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1 2

FIG. 12. Anti-differentiation of x axis
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FIG. 13. Poisson field potential

describe them, including scalars (y1 − y2).

• Differential operators must act on two functions,
not one.

• There are no single value scalar fields, only a field
where one of the functions has been defined as = 0.

• Attraction or repulsion cannot be determined solely
via the direction of a vector relative to its source.

• Single Function Calculus is a special class of calcu-
lus where one of the functions has been defined as
having a magnitude of zero.
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NOT asymptotic

quantized area

FIG. 14. Area Calculus version of Poisson field potential ver-
sus Linearized GR

y2 dominates

y1 dominates

FIG. 15. Regions around matter and energy

• Differential topology, which considers only ”curva-
ture” of single lines, is fundamentally flawed as tan-
gents are a direct consequence of a change in area
requiring two lines (thus being incapable of describ-
ing any type of the energy density of a gravitational
field).

• Linearized gravity utilizes two components (1−2Φ,
1 and 2Φ), which appears to mimic the two func-
tions of Area Calculus at small radii.

• Placing the Cosmological Constant into the sym-
bolic form of Einstein’s field equation is done only
to conform with physical observations and is known
to ruin the foundation of it being a ”geometric”
theory ([3] p. 410).

FIG. 16. Majority of gravitational effects appear attractive

FIG. 17. Majority of gravitational effects appear repulsive

• The gravitational potential Φ within g00 = 1− 2Φ
and Λg00 must have the same units. The first
derivative of Φ is the arbiter of force (∇Φ) and the
second of normal energy density (∇2Φ). If Λg00 is
the energy density of the vacuum, it is reasonable
to assume a model can be formed where a change
in vacuum energy density is responsible for force
(≈ ∇∆Λ) and regular energy density (≈ ∇2∆Λ).

• The main motivation in the discarding of Gunnar
Nordström’s gravitational theory was that there
did not seem to be a way for it to predict gravi-
tational lensing ([1]), but a simple approximation
shows how Area Calculus would predict at least

gravitational redshift: |2Φ| ≈ |k−y2|
k = ΦV ED

then 1 + z =
√

1−2Φreceiver

1−2Φsource ≈
√

k−(k−yreceiver
2 )

k−(k−ysource
2 ) =√

1−Φreceiver
V ED

1−Φsource
V ED

.

• We assume the area of an integral can be directly
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FIG. 18. Graphical analogy of difference between “attraction”
and “reduced repulsion”

y2 dominated

FIG. 19. Double functions corresponding to late onset of ac-
celerating expansion, Base image: NASA / WMAP Science
Team

correlated to the action of a system (Action Prin-
ciple) as the foundation that calculus can fully de-
scribe physical theory, and that the universe stores

information (matter and dimensions) as integrals
(zero area integral=zero matter and dimensions),
we experience the processing of this information as
derivatives (forces, energy).

• We measure energy density from the perspective of
that very same type of energy density. It would be
logical that an area would have difficulty perceiving
anything but another area (or four-volumes as we
increase the dimensions).

Note that attractive fields in Area Calculus, from a vec-
tor viewpoint, are more accurately described as a reduced
repulsion. In essence, the late appearance of an acceler-
ating expansion would be due to the inherent quantiza-
tion of energy levels, which are quantized reductions in
vacuum energy density. Using GR symbology, the Pois-
son equation would be ∇2(∆ΛV acuumEnergyDensity) =
∇2((Λ−(Λ−ΦV ED). Within a certain radius, this would
simplify to the normal Poisson equation ∇2Φ, but out-
side this radius, especially if Λ is a function of the age of
the Universe, then the large scale effects of the Vacuum
Energy Density would dominate.

VII. CONCLUSION

So what kind of theory is this? It would appear to still
be a metric field theory, although we have quite a ways
to go before stating that definitively. Perhaps a more
important first question to be asked is whether or not it is
reasonable to re-examine how we mathematically model
physical laws. If you haven’t been following cosmology
within the past fifteen years, then you might not be aware
that our current models can only account for about 4%
of our own kind of energy density in the universe ([4])
and we have no idea of what the other 96 % actually is.
We conclude that everything is up for review including
our most basic assumptions. Without a mathematical
language that includes the information of area, we may
not be able to describe our Universe.

[1] J. D. Norton, Theories of Gravitation in the Twilight

of Classical Physics. Part I.:EINSTEIN, NORDSTRÖM
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