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Abstract

Guided TEM waves have been extensively investigated between 2 conductors. The multiconduc-

tor case, in spite of some important publications in this direction, did not get into the mainstream

of the electromagnetic education, and therefore deserves some more attention. The simple case

of lossless multiconductor TEM waves in homogeneous media is a good approximation for many

practical cases and is easily derivable by usage of potentials only. In this work we derive the for-

malism for lossless multiconductor TEM waves in homogeneous media, and show several examples

for the usage of this formalism.
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I. INTRODUCTION

The purpose of this work is to show a simple derivation for TEM waves guided between

many perfect conductors, in a homogeneous media and to develop multiconductor models

and applications for several geometries.

Multiconductor transmission lines have been first analyzed in the orientation of power

systems. Matrix methods for power systems trace back to the seminal works of R.H. Park

[1, 2], and known as Park transformations. Methods similar to the above, known as DQO

transformations and αβγ transformations have been developed to ease manipulations of 3

phase networks.

Traveling waves phenomena in polyphase systems have been analyzed by Wedepohl et al.

[3, 4]. Those works generalized the telegraph equations for more than one dimension, and

introduced the term of characteristic self impedance and characteristic mutual impedance

between phases. Those methods have been used for fault location on transmission lines [5]

and medium-frequency modeling of transmission systems [6]. The orientation of all those

works was for polyphase power systems.

The term of characteristic impedance matrix has been used in the context of periodic

array of wave launchers in [7, 8], for transmission line approximations, but they treated very

specific geometries, and their matrices were always 2x2.

In 1988 Clayton R. Paul issued a book [9] on multiconductor transmission lines. This

book treats from a very high theoretical level this subject, analyzing both homogeneous and

non homogeneous media, the lossy and lossless case. Unfortunately, this subject did not get

yet into the main stream of electromagnetic education, hence it deserves more attention and

different approaches.

Most practical cases of multiconductor transmission line may be approximated as TEM

in the homogeneous model, the inhomogeneity being expressed by an average equivalent

dielectric constant. The waves propagate in quasi TEM, which may be well approximated

by TEM [12]. Also losses, if they are small, may be introduced a posteriori.

It appears that the homogeneous lossless case can be very easily derived and formulated

using only the scalar and vector potentials, and we present this formulation in the current

work. Some preliminary work has been presented at [10].

In section 2 we define the general configuration which consists of any number of parallel
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ideal conductors in a homogeneous lossless medium. In section 3 we discuss the basic

formulation for guided TEM waves. In section 4 we obtain the propagation characteristic

for multiconductor TEM and in section 5 we formulate the interface connections between

source, termination and the multiconductor TEM transmission line, with some examples.

In section 6 we formulate an alternative representation for the multiconductor guided TEM,

with an example and in section 7 we perform a flat cable analysis for which we discuss

the cross talk issue. In section 8 we generalize the results of sections 4 and 5 for the time

harmonic case, discuss the VSWR issue, and present a short example. The work is ended

with some concluding remarks.

II. CONFIGURATION AND FORMULATION

We consider an arbitrary number N + 1 of parallel perfect conductors in the z direction.

The cross section of each conductor is fixed, hence z independent. The medium between the

conductors is homogeneous having constant electric permittivity ǫ and magnetic permeability

µ. The general configuration is shown in Figure (1). The conductors are numbered 1, 2, ..

N , N + 1, where the “last” (N + 1) conductor is defined as common.

FIG. 1: General configuration: several parallel perfect conductors (here shown 4 conductors),

having a fixed cross section in the x − y plane in a homogeneous lossless medium.
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III. BASICS OF GUIDED TEM

In a homogeneous medium the scalar potential V , each component of the vector potential

A and of the electric and magnetic fields, satisfy the homogeneous wave equation [11–13].

(
∇2 − 1

v2
∂2

t

)
U = 0, (1)

where U denotes any of the above entities, and v ≡ 1√
ǫµ

is the light velocity in the

medium. The Lorentz gauge

∇ ·A +
1

v2
∂tV = 0, (2)

must also be satisfied. Now separating ∇2 ≡ ∇2
tr + ∂2

z in eq. (1), where ∇2
tr is the

transversal Laplacian operator, we obtain

(
∇2

tr + ∂2
z − 1

v2
∂2

t

)
U = 0, (3)

By separating variables U = Utr(x, y)Ul(z, t) in eq. (3) one obtains

∇2
trUtr

Utr
+

∂2
zUl − 1

v2 ∂
2
t Ul

Ul

= 0, (4)

and the TEM are special solutions for which each part of eq. (4) is separately 0, namely

∇2
trUtr = 0 (5)

and

∂2
zUl −

1

v2
∂2

t Ul = 0. (6)

Those special solutions exist only when the number of conductors is bigger than 1 (see

Figure (1)), because for a single conductor the Laplace eq. (5) solved for the scalar potential

V , yields a constant solution, hence 0 electric field.

For our general configuration in Figure (1), the surface currents cannot be circular,

because this implies non zero B field inside the conductors, which is impossible for per-

fect conductors. Hence the surface currents must be only in the ẑ direction, imply-
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ing the vector potential to be A = Az ẑ. So setting V (x, y, z, t) = Vtr(x, y)Vl(z, t) and

Az(x, y, z, t) = Az tr(x, y)Azl(z, t) and solving the one dimensional wave equation eq. (6)

for Vl(z, t) and Azl(z, t) yields any functions of a single variable, say p which equals to

p = t ∓ z/v:

Vl(z, t) = f(p) = f(t ∓ z/v) (7)

and

Azl(z, t) = g(p) = g(t ∓ z/v) (8)

where f and g are any functions of a single argument, the upper and lower signs describing

forward and backward moving waves, respectively.

To simplify, we shall go on for now only with the forward moving wave, because the

backward moving wave describes the same physics in the opposite direction and one easily

derives the backward solution from the forward solution. So we drop for now the lower sign.

Requiring now the Lorentz condition in eq. (2), we obtain

vAz tr

Vtr

=
f ′(t − z/v)

g′(t − z/v)
≡ κ, (9)

where f ′ and g′ are the derivatives of the functions f and g with respect to their argument.

Now because the left side is only a function of x, y and the right side is only a function of

z, t, each must equal a constant which we name κ. So the right side yields f ′(q) = κg′(q),

where q = t − z/v is the argument. We look for the dynamic solution for transients so

by integrating from q = −∞ to q = p, and assuming that f(−∞) = g(−∞) = 0, i.e. no

constant values before the transient started, we may express the solution for transients as

f(p) = κg(p), namely:

f(t − z/v) = κg(t − z/v). (10)

Now combining the left side of eq. (9) with eq. (10) we find the connection between the

general solution of Az and V

Az = Az trg(t − z/v) =
κVtr

v

f(t − z/v)

κ
=

V

v
, (11)
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because V = Vtrf(t − z/v). So we see that κ cancels out and we obtain that at any

coordinate x, y, z and at any time t the scalar potential V equals to vAz. So without loss of

generality we may omit κ by setting it to 1, and use

Az tr =
Vtr

v
. (12)

IV. MULTICONDUCTOR TEM CHARACTERIZATION

To obtain the propagation characteristics, we need to solve the transversal Laplace equa-

tion (5) for Vtr(x, y), which represents the transverse function of the forward moving wave

voltage.

One may start by establishing N arbitrary potential differences between N+1 conductors.

We choose conductor number N + 1 as the common, and we call the potential difference

between conductor i and the common Vi. Such relative voltages only move charges from

one conductor to another, so that the total charge on the N + 1 conductors is 0. Therefore

the charge on conductor N + 1 is minus the sum of charges on all other conductors. We

therefore deal with N voltages and N charges. After solving for Vtr(x, y), one may calculate

the charge surface density on each conductor using, e.g. on conductor i

ηi = −ǫ∂nVtr|conductor i (13)

where ∂n is the derivative normal to the surface of conductor i. The charge per unit of

length on conductor i is

λi =

∮
ηi dc, (14)

where dc is a length element along the circumference of the conductor i. The N × N

elastance per unit of length matrix P is defined by the connection

V = Pλ. (15)

where λ and V are column vectors of size N , their components being the charges per

unit of length and the voltages Vtr on the conductors.

Now for the magnetic part, Az tr satisfies the normal derivative boundary condition
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Ki = −1

µ
∂nAz tr|conductor i, (16)

where Ki is the surface current density on the conductor i, and we omitted the vector

notation, knowing that the current is only in the ẑ direction. Similarly with eq. (14), the

current on conductor i is obtained via

Ii =

∮
Ki dc. (17)

Now combining eqs. (12),(13) and (16), one obtains

Ki = vηi (18)

and using eqs. (14) and (17) we get Ii = vλi. This connection being true for any i, can

be put in vectorial form

I = vλ, (19)

where I is a column vector of size N , its components being the currents in the conductors.

Now combining eqs. (15) and (19), we obtain

V =
1

v
PI ≡ Z0I, (20)

defining the characteristic impedance matrix

Z0 ≡ P/v. (21)

This is in analogy with the one dimensional case, i.e. N + 1 = 2, for which the charac-

teristic impedance is Z0 = 1
vC′

, where C ′ is the capacity per unit of length.

We may as well define the vector A
z
, its components being the magnetic potential vector

Az tr on the conductors, and according to eq. (12), we have

A
z

=
V

v
. (22)

We now define the inductance matrix per length unit L by the connection
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A
z

= LI, (23)

and using eqs. (22), (19) and (15), we obtain the connection L = P/v2 or by defining the

capacitance per unit length matrix P and inserting the unit matrix I, we may express

CL = I/v2 = Iµǫ (24)

which is the analogue of the formula C ′L′ = µǫ for the one dimensional case. We may

also express Z0 from eq. (21) as

Z2
0 = P2/v2 = LP = LC−1, (25)

analogue to the formula Z2
0 = L′/C ′ for the one dimensional case.

A. The power carried by a forward moving wave

We shall calculate now the power carried by a forward moving wave, using Poynting

theorem.

We first define U ′
E as the electric energy per unit of length, which is calculated as half

the sum on all conductors of the charge per length unit multiplied by the voltage

U ′
E =

1

2

N+1∑

j=1

λjV |conductor j =
1

2

(
λN+1V |conductor N+1 +

N∑

j=1

λjV |conductor j

)
. (26)

The total charge being 0, λN+1 = −
∑N

j=1 λj, so we obtain

U ′
E =

1

2

N∑

j=1

λj(V |conductor j − V |conductor N+1) =
1

2

N∑

j=1

λjVj =
1

2
λ

TV, (27)

because we defined Vj as the potential difference between conductor j and the common

conductor N +1. The last expression is in vectorial form, as multiplication between the row

vector λ
T and the column vector V, the superscript “T” meaning transposed, i.e. a row

vector.

Now by inverting eq. (15), we may express the energy per length unit
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U ′
E =

1

2
VTCV, (28)

Similarly, we define U ′
H as the magnetic energy per unit of length. It may be expressed

as half the sum on N conductors of the current multiplied by the magnetic flux per length

unit enclosed between the conductor and the common. The magnetic flux per length unit

enclosed between conductor j and the common is Az|conductor j − Az|conductor N+1, or simply

Az j so that

U ′
H =

1

2

N∑

j=1

IjAz j =
1

2
ITA

z
, (29)

and by using eq. (23), we express it as

U ′
H =

1

2
ITLI. (30)

For a forward moving wave, eq. (20) is satisfied, so by using it and the eqs. (24) and (25),

one easily shows that the electric and magnetic energies per length unit are equal, so that

the total energy per length unit U ′ is given by

U ′ = U ′
E + U ′

H = 2U ′
E = VTCV =

1

v
VTZ−1

0 V. (31)

We now apply the Poynting theorem at time t, on a volume enclosed between the surfaces

z = z1 and z = z2

P (t, z1) − P (t, z2) =
∂

∂t
U |inside volume =

∂

∂t

∫ z2

z1

U ′(t, z)dz (32)

where P is the forward power. We remember that any forward wave solution is not a

function of the 2 separate variables t and z, but rather a function of one variable p = t−z/v

(see eqs. (7) and (8)), so that we may call

U ′(t, z) ≡ h(p) = h(t − v/z), (33)

h being the adequate function, according to the excitation of the system. So we obtain
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P (t, z1) − P (t, z2) =

∫ z2

z1

∂

∂t
h(t − z/v)dz =

∫ z2

z1

h′(t − z/v)dz, (34)

h′ being the derivative of h with respect to its argument p. We are left with a total

derivative of a function having the argument linear in z, so integrating we obtain

P (t, z1) − P (t, z2) =
h(t − z/v)

−1/v

∣∣∣∣
z2

z1

= v[h(t − z1/v) − h(t − z2/v)]. (35)

Now we may take z2 → ∞, so that the power and the function h (which represents the

energy per length unit) are 0 at z = z2. So using eqs. (31) and (33), we rewrite eq. (35) for

z1 being any z, knowing that everything is a function of t − z/v:

P (t − z/v) = VT (t − z/v)Z−1
0 V(t− z/v), (36)

which looks like a natural generalization of the forward power P (t−z/v) = V 2(t−z/v)/Z0

for the one dimensional case.

So TEM waves guided by many conductors, may be specified in terms of voltages and

currents, like in the two conductor case, but instead of the characteristic impedance we deal

here with a characteristic impedance matrix, the voltages and currents being vectors.

V. TERMINATION AND SOURCE

In this section we deal with the interface of the multiconductor transmission line with

the load and with the feeding source.

In principle, one may treat the multiconductor transmission line as a 2N port network,

N ports at feed, and N ports at termination, see [9] Chapter 7.5, however this is usually an

overcomplication.

The calculations are done for general excitation, and we consider for now only resistive

loads and resistive source internal impedances.

A. The matching network

The matching network, i.e. the termination network of resistors that ensures zero reflected

wave must satisfy the connection between voltages and currents dictated by the Z0 matrix.
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In other words, the matching network must have an impedance matrix Z that is identical

to Z0.

The most general resistors network consists of one resistor between each pair of conduc-

tors. So starting to connect the resistors between conductor 1 and the other N conductors,

we have to connect N resistors. Now, between conductor 2 and the others we have to con-

nect only N − 1 resistors, because between 1 and 2 we already connected, and so on, the

total number of resistors is N + (N − 1) + .. + 1 = N(N + 1)/2.

Let us call the resistor between conductor i and conductor N +1 (which is the common),

Ri, and let us call Rij the resistor between conductor i and conductor j, where i and j have

values between 1 and N . The resistors network has N ports, port i being defined between

conductor i and the common. We need to define a generic connection between those resistors

and the impedance matrix of the network Z.

From the definition of the impedance matrix Z, the ji component is

Zji =
Vj

Ii

∣∣∣∣Ik=0
k 6=i

. (37)

The admittance matrix Y is the inverse of the impedance matrix, hence

YZ = I (38)

where I is the unit matrix. Eq. (38) may be written in form of a sum, as follows:

N∑

k=1

YmkZki = δmi, (39)

where δ is the Kronecker delta.

Now let us feed the network from port i with a current Ii, leaving the other ports open

(i.e. Ik = 0 for k 6= i). The voltages at the ports are called Vj, for j between 1 and N .

The KCL for port i yields:

Ii =
Vi

Ri

+
N∑

k=1
k 6=i

Vi − Vk

Rik

, (40)

and the KCL for any other port m, where m 6= i, yields:
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0 =
Vm

Rm

+
N∑

k=1
k 6=m

Vm − Vk

Rmk

. (41)

We may unify eqs. (40) and (41):

Iiδim =
Vm

Rm

+

N∑

k=1
k 6=m

Vm − Vk

Rmk

= Vm




1

Rm

+

N∑

k=1
k 6=m

1

Rmk



−
N∑

k=1
k 6=m

Vk

Rmk

. (42)

so that m is any number between 1 and N . In the right side we rearranged the equation,

so that the Vm terms are put together.

Now dividing by Ii and using eq. (37), we have

δim = Zmi




1

Rm

+

N∑

k=1
k 6=m

1

Rmk



−
N∑

k=1
k 6=m

Zki

Rmk

, (43)

and we remark that the condition Ik = 0 for k 6= i is satisfied here because we fed only

port i. One observes that eqs. (39) and (43) are the same if we identify:

Ymk = − 1

Rmk

for (m 6= k) (44)

and

Ymm =
1

Rm

+

N∑

k=1
k 6=m

1

Rmk

=
1

Rm

−
N∑

k=1
k 6=m

Ymk (45)

where the last equality used eq. (44). So the diagonal element of Y at position m is

the sum of all the conductances connected to port m, and the off diagonal element of Y at

position mk is minus the conductance between ports m and k.

Figure (2) shows the physical interpretation of eqs. (44) and (45).

It is worth to remark, that the characteristic admittance matrix Y0 is proportional to

the capacitance per length unit matrix C, the way Z0 is proportional to P, see eq. (21).

Therefore, the relations above between the admittance matrix and the conductances consti-

tuting the network, are the same as the relations between the capacitance matrix C and the

capacitances constituting a capacitance network - see [9], Chapter 3.1 . Also Figure (2) may
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FIG. 2: Configuration for calculating Ymk: network fed at conductor k by Vk, and all other

conductors are grounded. The conductors are shown by big points, and the common is by definition

at 0 potential. The value of Ymk is given by Im/Vk. All the resistors not having the index k are at

0 potential on both sides, so the only resistors entering the calculations are Rk and Rjk, for j 6= k,

and they are all in parallel. The current Im (for m 6= k) is the current entering from ground into

resistor Rmk, hence equals −Vk/Rmk, and Ik is Vk divided by the resistors in parallel.

be modified to show the calculation of the capacitance matrix, by replacing the resistors by

capacitors, and the currents by static charges.

To conclude, if the resistors of a network are known, one may calculate the elements of

the Y matrix using eqs. (44) and (45), and invert it to obtain the Z matrix.

If one needs to implement a network to satisfy a given Z matrix, say the needed Z0, one

inverts Z to obtain Y , and calculates the resistors between 2 ports (say m and k), using

Rmk = − 1

Ymk

(46)

and the resistor between port m and common may be extracted from the right side of

eq. (45):
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Rm =
1

N∑
k=1

Ymk

(47)

Two examples of geometries have been calculated in [10] and we show the results of those

examples in Figure (3).

FIG. 3: Multiconductor transversal cross sections and their matching networks. Panel (a) shows a

3 phase geometry with wires of radii a, at the corners of an equilateral triangle of sides d, so that

a ≪ d. The matching network consists of resistors in triangle, where each resistor has the value

R = 3
2

η0

π
ln d

a
. Panel (b) shows a 4 phase geometry with wires of radii a, at the corners of a square

of sides d, so that a ≪ d. The matching network consists of 6 resistors: 4 of value R2 = η0

π
ln d2

2a2

and 2 of value R1 = η0

π
ln

√
2d
a

ln d2

2a2 / ln d√
8a

.

The characteristic impedance for the 3 phase geometry in panel (a) of Figure (3) is given

by

Z0 =



 2R/3 R/3

R/3 R/3



 , (48)

where R = 3
2

η0

π
ln d

a
, d being the side of the triangle and a the radius of the wire in the 3

phase geometry.

The characteristic impedance for the 4 phase geometry in panel (b) of Figure (3) is given
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by

Z0 =





R2

4
R2+3R1

R2+R1

1
2

R2R1

R2+R1

R2

4

1
2

R2R1

R2+R1

R2R1

R2+R1

1
2

R2R1

R2+R1

R2

4
1
2

R2R1

R2+R1

R2

4
R2+3R1

R2+R1





(49)

where R2 = η0

π
ln d2

2a2 and R1 = η0

π
ln

√
2d
a

ln d2

2a2 / ln d√
8a

, d being the side of the rectangle and

a the radius of the wire in the 4 phase geometry.

B. The reflection matrix

In case the line is terminated by a loading network having an impedance matrix ZL 6= Z0,

the forward moving wave does not satisfy the termination condition, so there must be a

backward wave. Dealing here with the 2 waves we shall denote the forward and backward

waves by ± superscripts, respectively. The most general solution for the voltages vector is

a forward wave voltages vector plus a backward wave voltages vector:

V = V+ + V− (50)

and keeping the backward current agreed direction toward the positive z axis, same as

the forward current has been defined, we have

I = I+ + I−, (51)

and at the load size we require the termination condition:

V = ZLI . (52)

We showed that the connection between forward voltage and current is

V+ = Z0I
+, (53)

(see eq. (20)), hence the connection for the backward wave is
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V− = −Z0I
−, (54)

because I− is defined the direction opposite to its propagation and this may be proved

directly by continuing the formalism started in eq. (7) for the backward wave.

By combining eq. (51) with eqs. (53) and (54) we obtain

Z0I = V+ −V−, (55)

and by adding and subtracting eqs. (50) and (55) we obtain:

2V+ = V + Z0I (56)

and

2V− = V −Z0I . (57)

We set now the termination condition in eq. (52) into eqs. (56) and (57), and by isolating

I from eq. (56) and setting it into eq. (57), we obtain the connection between V− and V+:

V− = (ZL − Z0)(ZL + Z0)
−1V+, (58)

which defines the reflection matrix Γ

Γ = (ZL − Z0)(ZL + Z0)
−1, (59)

in an analogue way to the one dimensional reflection coefficient Γ = (ZL−Z0)/(ZL +Z0),

compare with [3, 9].

One remarks that the reflection matrix is a different concept from the scattering matrix

used for a multiport network, although the formula is identical. When calculating the

scattering matrix from a passive network, ZL still represents the network impedance matrix,

but Z0 is a diagonal matrix representing the characteristic impedances of the ports.

Here we deal with a single port termination for a multiconductor TEM transmission line

and Z0 must not be diagonal.

Because the load impedance matrix may not exist, it would be useful to derive an alter-
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native expression for Γ based on the load admittance matrix, yielding

Γ = (Y0 + YL)−1(Y0 − YL). (60)

Unlike in the one dimensional case, Γ does not need to be the 0 matrix to satisfy ΓV+ = 0.

From eq. (60) it is clear that in the case the determinant of Y0−YL is 0, there exist incident

voltage vectors yielding 0 reflection.

C. Interfacing to the source network

The most general source network has N(N + 1)/2 Thevenin branches of source voltage

Vg is series with a source impedance Rg between each pair of conductors. We shall call

the resistor and source between conductor i and N + 1 (the common) Rg i and Vg i and the

resistor and source between conductor i and j, Rg ij and Vg ij , where the + of the source is

at the lower index. The naming of the resistors is like in the matching network section.

Calling the current exiting from conductor i of the source network Ii, and the voltage at

conductor i of the source network Vi we write the KCL for the intersection i

Vg i − Vi

Rg i

+
N∑

j=1
j 6=i

Vj + Vg ij − Vi

Rg,ij

= Ii. (61)

where Vg ij is understood to be taken with positive sign if i < j and vice versa if i > j.

eq. (61) may be rearranged:

Vg i

Rg i

+

N∑

j=1
j 6=i

Vg ij

Rg,ij

+

N∑

j=1
j 6=i

Vj

Rg,ij

− Vi




1

Rg i

+

N∑

j=1
j 6=i

1

Rg,ij



 = Ii. (62)

The first 2 expressions represents the sum off all Norton currents connected to conductor

i, and we shall call it Ig i. The second 2 expressions may be written as

(

−
N∑

j=1

Yg ijVj

)

, where

Yg ij are the elements of the source admittance matrix Yg - see eqs. (44) and (45) defining

the admittance matrix elements of a passive network.

Hence we may rewrite eq. (62)
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Ig i −
N∑

j=1

Yg ijVj = Ii, (63)

or in vectorial form

Ig −YgV = I . (64)

The source network excites a forward wave in the transmission line for which we know

the connection between voltage and current V = Z0I. So we may isolate the voltage for the

forward moving wave

V = (Z−1
0 + Yg)

−1Ig = (Z−1
0 + Z−1

g )−1Ig , (65)

which is a natural extension for the one dimensional case for which we have Ig = Vg/Zg,

hence eq. (65) becomes a voltage divider V = (Z−1
0 + Z−1

g )−1 Vg

Zg
= Vg

Z0

Z0+Zg
.

VI. THE DIFFERENTIAL REPRESENTATION

We used so far as dynamical variables the voltages between each conductor and an agreed

common conductor, and the currents in each conductor (the common carrying minus the

sum of the currents in all other conductors).

The convenience of this representation is the easy way of calculating the magnitudes

described in the previous section, but of course this representation is not unique.

Given the voltages vector V, it is sometimes convenient to define the differential voltages

vector V′, as V ′
1 = V1 − V2, V ′

2 = V2 − V3, ... V ′
N = VN − 0, which may be written in matrix

form

V′ = T1V (66)

where the matrix T1 has all components 0, except of the diagonal components which are

1 and the first super-diagonal components which are -1, and may be expressed as:

T1 i,j = δi,j − δi,j−1, (67)
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where δ is the Kronecker delta, and we assume in this notation that terms with indices

smaller than 1 or larger than N are 0.

The differential currents I′ are loop currents so that we may think of the current Ij as

the difference between the loop current I ′
j and I ′

j−1, so that I1 = I ′
1 − 0, I2 = I ′

2 − I ′
1, ...

IN = I ′
N − I ′

N−1. This may be written in matrix form

I = T2I
′ (68)

where the matrix T2 has all components 0, except of the diagonal components which are

1 and the first sub-diagonal components which are -1, and may be expressed as:

T2 i,j = δi,j − δi,j+1. (69)

Starting with the conductor to ground representation for which the relation between the

forward moving voltage and current vectors is V = Z0I, and using eqs. (66) and (68), we

obtain the differential representation

V′ = Z ′
0I

′ (70)

where

Z ′
0 = T1Z0T2, (71)

and the components of Z ′
0 may be written explicitly in terms of the components of Z0

Z ′
0 i,j = Z0 i,j + Z0 i+1,j+1 − Z0 i+1,j − Z0 i,j+1. (72)

again, considering terms with outside range indices as 0. The usefulness of this transfor-

mation is show in the following example.

A. Example: multiple parallel plates

We will calculate the characteristic impedance matrix for N +1 parallel plates at distance

d one from the other all having the width w, so that w ≫ d, see Figure (4).

To solve Laplace equation (5) for the transverse potential Vtr, we consider plate j to
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FIG. 4: Multiconductor waveguide consisting of parallel plates of width w, at distance d between

them. We assume large plates, i.e. w ≫ d. The z axis is perpendicular to the paper.

have a surface charge ηj , for j 6= N + 1, and the charge surface on conductor N + 1 is

ηN+1 = −
N∑

i=1

ηi. We shall use the expression for the potential due to an infinite plate −η

2ǫ
|x|,

where η is the charge surface and |x| is the distance from the plate. Also we may express

the charge per unit length in the z direction as λ = wη. So we may write the potential on

conductor j (for j 6= N + 1)

Vtr| cond j =
ηjd

2wǫ
(N + 1 − j) +

j−1∑

i=1

ηid

2wǫ
(N + 1 + i − 2j) +

N∑

i=j+1

ηid

2wǫ
(N + 1 − i) (73)

and the potential on conductor N + 1

Vtr| condN+1 =
N∑

i=1

−ηid

2wǫ
(N + 1 − i) (74)

and express Vj = Vtr| cond j − Vtr| condN+1 obtaining

Vj =

j−1∑

i=1

ηid

wǫ
(N + 1 − j) +

N∑

i=j

ηid

wǫ
(N + 1 − i). (75)
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The coefficients are identified as the elastance matrix elements

Pij =






d
wǫ

(N + 1 − j) i < j

d
wǫ

(N + 1 − i) i ≥ j
, (76)

and the characteristic impedance matrix elements are obtained from eq. (21)

Z0 ij =






ηd

w
(N + 1 − j) i < j

ηd

w
(N + 1 − i) i ≥ j

. (77)

which may also be written as Z0 ij = ui−j(j − i) + N + 1− j, where u is the discreet step

function, i.e. equals 1 for non negative index and zero otherwise.

This form does not emphasize the separability of this configuration, so we would like to

transform to the differential representation with eq. (72). After some algebra, noting that

ui−j − ui−j−1 = δi,j, one obtains

Z ′
0 ij = δi,j

ηd

w
(78)

or in matrix form Z ′
0 = I ηd

w
, I being the unit matrix. So the differential representation

results in N separate TEM waveguides, each having the characteristic impedance ηd

w
.

This was a special example of separable configuration, but the differential representa-

tion may be useful also for non separable configurations, because it emphasizes better the

“local impedance”, i.e. the connection between the voltage difference between 2 adjacent

conductors, and the loop current between them, as we shall see in the next section.

VII. FLAT CABLE ANALYSIS

The flat cable is the most common multiconductor transmission line, hence we dedicate

this section to flat cables and we shall calculate here the characteristic impedance matrix

for a flat cable.

The distance between the wires (called pitch) is d and the conductor radius is a, and we

consider the common case of a ≪ d - see Figure (5).

The wires are numbered 1,2, .. N , N + 1. We assign the charges per length unit λ1, λ2,

.. λN , and the N + 1 wire (considered the common) has the charges per length unit
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FIG. 5: The geometry of a flat cable: equidistant conductors of radii a. The distance between the

conductors d is called pitch and is typically much bigger than the conductors radius. We consider

the surrounding media to be homogeneous.

λN+1 = −
N∑

i=1

λi. (79)

The solution of the Laplace equation, i.e. the potential at any location may be expressed

using the thin wire approximation

Vtr = −
N+1∑

i=1

λi

2πǫ
ln ri, (80)

where ǫ is some equivalent dielectric constant, i.e. ǫ = ǫ0ǫr, ǫr is usually between 1.5 and

3, and rj is the distance from conductor j.

By putting eq. (79) into eq. (80), we get

Vtr =
N∑

i=1

λi

2πǫ
ln

rN+1

ri

, (81)

and to express the potential on the conductor j (for j 6= N+1) we set rN+1 = d(N+1−j).

Also, we set ri = d|j−i| if i 6= j and ri = a if i = j, according to the thin wire approximation,

obtaining

Vtr|conductor j =
λj

2πǫ
ln

d(N + 1 − j)

a
+

N∑

i=1
i6=j

λi

2πǫ
ln

N + 1 − j

|j − i| , (82)

and on conductor N + 1, we set rN+1 = a and ri = d(N + 1 − i)
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Vtr|conductor N+1 =
N∑

i=1

λi

2πǫ
ln

a

d(N + 1 − i)
. (83)

The potential difference Vj is given by Vtr|conductor j − Vtr|conductor N+1 and comes out:

Vj =
λj

πǫ
ln

d(N + 1 − j)

a
+

N∑

i=1
i6=j

λi

2πǫ
ln

d(N + 1 − j)(N + 1 − i)

a|j − i| , (84)

and this defines the elements of the elastance matrix

Pij =






1
πǫ

ln d(N+1−j)
a

i = j

1
2πǫ

ln d(N+1−j)(N+1−i)
a|j−i| i 6= j

, (85)

and the characteristic impedance matrix elements are obtained from eq. (21)

Z0 ij =






η

π
ln d(N+1−j)

a
i = j

η

2π
ln d(N+1−j)(N+1−i)

a|j−i| i 6= j
, (86)

where η =
√

ǫ/µ0.

It will be convenient to see also the differential representation of the characteristic

impedance matrix. Using eq. (72) we obtain:

Z ′
0 ij =






η

π
ln d

a
i = j

−η

2π
ln d

2a
|i − j| = 1

η

2π
ln
(
1 − 1

|j−i|2

)
|i − j| > 1

, (87)

which is much simpler than regular representation.

We will calculate the balanced crosstalk on a 9L280XX Belden flat cable. The datasheet

of the cable can be found at [14]. The cables have a pitch of d = 0.05” = 1.27 mm and

wires of type 28 AWG, having a radius of a = 0.1605 mm. The measurement configuration

is shown in Figure (6).

We shall first suppose the far end is matched and than show how to match it. So given

the far end is matched, we have one single forward voltages vector wave V which satisfies

the equation V = Z0I, I being the forward currents vector. But all the components of the

currents vector are 0 except of the k and k + 1 components. Also we know that Ik+1 = −Ik,

so we may write the n component of the forward voltage vector:
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FIG. 6: A balanced cross talk measurement on a flat cable. The conductors k and k + 1 are

differentially fed, and are called the drive pair, and one measures the voltage between two other

conductors j and j + 1, called the sample pair. The biggest crosstalk effect is on neighboring

conductors, so we take j = k + 2. The far end is matched.

Vn = (Z0n,k − Z0 n,k+1)Ik (88)

It looks quite natural that having a non zero current only on conductors k and k +1, one

would need at the far end to connect a resistance only between those conductors, so let us

call this resistance R0. According to eqs. (44) and (45), connecting only this resistor defines

the components of the load admittance matrix

YLm,n =
1

R0
(δm,kδn,k + δm,k+1δn,k+1 − δm,kδn,k+1 − δm,k+1δn,k), (89)

so YL has only 4 non zero components, 2 diagonal components of value 1/R0 and 2 off

diagonal components of value −1/R0.

For having a 0 reflected voltage one needs (Y0 − YL)V = 0 (see eq. (60) and comments

after it). Hence we calculate first the m component of Y0V, so using Vn from eq. (88) we

obtain
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[Y0V]m =
∑

n

Y0 m,nVn = Ik(δm,k − δm,k+1), (90)

because Y0 is the inverse matrix of Z0. Now the m component of YLV yields

[YLV]m =
∑

n

YLm,nVn =
Ik

R0
(δm,k − δm,k+1)(Z0 k,k − 2Z0k+1,k + Z0 k+1,k+1), (91)

and we see that the value of R0 needed to make the results of eqs. (90) and (91) identical

is

R0 = Z0 k,k − 2Z0 k+1,k + Z0 k+1,k+1 = Z ′
0 k,k =

η

π
ln(d/a), (92)

where for the last expression we used the relation (72) and eq. (87), obtaining the diagonal

element of the characteristic impedance matrix in the differential representation.

Also, one remarks that the value of R0 should be the equivalent of what Belden [14] call

in their datasheet the “impedance”.

The value they give is 105Ω and for comparing we need to know the value of η =

377Ω/
√

ǫr, where ǫr is some equivalent relative dielectric coefficient which is influenced by

the isolation material and the surrounding air.

The value of ǫr may be calculated using the propagation delay from the datasheet, given

as 4.6 nsec/m, so that
√

ǫr is the light velocity in vacuum, multiplied by the propagation

delay, resulting in 1.38 . Using the above, R0 comes out 180Ω, which is about 1.7 times

higher than the 105Ω in the datasheet. I suppose the reason for this discrepancy are very big

losses given in the datasheet, which imply dispersion and do no allow a simple time domain

analysis like this one.

In spite of the discrepancy in the characteristic impedance value, the calculated cross

talk compares well with the datasheet, because this value depends on a relation between the

characteristic impedance matrix elements, as we shall see below.

So the feeding voltage is expressed as Vfeed = Vk − Vk+1 and using eq. (88) we obtain

Vfeed = (Z0 k,k − 2Z0 k+1,k + Z0 k+1,k+1)Ik = IkR0 (93)

Similarly, the sample voltage is Vsample = Vk+2 − Vk+3 and using eq. (88) we obtain

Vsample = (Z0 k+2,k −Z0 k+2,k+1 +Z0k+3,k+1 −Z0 k+3,k)Ik. By comparing this with eq. (72), we
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see that Vsample = Z ′
0 k+2,kIk and from eq. (87) we obtain

Vsample = Ik

η

2π
ln(3/4), (94)

The crosstalk is defined as the absolute value of the relation between Vsample and Vfeed:

Crosstalk =

∣∣∣∣
Vsample

Vfeed

∣∣∣∣ =
ln(4/3)

2 ln(d/a)
= 0.06954 = −23.1 dB (95)

This value is also called crosstalk isolation and is given in the Belden datasheet [14] as

−20 dB, showing that the above calculation fits well the measurement.

VIII. MULTICONDUCTOR TEM IN STEADY STATE HARMONIC EXCITA-

TION

In this section we generalize the multiconductor TEM for the case of steady state har-

monic excitation. One may rewrite the one dimensional wave equation (6) by replacing ∂t

by jω, or alternatively replace the solution function (say in eq. (7)) f(p) = exp(jωp), to

obtain the phasor solutions of the form exp(∓jβz) for the forward and backward moving

waves, respectively, where

β ≡ ω/v (96)

is the wave number. For harmonic steady state we need to develop formulas to move

along transmission line and express quantities at some location z, given that they are known

at other location say z1.

The basic solutions for the voltage, i.e. the forward an backward moving voltages behave

according to

V±(z) = V±(z1)e
∓jβ(z−z1), (97)

and the forward an backward moving currents behave the same

I±(z) = I±(z1)e
∓jβ(z−z1), (98)

and the connection between forward/backward voltages and currents is the same like for
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any excitation

V±(z) = ±Z0I
±(z). (99)

we define the reflection matrix at any location z by the connection between the backward

and forward voltages

V−(z) = Γ (z)V+(z). (100)

where Γ is now a complex phasor matrix. By setting eq. (97) into eq. (100) and by

replacing V−(z1) = Γ (z1)V
+(z1) we obtain:

Γ (z)V+(z1) = e2jβ(z−z1)Γ (z1)V
+(z1), (101)

which must hold for any set of voltages V+(z1), hence we are left with

Γ (z) = e2jβ(z−z1)Γ (z1), (102)

which is the generalization of the one dimensional case Γ(z) = e2jβ(z−z1)Γ(z1).

The eqs. (50) and (55) hold for harmonic steady state at any z, so we write them at

location z and use eq. (97):

V(z) = V+(z) + V−(z) = V+(z1)e
−jβ(z−z1) + V−(z1)e

jβ(z−z1) (103)

Z0I(z) = V+(z) − V−(z) = V+(z1)e
−jβ(z−z1) − V−(z1)e

jβ(z−z1), (104)

Now we use eqs. (56) and (57) at location z1 to extract V+(z1) and V−(z1) and set into

eqs. (103) and (104):

V(z) =
1

2
[V(z1) + Z0I(z1)]e

−jβ(z−z1) +
1

2
[V(z1) −Z0I(z1)]e

jβ(z−z1) (105)

and after rearranging

V(z) = V(z1) cosβ(z − z1) − jZ0I(z1) sin β(z − z1) (106)
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and similarly for the current

I(z) = I(z1) cos β(z − z1) − jY0V(z1) sin β(z − z1). (107)

We define here the local impedance matrix as:

V(z) = Z(z)I(z), (108)

so by replacing V(z1) = Z(z1)I(z1) in eqs. (106) and (107), one obtains

V(z) = [Z(z1) cosβ(z − z1) − jZ0 sin β(z − z1)]I(z1) (109)

and

I(z) = [I cos β(z − z1) − jY0Z(z1) sin β(z − z1)]I(z1), (110)

where I is the unit matrix. Now isolating I(z1) from eq. (110), setting it in eq. (109) and

taking cosβ(z − z1) outside parenthesis yields

V(z) = [Z(z1) −Z0 tanβ(z − z1)][I − jY0Z(z1) tanβ(z − z1)]
−1I(z), (111)

from which we get

Z(z) = [Z(z1) − jZ0 tan β(z − z1)][I − jY0Z(z1) tanβ(z − z1)]
−1, (112)

which may be rearranged to

Z(z) = [Z(z1) − jZ0 tan β(z − z1)][Z0 − jZ(z1) tanβ(z − z1)]
−1Z0, (113)

which is the analogue of the one dimensional formula Z(z) = Z0
Z(z1)−jZ0 tan β(z−z1)
Z0−jZ(z1) tan β(z−z1)

For the case the matrix Z(z1) does not exist it is useful to express the above connection

via admittances. Some matrix algebra yields

Y(z) = [Y(z1) − jY0 tan β(z − z1)][Y0 − jY(z1) tanβ(z − z1)]
−1Y0, (114)

and the connection between Γ (z), Z(z) and Y(z) is given by
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Γ (z) = (Z(z) −Z0)(Z(z) + Z0)
−1 = (Y0 + Y(z))−1(Y0 −Y(z)) (115)

The solution for an harmonic steady state multiconductor transmission line of length l,

given the sources and the load impedance matrix is similar to the one dimensional case.

First we set

Z(l) = ZL (116)

where ZL is the load impedance matrix. Then we use eq. (113) to calculate the impedance

matrix at the source location (z = 0 and z1 = l)

Zin = Z(0) = [Z(l) + jZ0 tanβl][Z0 + jZ(l) tan βl]−1Z0, (117)

and this is the input impedance matrix of the multiconductor transmission line. Next

we use the interface to source formula eq. (65), developed for transients, only Z0 has to be

replaced by Zin, to calculate the voltage near the source

V(0) = (Z−1
in + Z−1

g )−1Ig , (118)

and the current near the source is

I(0) = Z−1
in V(0) = (I + Z−1

g Zin)
−1Ig . (119)

Knowing V(0) and I(0), one may calculate V(z) and I(z) for any location z using

eqs. (106) and (107) (by setting z1 = 0).

The power of a forward moving wave (see eq. (36)) is also easily generalized for the time

harmonic case

P+ = V+TZ−1
0 V+∗, (120)

where the ∗ denotes the complex conjugate, and according to eq. (97), the result is z

independent and real. Also, defining the magnitudes of the phasors we use as RMS values,

we do not need a 1/2 factor in eq. (120).

It would be interesting to check what is the multidimensional analog to the standing wave
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ratio (SWR). As explained in Section 5.B, the reflection at the termination may depend on

the incident voltages vector itself, therefore it is impossible in the general case to generalize

the SWR (in [9] the SWR is considered only for the one dimensional case). Another way

of understanding this is to look at a separable configuration - see Figure (4). For this case

one finds that Z0 is diagonal in the differential representation (see eq. (78)), and we have N

separate waveguides, each one of them may have its own SWR.

But there is a special case of interest: if the load impedance matrix ZL, the characteristic

impedance matrix Z0 and the source impedance matrix Zg are all scalar multiples of the

same matrix Q, one may generalize the SWR and work with scalar waves.

In this case we have ZL = QZL, Z0 = QZ0 and Zg = QZg where ZL, Z0 and Zg are

impedances. For this case eq. (113) may be written as

Z(z) = QZ0
Z(z1) − jZ0 tanβ(z − z1)

Z0 − jZ(z1) tanβ(z − z1)
≡ QZ(z) (121)

and eq. (115) as

Γ (z) = IZ(z) − Z0

Z(z) + Z0

(122)

also the input impedance matrix entering eq. (118) may be written as Zin = QZin, so

that eq. (118) becomes

V(0) =
ZinZg

Zin + Zg

QIg , (123)

and the power of a forward moving wave becomes

P+ =
1

Z0

V+TQ−1V+ ∗, (124)

A. Example: three phase network

We shall use here the cross section geometry of 3 thin wires of radii a on the edges of an

equilateral triangle of side d, so that d ≫ a, see Figure (3), panel (a).

The characteristic impedance matrix for this geometry is given in eq. (48), and may be

rewritten as
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Z0 = Z0Q (125)

where Q is the following matrix

Q =



 2/3 1/3

1/3 2/3



 , (126)

and

Z0 =
3η0

2π
ln(d/a) (127)

has the value of the matching resistors in Figure (3) panel (a).

The network is fed by a 3 phase generator, each phase having the generator impedance

Zg, see Figure (7).

The purpose of this example is to show the power transfer, so to simplify it, we shall

consider the 3 phase transmission line matched, hence Zin = Z0. We first obtain the Norton

currents vector Ig (see eq. (62))

Ig =
V0

Zg



 exp(j4π/3) − 1

1 − exp(j2π/3)



 =

√
3V0

Zg



 exp(j5π/6)

exp(jπ/6)



 , (128)

and using eq. (123) we obtain the voltage vector at the beginning of the line

V(0) =

√
3V0Z0

Z0 + Zg

Q



 exp(j5π/6)

exp(jπ/6)



 , (129)

Being matched, this voltage vector is the forward moving voltage vector which only

changes its phase in propagation. Using eq. (124), we obtain the power

P =
3

Z0

∣∣∣∣
V0Z0

Z0 + Zg

∣∣∣∣
2

(exp(j5π/6) exp(jπ/6))Q



 exp(j5π/6)

exp(jπ/6)




∗

, (130)

The last matrices multiplication results in 1, and we identify V0Z0/(Z0 + Zg) as the

voltage on each phase Vph of the matched load Zph = Z0, resulting in the usual 3 phase

power 3|Vph|2/Zph.

Of course, this result is valid for the same load we considered above, on any geometry of
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FIG. 7: Three phase generator with internal impedance Zg feeding the 3 phase symmetric geometry

transmission line with characteristic impedance matrix given in eq. (125). The magnitude of the

voltage is V0 RMS.

3 phase transmission line, provided the length is short compared to the wavelength, so that

the characteristic impedance does not count when reflecting the load toward the generator.

IX. CONCLUSIONS

We developed here a different derivation for TEM waves guided by many perfect conduc-

tors in a homogeneous media, the connection between the multiconductor transmission line,

source and load, and formulated the power transfer.

Using this formalism, we calculated the cross talk for a flat cable, and our result compares
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well with the datasheet. It is to be mentioned that any multiconductor transmission line

which does not have a diagonal representation suffers from cross talk.

The crosstalk is a major problem, due to which one has to reduce the information rate,

therefore it deserves a special attention. An additional work on avoiding crosstalk is in

preparation.

We generalized the formulation for time harmonic, and showed that in the general case the

SWR is not defined, unless special symmetry conditions are satisfied, and for such case, one

may express the propagation problem in a scalar form. Using this scalar form, we calculated

the power transmitted into a 3 phase transmission line, obtaining the known expression for

the power in 3 phase transmission lines.
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