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This is the abstract. The Statement of Modified Saint-
Venant’s Principle is suggested. The axisymmetrical defor-
mation of the infinite circular cylinder loaded by an equilib-
rium system of forces on its near end is discussed and its for-
mulation of Modified Saint-Venant’s Principle is established.
It is evident that finding solutions of boundary-value prob-
lems is a precise and pertinent approach to establish Saint-
Venant type decay of elastic problems.

1 Introduction
Saint-Venant’s Principle is essential and fundamental in

Elasticity (See Ref. [1] and Ref. [2]). Boussinesq and Love
announce statements of Saint-Venant’s Principe (See Re-
f. [3] and Ref. [4]), but Mises and Sternberg argue, by citing
counterexamples, that the statements are not clear, suggest-
ing that Saint-Venant’s Principle should be proved or giv-
en a mathematical formulation (See Ref. [5] and Ref. [6]).
Truesdell asserts that if Saint-Venant’s Principle of equipol-
lent loads is true, it must be a mathematical consequence of
the general equations of Linear Elasticity (See Ref. [7]).

There is no doubt that mathematical proof of Saint-
Venant’s Principle has become an academic attraction for
contributors and much effort has been made for exploring its
mysterious implications or deciphering its puzzle. Zanaboni
“proved” a theorem trying to concern Saint-Venant’s Princi-
ple in terms of work and energy (See Refs. [8], [9], [10]).
However, Zhao argues that Zanaboni’s theorem is false (See
Ref. [11]). The work published by Toupin cites more coun-
terexamples to explain that Love’s statement is false, and
then establishes a formulation of energy decay, which is con-
sidered as “a precise mathematical formulation and proof”
of Saint-Venant’s Principle for the elastic cylinder (See Ref-
s. [12], [13]). Furthermore, Toupin’s work seems to set up
an example followed by a large number of papers to estab-
lish Toupin-type energy decay formulae for branches of con-
tinuum mechanics. Since 1965 the concept of energy de-
cay suggested by Toupin has been widely accepted by au-
thors, and various techniques have been developed to con-
struct inequalities of Toupin-type decay of energy which are

spread widely in continuum mechanics. Especially, the the-
orem given by Berdichevskii is considered as a generaliza-
tion of Toupin’s theorem (See Ref. [14]). However, Zhao
points out that Toupin’s theory is not a strict mathematical
proof, and Toupin’s Theorem is not an exact mathematical
formulation, of Saint-Venant’s Principle. Interestingly and
significantly, Saint-Venant’s Principle stated by Love is dis-
proved mathematically from Toupin’s Theorem, so Toupin’s
Theorem is mathematically inconsistent with Saint-Venant’s
Principle (See Ref. [11]).

Zhao disproves mathematically the “general” Saint-
Venant’s Principle stated by Boussinesq and Love and points
out mathematically that Saint-Venant type decay can be
proved or formulated by special formulating or adding sup-
plementary conditions to the problems discussed (See Re-
f. [11]). Therefore, we suggest Modified Saint-Venant’s Prin-
ciple in this paper.

The cylinder discussed by Toupin is of arbitrary length
and cross section and loaded with an arbitrary system of self-
equilibrated forces, and Toupin’s cylinder fails to be consis-
tent with Saint-Venant type decay. The problem of proof of
Saint-Venant’s Principle of cylinders is still open. The ques-
tion that we have to answer is : what conditions are sufficient
to guarantee Saint-Venant type decay of stresses to occur in
cylinders. We find in this paper that Saint-Venant type decay
can be established by excluding the arbitrariness of geometry
and loading of Toupin’s cylinder , and suggest the problem of
Saint-Venant’s Principle for the axisymmetrical deformation
of the circular cylinder and prove its Modified Saint-Venant
Principle.

2 Modified Saint-Venant’s Principle
Love’s Statement of Saint-Venant’s Principle: “Accord-

ing to this principle, the strains that are produced in a body
by the application, to a small part of its surface, of a system
of forces statically equivalent to zero force and zero couple,
are of negligible magnitude at distances which are large com-
pared with the linear dimensions of the part.” (See Ref. [4])

Mises considers a body of finite dimensions and sees



that “ Saint-Venant’s principle in its traditional form does
not hold true.” (See Ref. [5]) Toupin asserts: “ The broader
statement of the principle given by Love for bodies of arbi-
trary shape cannot possibly be true... ” (See Ref. [12]) He
also refers to counter-examples and argues that “ Confronted
with such a collection of counter-examples of the now tra-
ditional statement of the Saint-Venant’s principle, one must
agree that something is wrong with it.” (See Ref. [13])

Zhao disproves mathematically the “general” Saint-
Venant’s Principle stated by Love, but argues by mathemat-
ical analysis that Saint-Venant type decay of strains (then
stresses) described by Love’s statement can be proved true
by special formulating or adding supplementary conditions
to the problems discussed (See Ref. [11]). Therefore, we
suggest the following Modified Saint-Venant’s Principle:

”In an infinite elastic body, which is loaded by an equi-
librium system of forces on some small part of its surface
(otherwise would be free) and supplemented with sufficient
conditions , assumptions or constraints on its formation of
geometry and loading, the strains and stresses tend to zero as
the distances from the loaded part tend to infinite.”

In the following sections we prove Modified Saint-
Venant’s Principle of the axisymmetrical deformation of the
circular cylinder.

3 Formulating the Problem
Let us consider an axisymmetrical cylinder of length L

with a constant circular cross section. The end (z = 0) of the
cylinder is loaded by an equilibrium system of forces, other-
wise the cylinder would be free. Denoting by a the radius of
the circular cross section, the boundary-value problem of the
cylinder is:
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r = a : σr = 0, τrz = 0, (2)
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We will establish, in the following sections, the equilib-
rium system of forces on the end (z = 0) and the condition-
s that bring about Saint-Venant’s decay of stresses for the
cylinder.

4 Eigenvalue Equation
Considering Eq.(3), let the stress function be
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∑
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Putting Eq.(6) into Eq.(1), we find the solution
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σr =
∂
∂z

[ν∇2ϕ− ∂2ϕ
∂r2 ]

=
∞

∑
n=1

{An[−k3
nJ0(knr)+ k2

n
1
r

J1(knr)]

+ Bn[(1−2ν)k3
nJ0(knr)− k4

nrJ1(knr)]}e−knz, (8)

τrz =
∂
∂r

[(1−ν)∇2ϕ− ∂2ϕ
∂z2 ]

=
∞

∑
n=1

{−Ank3
nJ1(knr)

− Bn[2(1−ν)k3
nJ1(knr)+ k4

nrJ0(knr)]}e−knz. (9)

The condition (2) must be fulfilled by (8) and (9), there-
fore it is required that
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The coefficients An and Bn have non-zero solutions from

Eqs.(10) and (11) if
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Excluding kn = 0, Eq.(12) is changed into
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Equation (13) is the eigenvalue equation of the problem,
from which kn are determined.

5 Stress Components
From Eq.(7) we find the stress components
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6 Saint-Venant Type Decay of Stresses and Its Require-
ment
To guarantee condition (3) to be satisfied and from

Eq.(15) and Eq.(9), it is required that

L → ∞, (16)

kn > 0 (17)

and

An = Bn = 0, (n > N), (18)

where N is a positive integer , that is,

N < ∞. (19)

And then , from Eq.(7) Eq.(8), Eq.(9), Eq.(14) and
Eq.(15),
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where kn is nth positive root of the eigenvalue equation
Eq.(13) and N is a finite positive integer, that is,

kn > 0, N < ∞, (25)



by virtue of Eq.(17) and Eq.(19).
From Eq.(23) and Eq.(24), the equilibrium system of

forces loaded on the end z = 0 should be
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Now we confirm that the boundary-value problem of
the cylinder for Saint-Venant type decay of stresses is for-
mulated by Equations Eq.(1)(attached by Eq.(16)), Eq.(2),
Eq.(3), Eq.(26) and Eq.(27), added by Eq.(5). The solution
of the problem is found to be Equations (20), (21), (22), (23)
and (24), which satisfies all the fundamental equations and
the boundary conditions confirmed for the problem, and is
unique because of the ”Uniqueness of Solution” (See Re-
f. [15]). The solution is the formulation of Saint-Venant type
decay of the problem of the cylinder.

7 Modified Saint-Venant’s Principle of the Axisymmet-
rical Deformation of the Circular Cylinder
From Eqs.(21), (22), (23) and (24) we come to the end

equations

lim
z→∞

σr = 0,

lim
z→∞

σθ = 0,

lim
z→∞

σz = 0,

lim
z→∞

τrz = 0. (28)

Thus we prove Modified Saint-Venant’s Principle of the
axisymmetrical deformation of the circular cylinder by the
end equations in terms of Eq.(28).

8 Conclusion
1.The Statement of Modified Saint-Venant’s Principle is

suggested.
2.The problem of Saint-Venant’s Principle of the ax-

isymmetrical deformation of the infinite circular cylinder
is suggested , and its Modified Saint-Venant’s Principle is
proved and the requirement for the principle to be true is
found.

3.It is evident that finding solutions of boundary-value
problems is a precise and pertinent approach to establish
Saint-Venant type decay of elastic problems.
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