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Abstract. – The behavior of the electrons in crystals exhibits some properties well known 
from solid state physics, like an upper limit for the particle velocity and an effective mass, 
which goes to  the infinity as the particle velocity goes to  that  limit. This reminds us the 
relativistic mass. Indeed, both effective and relativistic masses have the same dependence on 
the velocity. The result is applicable to a general lattice – quantized space could be one –, 
which suggests that special relativity can be a consequence of a quantized spacetime. Even 
that is not the case, a similar approach could be used in the search for the Quantum Gravity.

1. Motivation

Fig. 1. (a) One-dimensional approximation for the effective mass meff and the group velocity 
υg of  an electron  in a  semiconductor  in terms  of  ka (electron  wavenumber  and lattice 
constant); (b) Plot of the relativistic mass mrel of a body in terms of its velocity υ relative to 
the observer.
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Fig. 1 shows two similar plots from rather unrelated areas. (a) comes from solid state 
physics and (b) comes from special relativity. Although they seem to be different curves, 
they share some peculiar behaviors:

• there is a maximum velocity;
• as the particle velocity approaches the maximum, its mass grows to infinity.

In fact, it can be shown that they are the same curve.

2. The one-dimensional tight binding approximation

It’s well known from solid state physics that when an electron is subject to periodic 
potential there will be regions of forbidden energies and bands of allowed energies, after 
Kronig and Penney [1].  Unlike for free electrons, its energy  ε is not proportional to  the 
square of its wavenumber k [2]. In the one-dimensional case, we can express that relation as:

ε(k) = ε0 – A cos ka . (1)

where a is the spatial periodicity of the potentials, ε0 and A are constants and A > 0.

The relevant values of k is inside the first Brillouin zone, that is, –π/a ≤ k ≤ +π/a, 

since other values of k can be reduced to the that interval by a displacement of n
2π

a
with 

no changes to the solution (n is integer).
The velocity υg(k) of the particle is equal to the group velocity of the waves which 

represent the particle, that is, υg(k) = dω/dk. By using the relations ε = ℏω and (1), we have:

υg=
1
ℏ

d ε

dk
=

Aa
ℏ

sin ka=cg sin ka (2)

where the constant cg ≡ Aa/  represents the maximum allowed velocity in that band.ℏ
To  accelerate  a  particle subject  to  a  periodic potential,  it  behaves as  having an 

effective mass, given by (see, for instance, [3]):

meff=
ℏ

2

d2ε /dk2 (3)

By applying (1) to (3) we obtain:

meff=
ℏ

2

Aa2

1
cos ka

=
m0

cos ka
, (4)

with m0 ≡ ℏ2/Aa2.
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The equations (2) and (4) are plotted on Fig. 1a.

We can rewrite the effective mass (4) in terms of the group velocity of the particle. 
From (2) we have:

sin ka=
υg

c g
(5)

and therefore

meff=
m0

coska
=

m0

√1−sin2 ka
=

m0

√1−υg
2
/ cg

2
, (6)

which is the same dependence on velocity as the relativistic mass.

3. Consequences

That relationship is valid for a particle in any medium containing periodic potential 
barriers, apparted from each other by a distance a. We can exchange the electron in an atom 
by a particle in a well, and the mathematics will remain the same. The particle doesn't even 
need  be  electrically  charged.  Although  the  derivation  for  effective  mass  is  generally 
presented through the application of an external electrical force, it doesn’t need to  be an 
electrical one.

In particular, spacetime itself can be such a lattice, if it is quantized in a manner that  
the potential barriers represent the discontinuity between two adjacent quanta of spacetime, 
and hence each spacetime quantum can be regarded as a potential well.

This link between solid state  physics and special relativity can hint us  of a  new 
direction  for  Quantum  Gravity  research:  to  derive  general  relativity  from  quantized 
spacetime or other appropriate concept.

4. References

[1] Kronig R. de L. and Penney W. G., Proc. Roy. Soc (London), A130 (1930) 499.
[2] Dekker A. J., Solid State Physics (Prentice-Hall) 1958, section 10-9.
[3] Bube R. H.,  Electrons in Solids: An Introductory Survey,  2nd. ed. (Academic Press, 
New York) 1988, pp. 121-122.

3


	Special relativity as a possible consequence of quantized spacetime
	1. Motivation
	2. The one-dimensional tight binding approximation
	3. Consequences
	4. References

