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Abstract

We do a study of the real representations of the Poincare group, motivated by the fol-
lowing: i) the classical electromagnetic field —from which the Poincare group was originally
defined— transforms as a real representation of the Poincare group; ii) the localization
of complex unitary representations of the Poincare group is incompatible with causality,
Poincare covariance and energy positivity, while the complex representation corresponding
to the photon is not localizable.

We start by reviewing the map from the complex to the real irreducible representations—
finite-dimensional or unitary—of a Lie group on a Hilbert space.

Then we show that all the finite-dimensional real representations of the identity compo-
nent of the Lorentz group are also representations of the full Lorentz group, in contrast with
many complex representations.

We finally study the unitary irreducible representations of the Poincare group with dis-
crete spin or helicity and show that: for each pair of complex representations with pos-
itive/negative energy, there is one real representation; the localization, compatible with
causality and Poincare covariance, exists for representations with discrete spin or helicity.

1. Introduction

1.1. Motivation

Henri Poincaré defined the Poincare group as the set of transformations that leave in-
variant the Maxwell equations for the classical electromagnetic field. The classical electro-
magnetic field transforms as a real representation of the Poincare group.

The complex representations of the Poincare group were systematically studied[1–7] and
used in the definition of quantum fields[8]. These studies were very important in the evolu-
tion of the role of symmetry in the Quantum Theory[9], which is based on complex Hilbert
spaces[10–12].

We could not find in the literature a systematic study on the real representations of the
Poincare group — even though representation theory[13, 14] and Quantum Theory [15–20]
on real Hilbert spaces were investigated before — as it seems to be a common assumption
that all fields of all modern theories must be quantum fields and therefore, somehow, every
consistent representation must be complex. However, due to the existence of a map between
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real and complex representations, the motivation for this study is independent of the validity
of such assumption.

The reasons motivating this study are:
1) The real representations of the Poincare group play a main role in the classical electro-

magnetism and general relativity[21]. It is reasonable to think that the real representations
of the Poincare group will still play an important role in the most modern theories based
on the classical electromagnetism and general relativity. As an example, the self-adjoint
quantum fields — such as the Higgs boson, Majorana fermion or quantum electromagnetic
field — transform as real representations under the action of the Poincare group.

2) The parity — included in the full Poincare group — and charge-parity transfor-
mations are not symmetries of the Electroweak interactions[22]. It is not clear why the
charge-parity is an apparent symmetry of the Strong interactions[23] or how to explain the
matter-antimatter asymmetry[24] through the charge-parity violation. We will show that
that all the finite-dimensional real representations of the restricted Lorentz group are also
representations of the parity; also that there are linear and angular momenta spaces for
the real representations of the Poincare group, therefore independent of the charge and
matter-antimatter properties. These results may be useful in future studies of the parity
and charge-parity violations.

3) The localization of complex unitary representations of the Poincare group is incom-
patible with causality, Poincare covariance and energy positivity[25–27], while the complex
representation corresponding to the photon is not localizable[3, 28, 29]. We will show that
the localization of the real irreducible unitary representations of the Poincare group, compat-
ible with causality and Poincare covariance, exists for representations with discrete spin or
helicity. These results may clarify that the localization problems in complex representations
come from the representation of the charge and matter-antimatter properties in relativistic
Quantum Mechanics—which has always been problematic, remember the Dirac sea[30].

1.2. On the map from the complex to the real irreducible representations of a group

Many representations of a group—such as the finite-dimensional representations of semisim-
ple Lie groups[31] or the unitary representations of separable locally compact groups[32]—are
direct sums (or integrals) of irreducible representations.

The study of irreducible representations on complex Hilbert spaces is in general easier
than on real Hilbert spaces, because the field of complex numbers is the algebraic closure
— where any polynomial equation has a root — of the field of real numbers. Given a real
Hilbert space, we can always obtain a complex Hilbert space through complexification —
extension of the scalar multiplication to include multiplication by complex numbers.

Yet, given an irreducible representation on a real Hilbert space V, the representation on
the complex Hilbert space resulting from the complexification of V may be reducible, because
there is a 2-dimensional real representation of the field of complex numbers. Therefore, the
complex irreducible representations do not generalize the real irreducible representations in
the same way that the complex numbers generalize the real numbers.

There is a well studied map, one-to-one or two-to-one and surjective up to equivalence,
from the complex to the real linear finite-dimensional irreducible representations of a real
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Lie algebra[13, 33]. In Section 2, we review a similar map from the complex to the real
irreducible representations—finite-dimensional or unitary—of a Lie group on a Hilbert space.
This section follows closely[13], with the addition that we will also use the Schur’s lemma
for unitary representations on a complex Hilbert space[34].

Related studies can be found in the references [14–17, 35].

1.3. Finite-dimensional representations of the Lorentz group

The Poincare group, also called inhomogeneous Lorentz group, is the semi-direct product
of the translations and Lorentz Lie groups[31]. Whether or not the Lorentz and Poincare
groups include the parity and time reversal transformations depends on the context and
authors. To be clear, we use the prefixes full/restricted when including/excluding par-
ity and time reversal transformations. The Pin(3,1)/SL(2,C) groups are double covers of
the full/restricted Lorentz group. The semi-direct product of the translations with the
Pin(3,1)/SL(2,C) groups is called IPin(3,1)/ISL(2,C) Lie group — the letter (I) stands for
inhomogeneous.

A projective representation of the Poincare group on a complex/real Hilbert space is an
homomorphism, defined up to a complex phase/sign, from the group to the automorphisms of
the Hilbert space. Since the IPin(3,1) group is a double cover of the full Poincare group, their
projective representations are the same[36]. All finite-dimensional projective representations
of a simply connected group, such as SL(2,C), are usual representations[6]. Both SL(2,C)
and Pin(3,1) are semi-simple Lie groups, and so all its finite-dimensional representations are
direct sums of irreducible representations[31]. Therefore, the study of the finite-dimensional
projective representations of the restricted Lorentz group reduces to the study of the finite-
dimensional irreducible representations of SL(2,C).

The Dirac spinor is an element of a 4 dimensional complex vector space, while the Ma-
jorana spinor is an element of a 4 dimensional real vector space[37–40]. The complex finite-
dimensional irreducible representations of SL(2,C) can be written as linear combinations of
tensor products of Dirac spinors.

In Section 3 we will review the Pin(3,1) and SL(2,C) semi-simple Lie groups and its
relation with the Majorana, Dirac and Pauli matrices. We will obtain all the real finite-
dimensional irreducible representations of SL(2,C) as linear combinations of tensor products
of Majorana spinors, using the map from Section 2. Then we will check that all these real
representations are also projective representations of the full Lorentz group, in contrast with
the complex representations which are not all projective representations of the full Lorentz
group.

1.4. Unitary representations of the Poincare group

According to Wigner’s theorem, the most general transformations, leaving invariant the
modulus of the internal product of a Hilbert space, are: unitary or anti-unitary operators,
defined up to a complex phase, for a complex Hilbert; unitary, defined up to a signal, for a
real Hilbert[3, 41]. This motivates the study of the (anti-)unitary projective representations
of the full Poincare group.
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All (anti-)unitary projective representations of ISL(2,C) are, up to isomorphisms, well
defined unitary representations, because ISL(2,C) is simply connected[6]. Both ISL(2,C)
and IPin(3,1) are separable locally compact groups and so all its (anti-)unitary projective
representations are direct integrals of irreducible representations[32]. Therefore, the study
of the (anti-)unitary projective representations of the restricted Poincare group reduces to
the study of the unitary irreducible representations of ISL(2,C).

The spinor fields, space-time dependent spinors, are solutions of the free Dirac equation[42].
The real/complex Bargmann-Wigner fields[43, 44], space-time dependent linear combina-
tions of tensor products of Majorana/Dirac spinors, are solutions of the free Dirac equation
in each tensor index. The complex unitary irreducible projective representations of the
Poincare group with discrete spin or helicity can be written as complex Bargmann-Wigner
fields.

In Section 4, we will obtain all the real unitary irreducible projective representations of
the Poincare group, with discrete spin or helicity, as real Bargmann-Wigner fields, using the
map from Section 2. For each pair of complex representations with positive/negative energy,
there is one real representation. We will define the Majorana-Fourier and Majorana-Hankel
unitary transforms of the real Bargmann-Wigner fields, relating the coordinate space with
the linear and angular momenta spaces. We will show that the localization of the real ir-
reducible unitary representations of the full Poincare group, compatible with causality and
Poincare covariance, exists for representations with discrete spin or helicity; the localization
of the complex irreducible (anti-)unitary representations of the full Poincare group, compat-
ible with causality and Poincare covariance, exists for massless representations with discrete
helicity.

The free Dirac equation is diagonal in the Newton-Wigner representation[28], related
to the Dirac representation through a Foldy-Wouthuysen transformation[45, 46] of Dirac
spinor fields. The Majorana-Fourier transform, when applied on Dirac spinor fields, is
related with the Newton-Wigner representation and the Foldy-Wouthuysen transformation.
In the context of Clifford Algebras, there are studies on the geometric square roots of -1
[19, 47] and on the generalizations of the Fourier transform[48], with applications to image
processing[49].

2. On the map from the complex to the real irreducible representations of a
group

2.1. Representations on real and complex Hilbert spaces

Definition 2.1. A representation (MG, V ) of a Lie group G[50] on a real or complex Hilbert
space V is defined by:

1) the representation space V , which is an Hilbert space;
2) the representation group homomorphism M : G→ B(V ) from the group elements to

the bounded automorphisms with a bounded inverse, such that the map M ′ : G × V → V
defined by M ′(g, v) ≡M(g)v is continuous.
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Definition 2.2. Let Vn, with n ∈ {1, 2}, be two Hilbert spaces. The representations
(Mn,G, Vn) of a group G on the Hilbert spaces Vn are equivalent iff there is a linear bi-
jection α : V1 → V2 such that for all g ∈ G, α ◦M1,G(g) = M2,G(g) ◦ α.

Definition 2.3. Consider a representation (MG, V ). An endomorphism of (MG, V ) is an
endomorphism S : V → V commuting with MG(g), for all g ∈ G.

Definition 2.4. Consider a representation (MG, V ). An isomorphism of (MG, V ) is a bijec-
tive operator S : V → V commuting with MG(g), for all g ∈ G.

Definition 2.5. Let W be a linear subspace of V . (MG,W ) is a (topological) subrepre-
sentation of (MG, V ) iff W is closed and invariant under the group action, that is, for all
w ∈ W : (M(g)w) ∈ W , for all g ∈ G.

Definition 2.6. A representation (MG, V ) is (topologically) irreducible iff their only sub-
representations are the non-proper or trivial sub-representations: (MG, V ) and (MG, {0}),
where {0} is the null space. An irreducible representation is called irrep.

Definition 2.7. Consider a representation (MG, V ) on a complex Hilbert space. A C-
conjugation operator of (MG, V ) is an involution of V commuting with MG(g), for all g ∈ G.

Definition 2.8. Consider a representation (MG,W ) on a real Hilbert space. A R-imaginary
operator of (MG,W ), J , is an isomorphism of (MG,W ) verifying J2 = −1.

Definition 2.9. Consider an irreducible representation (MG, V ) on a complex Hilbert space.
The representation is C-real iff there is a C-conjugation operator. The subset of C-real

irreducible representations is RG(C).
The representation is C-pseudoreal iff there is no C-conjugation operator but there is

an anti-isomorphism of (MG, V ). The subset of C-pseudoreal irreducible representations is
PG(C).

The representation is C-complex iff there is there is no anti-isomorphism of (MG, V ).
The subset of C-complex irreducible representations is CG(C).

Definition 2.10. Consider a representation (MG,W ) on a real Hilbert space. The rep-
resentation (MG,W

c) is the complexification of the representation (MG,W ), defined as
W c ≡ C ⊗ W , with the multiplication by scalars such that a(bw) ≡ (ab)w for a, b ∈ C
and w ∈ W . The internal product of W c is defined as:

< vr + ivi, ur + iui >c≡< vr, ur > + < vi, ui > +i < vr, ui > −i < vi, ur >

for ur, ui, vr, vi ∈ W and < vr, ur > is the internal product of W .

Definition 2.11. Consider a representation (MG, V ) on a complex Hilbert space. The
representation (MG, V

r) is the realification of the representation (MG, V ), defined as V r ≡
V is a real Hilbert space with the multiplication by scalars restricted to reals such that
a(v) ≡ (a+ i0)v for a ∈ R and v ∈ V . The internal product of V r is defined as

< v, u >r≡
< v, u > + < u, v >

2

for u, v ∈ V and < v, u > is the internal product of V .
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2.2. The map from the complex to the real representations

Definition 2.12. Consider the representation (MG,W ) on a real Hilbert space and let
(MG,W

c) be its complexification.
(MG,W ) is R-real iff (MG,W

c) is C-real irreducible. The set of R-real irreducible repre-
sentations is RG(R).

(MG,W ) is R-pseudoreal iff (MG, V ) is C-pseudoreal irreducible, with W c = V ⊕ V̄ . The
set of R-pseudoreal irreducible representations is PG(R).

(MG,W ) is R-complex iff (MG, V ) is C-complex irreducible, with W c = V ⊕ V̄ . The set
of R-complex irreducible representations is CG(R).

Proposition 2.13. Any irreducible real representation is R-real or R-pseudoreal or R-
complex.

Proof. Consider an irreducible representation (MG,W ) on a real Hilbert space. There is
a C-conjugation operator of (MG,W

c), θ, defined by θ(u + iv) ≡ (u − iv) for u, v ∈ W ,
verifying (W c)θ = W .

Let (MG, X
c) be a proper non-trivial subrepresentation of (MG,W

c). Then θ is a C-
conjugation operator of the subrepresentations (MG, Y

c) and (MG, Z
c), where Y c ≡ {u+θv :

u, v ∈ Xc} and Zc ≡ {u : u, θu ∈ Xc}. Therefore, Y c = {u + iv : u, v ∈ Y } and
Zc = {u + iv : u, v ∈ Z}, where Y ≡ {1+θ

2
u : u ∈ Y c} and Z ≡ {1+θ

2
u : u ∈ Zc},

are invariant closed subspaces of W . If Y = {0} then Z = {0} and Y c = Xc = {0}, in
contradiction with Xc being non-trivial. If Z = W then Y = W and Zc = Xc = W c,
in contradiction with Xc being proper. Therefore Z = {0} and Y = W , which implies
Zc = {0} and Y c = W c.

So, (MG,W ) is equivalent to (MG, (X
c)r), due to the existence of the bijective linear

map α : (Xc)r → W , α(u) = u+ θu, α−1(u+ θu) = u, for u ∈ (Xc)r. Suppose that there is
a C-conjugation operator of (MG, X

c), θ′. Then (MG,W±) is a proper non-trivial subrepre-
sentation of (MG,W ), where W± ≡ {1±θ′

2
w : w ∈ W}, in contradiction with (MG,W ) being

irreducible.

Proposition 2.14. Any real representation which is R-real or R-pseudoreal or R-complex
is irreducible.

Proof. Consider an irreducible representation on a complex Hilbert space (MG, V ). There is
a R-imaginary operator J of the representation (MG, V

r), defined by J(u) ≡ iu, for u ∈ V r.
Let (MG, X

r) be a proper non-trivial subrepresentation of (MG, V
r). Then J is an R-

imaginary operator of (MG, Y
r) and (M r

G, Z
r), where Y r ≡ {u + Jv : u, v ∈ Xr} and

Zr ≡ {u : u, Ju ∈ Xr}. Then (MG, Y ) and (MG, Z) are subrepresentations of (MG, V ),
where the complex Hilbert spaces Y ≡ Y r and Z ≡ Zr have the scalar multiplication such
that (a+ib)(y) = ay+bJy, for a, b ∈ R and y ∈ Y or y ∈ Z. If Y = {0}, then Z = Xr = {0}
which is in contradiction with Xr being non-trivial. If Z = V , then Y = V and Xr = V r

which is in contradiction with Xr being non-trivial. So Z = {0} and Y = V , which implies
that V = (Xr)c.

Then there is a C-conjugation operator of (MG, V ), θ, defined by θ(u + iv) ≡ u − iv,
for u, v ∈ Xr. We have Xr = Vθ. Suppose there is a R-imaginary operator of (MG, Vθ), J

′.
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Then (MG, V±), where V± ≡ {1±iJ ′

2
v : v ∈ V }, are proper non-trivial subrepresentations of

(MG, V ), in contradiction with (MG, V ) being irreducible.
Therefore, if (MG, V ) is C-real, then (MG, Vθ) is R-real irreducible. If (MG, V ) is C-

pseudoreal or C-complex, then (MG, V
r
θ ) is R-pseudoreal or R-complex, irreducible.

2.3. Finite-dimensional representations

Lemma 2.15 (Schur’s lemma for finite-dimensional representations[34]). Consider an ir-
reducible finite-dimensional representation (MG, V ) of a Lie group G on a complex Hilbert
space V . If the representation (MG, V ) is irreducible then any endomorphism S of (MG, V )
is a complex scalar.

Lemma 2.16 (Schur’s lemma). If the real representation (MG, V ) is irreducible then the
equivariant endomorphisms of (MG, V ) are either automorphisms or the null map.

Proof. Let T be an equivariant endomorphism of (MG, V ). Then (MG, NT ) and (MG, IT )
are subrepresentations, where NT ≡ {v ∈ V : Tv = 0} and IT ≡ {Tv : v ∈ V }. If (MG, V )
is irreducible, then either NT = V or NT = {0}. If NT = V then T is the null map; if
NT = {0}, then T is injective. If IT = 0 then T is the null map; if IT = V , then T is
surjective. Therefore T is either an automorphism or the null map.

Lemma 2.17. Consider an irreducible finite-dimensional representation (MG, V ) on a com-
plex Hilbert space. A C-conjugation operator of (MG, V ), if it exists, is unique up to a
complex phase.

Proof. Let θ1,θ2 be two anti-isomorphisms of (MG, V ). The product (θ2θ1) is an isomorphism
of (MG, V ); since (MG, V ) is irreducible, (θ2θ1) = reiφ; with φ, r ∈ R, r > 0.

We have 1 = (θ2)2 = r2eiφθ1e
iφθ1 = r2. Therefore θ2 = αθ1α

−1; where α ≡ ei
φ
2 is a

complex phase.

Proposition 2.18. Two R-real irreducible finite-dimensional representations are isomorphic
iff their complexifications are isomorphic.

Proof. Let (MG, V ) and (NG,W ) be C-real irreducible representations, with θM and θN
the respective C-conjugation operators. If there is an isomorphism α : V → W such that
αMG(g) = NG(g)α for all g ∈ G, then ϑ ≡ αθMα

−1 is an anti-isomorphism of (NG,W ).

Since it is unique up to a phase, then θN = eiφϑ. Therefore ei
φ
2α is an isomorphism between

(MG, VθM ) and (NG,WθN ), where VθM ≡ {(1 + θM)v : v ∈ V }.
Proposition 2.19. Two C-complex or C-pseudoreal irreducible finite-dimensional represen-
tations are isomorphic or anti-isomorphic iff their realifications are isomorphic.

Proof. Let (MG, V ) and (NG,W ) be R-complex or R-pseudoreal irreducible representations,
with JM and JN the respective R-imaginary operators. If there is an isomorphism α : V → W
such that αMG(g) = NG(g)α for all g ∈ G, then K ≡ αJMα

−1 is a R-imaginary operator of
(NG,W ). When considering (NG,WJN ) and (MG, VJM ), whereWJN ≡ {(1−iJN)w : w ∈ W},
we get that (1− JNK)(1−KJN) = c as an operator of WJN . If c = 0 then K = −JN and α
defines an anti-isomorphism between (MG, VJM ) and (NG,WJN ). If c 6= 0 then (1− JNK)α
is an isomorphism between (MG, VJM ) and (NG,WJN ).

7



Proposition 2.20. The space of endomorphisms of a R-real irreducible representation is
isomorphic to R.

Proof. Let (MG, V ) be a C-real irreducible representation, with θ the C-conjugation opera-
tor. If there is an endomorphism α : V → V such that αMG(g) = MG(g)α for all g ∈ G, we
know from Schur lemma that α = reiϕ. Then the endomorphism of Vθ is a real number.

Proposition 2.21. The space of endomorphisms of a R-complex irreducible representation
is isomorphic to C.

Proof. Let (MG, V ) be a R-complex irreducible representation, with J the R-imaginary
operator and consider the complex irreducible representation (MG, VJ), where VJ ≡ {(1 −
iJ)v : v ∈ V }. If there is a non-null endomorphism α of (MG, V ), then K ≡ (1 + JαJ) is
an endomorphism of (MG, V ). If K is an automorphism then VJ is equivalent to V J which
would imply that (MG, V ) is R-pseudoreal. Then K = 0, α is an endomorphism of (MG, VJ)
and hence α = reJθ.

Proposition 2.22. The space of endomorphisms of a R-pseudoreal irreducible representa-
tion is isomorphic to H (quaternions).

Proof. Let (MG, V ) be a R-pseudoreal irreducible representation, with J the R-imaginary
operator and consider the complex irreducible representation (MG, VJ), where VJ ≡ {(1 −
iJ)v : v ∈ V }. Let K0 be an automorphism of (MG, V ) anti-commuting with J , then K2

0 =
reJθ and K0re

Jθ = K0(K2
0) = (K2

0)K0 = reJθK0, therefore K2 = −1, where K ≡ K0/
√
r. If

there is a non-null endomorphism α of (MG, V ), then S ≡ (1−JαJ)/2 and T ≡ (1+JαJ)/2
are endomorphisms of (MG, V ). If T is an automorphism then KT is an automorphism of
(MG, VJ) and hence T = Kc + KJd. If T is null then c = d = 0. If S is an automorphism
then S is an automorphism of (MG, VJ) and hence S = a+ Jb. If S is null then a = b = 0.
Therefore α = S + T = a+ Jb+Kc+KJd, which is isomorphic to the quaternions.

Definition 2.23. A finite-dimensional representation is completely reducible iff it can be
expressed as a direct sum of irreducible representations.

Remark 2.24 (Weyl theorem). All finite-dimensional representations of a semi-simple Lie
group (such as SL(2,C)) are completely reducible.

2.4. Unitary representations

Remark 2.25. Let Hn, with n ∈ {1, 2}, be two Hilbert spaces with internal products <,>:
Hn ×Hn → F,(F = R,C). A linear operator U : H1 → H2 is unitary iff:

1) it is surjective;
2) for all x ∈ H1, < U(x), U(x) >=< x, x >.
The inverse operator U−1 : H2 → H1 is defined by:

< x,U−1y >=< Ux, y >, x ∈ H1, y ∈ H2
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Definition 2.26. Consider a representation (MG, V ). An isometry of (MG, V ) is a unitary
isomorphism of (MG, V ).

Proposition 2.27. Let Hn, with n ∈ {1, 2}, be two complex Hilbert spaces and Hr
n its

complexification. The following two statements are equivalent:
1) The operator U : H1 → H2 is unitary;
2) The operator U r : Hr

1 → Hr
2 is unitary, where U r(h) ≡ U(h), for h ∈ H1.

Proof. Since < h, h >=< h, h >r and U r(h) = U(h), for h ∈ H1, we get the result.

Lemma 2.28 (Schur’s lemma for unitary representations[34]). Consider an irreducible uni-
tary representation (MG, V ) of a Lie group G on a complex Hilbert space V . If the repre-
sentation (MG, V ) is irreducible then any normal operator N of (MG, V ) is a scalar.

Lemma 2.29. Consider an irreducible unitary representation (MG, V ) on a complex Hilbert
space. An anti-isometry of (MG, V ), if it exists, is unique up to a complex phase.

Proof. Let θ1,θ2 be two anti-isometries of (MG, V ). The product (θ2θ1) is an isometry of
(MG, V ); since (MG, V ) is irreducible, (θ2θ1) = eiφ; with φ ∈ R.

Therefore θ2 = αθ1α
−1; where α ≡ ei

φ
2 is a complex phase.

Proposition 2.30. Two R-real irreducible unitary representations are isometric iff their
complexifications are isometric.

Proof. Let (MG, V ) and (NG,W ) be C-real irreducible representations, with θM and θN
the respective C-conjugation operators. If there is an isometry α : V → W such that
αMG(g) = NG(g)α for all g ∈ G, then ϑ ≡ αθMα

−1 is an anti-isometry of (NG,W ). Since

it is unique up to a phase, then θN = eiφϑ. Therefore ei
φ
2α is an isometry between (MG, Vθ)

and (NG,Wθ), where VθM ≡ {(1 + θM)v : v ∈ V }.

Proposition 2.31. Two C-complex or C-pseudoreal irreducible unitary representations are
isomorphic or anti-isomorphic iff their realifications are isomorphic.

Proof. Let (MG, V ) and (NG,W ) be R-complex or R-pseudoreal irreducible representations,
with JM and JN the respective R-imaginary operators. If there is an isometry α : V → W
such that αMG(g) = NG(g)α for all g ∈ G, then K ≡ αJMα

−1 is a R-imaginary operator of
(NG,W ). When considering (NG,WJN ) and (MG, VJM ), whereWJN ≡ {(1−iJN)w : w ∈ W},
we get that (1 − JNK)(1 − KJN) = r as an operator of WJN , where r is a non-negative
null real scalar. If c = 0 then K = −JN and α defines an anti-isometry between (MG, VJM )

and (NG,WJN ). If c 6= 0 then (1 − JNK)αc−
1
2 is an isometry between (MG, VJM ) and

(NG,WJN ).

Proposition 2.32. The space of endomorphisms of a R-real irreducible representation is
isomorphic to R.

Proof. Let (MG, V ) be a C-real irreducible representation, with θ the C-conjugation opera-
tor. If there is an endomorphism α : V → V such that αMG(g) = MG(g)α for all g ∈ G, we
know from Schur lemma that α = reiϕ. Then the endomorphism of Vθ is a real number.
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Proposition 2.33. The space of endomorphisms of a R-complex irreducible representation
is isomorphic to C.

Proof. Let (MG, V ) be a R-complex irreducible representation, with J the R-imaginary
operator. If there is an endomorphism α of (MG, V ), then KK† is an endomorphism of the
C-complex irreducible representation (MG, VJ), where K ≡ (α+JαJ) and VJ ≡ {(1− iJ)v :
v ∈ V }. If KK† = r > 0, then K√

r
is unitary and VJ is equivalent to V J which would

imply that (MG, V ) is C-pseudoreal. Therefore K = 0 and hence α is an endomorphism of
(MG, VJ), so α = reJθ.

Proposition 2.34. The space of endomorphisms of a R-pseudoreal irreducible representa-
tion is isomorphic to H (quaternions).

Proof. Let (MG, V ) be a R-pseudoreal irreducible representation, with J the R-imaginary
operator. If there is an endomorphism α of (MG, V ), then SS† and TT † are a self-adjoint
endomorphisms of the C-complex irreducible representation (MG, VJ), where S ≡ (α −
JαJ)/2, T ≡ (α + JαJ)/2 and VJ ≡ {(1− iJ)v : v ∈ V }. Let K be an unitary operator of
(MG, V ) and anti-commuting with J , then K2 = eJθ and KeJθ = K(K2) = (K2)K = eJθK,
therefore K2 = −1. If TT † = t > 0, then T√

t
is unitary and anti-commutes with J , TK is a

normal endomorphism of (MG, VJ) and therefore T = Kc+KJd; if TT † = 0 then c = d = 0.
If SS† = s > 0, then S√

s
is unitary and commutes with J , S is a normal endomorphism of

(MG, VJ) and therefore S = a+ Jb; if SS† = 0 then a = b = 0.
Therefore α = S + T = a+ Jb+Kc+KJd, which is isomorphic to the quaternions.

Definition 2.35. A unitary representation is completely reducible iff it can be expressed
as a direct integral of irreducible representations.

Remark 2.36. All unitary representations of a separable locally compact group (such as the
Poincare group) are completely reducible.

3. Finite-dimensional representations of the Lorentz group

3.1. Majorana, Dirac and Pauli Matrices and Spinors

Definition 3.1. Fm×n is the vector space of m × n matrices whose entries are elements of
the field F.

In the next remark we state the Pauli’s fundamental theorem of gamma matrices. The
proof can be found in the reference[51].

Remark 3.2 (Pauli’s fundamental theorem). Let Aµ, Bµ, µ ∈ {0, 1, 2, 3}, be two sets of
4× 4 complex matrices verifying:

AµAν + AνAµ = −2ηµν (1)

BµBν +BνBµ = −2ηµν (2)

10



Where ηµν ≡ diag(+1,−1,−1− 1) is the Minkowski metric.
1) There is an invertible complex matrix S such that Bµ = SAµS−1, for all µ ∈

{0, 1, 2, 3}. S is unique up to a non-null scalar.
2) If Aµ and Bµ are all unitary, then S is unitary.

Proposition 3.3. Let αµ, βµ, µ ∈ {0, 1, 2, 3}, be two sets of 4× 4 real matrices verifying:

αµαν + αναµ = −2ηµν (3)

βµβν + βνβµ = −2ηµν (4)

Then there is a real matrix S, with |detS| = 1, such that βµ = SαµS−1, for all µ ∈ {0, 1, 2, 3}.
S is unique up to a signal.

Proof. From remark 3.2, we know that there is an invertible matrix T ′, unique up to a
non-null scalar, such that βµ = T ′αµT

′−1. Then T ≡ T ′/|det(T ′)| has |detT | = 1 and it is
unique up to a complex phase.

Conjugating the previous equation, we get βµ = T ∗αµT ∗−1. Then T ∗ = ei2θT for some
real number θ. Therefore S ≡ eiθT is a real matrix, with |detS| = 1, unique up to a
signal.

Definition 3.4. The Majorana matrices, iγµ, µ ∈ {0, 1, 2, 3}, are 4 × 4 complex unitary
matrices verifying:

(iγµ)(iγν) + (iγν)(iγµ) = −2ηµν (5)

The Dirac matrices are γµ ≡ −i(iγµ).

In the Majorana bases, the Majorana matrices are 4 × 4 real orthogonal matrices. An
example of the Majorana matrices in a particular Majorana basis is:

iγ1 =

[
+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 +1

]
iγ2 =

[
0 0 +1 0
0 0 0 +1

+1 0 0 0
0 +1 0 0

]
iγ3 =

[
0 +1 0 0

+1 0 0 0
0 0 0 −1
0 0 −1 0

]

iγ0 =

[
0 0 +1 0
0 0 0 +1
−1 0 0 0
0 −1 0 0

]
iγ5 =

[
0 −1 0 0

+1 0 0 0
0 0 0 +1
0 0 −1 0

]
= −γ0γ1γ2γ3

(6)

In reference [52] it is proved that the set of five anti-commuting 4 × 4 real matrices is
unique up to isomorphisms. So, for instance, with 4 × 4 real matrices it is not possible to
obtain the euclidean signature for the metric.

Definition 3.5. The Dirac spinor is a 4× 1 complex column matrix, C4×1.

The space of Dirac spinors is a 4 dimensional complex vector space.

Lemma 3.6. The charge conjugation operator Θ, is an anti-linear involution commuting
with the Majorana matrices iγµ. It is unique up to a complex phase.

11



Proof. In the Majorana bases, the complex conjugation is a charge conjugation operator. Let
Θ and Θ′ be two charge conjugation operators operators. Then, ΘΘ′ is a complex invertible
matrix commuting with iγµ, therefore, from Pauli’s fundamental theorem, ΘΘ′ = c, where c
is a non-null complex scalar. Therefore Θ′ = c∗Θ and from Θ′Θ′ = 1, we get that c∗c = 1.

Definition 3.7. Let Θ be a charge conjugation operator.
The set of Majorana spinors, Pinor, is the set of Dirac spinors verifying the Majorana

condition (defined up to a complex phase):

Pinor ≡ {u ∈ C4×1 : Θu = u} (7)

The set of Majorana spinors is a 4 dimensional real vector space. Note that the linear
combinations of Majorana spinors with complex scalars do not verify the Majorana condi-
tion.

There are 16 linear independent products of Majorana matrices. These form a basis of
the real vector space of endomorphisms of Majorana spinors, End(Pinor). In the Majorana
bases, End(Pinor) is the vector space of 4× 4 real matrices.

Definition 3.8. The Pauli matrices σk, k ∈ {1, 2, 3} are 2 × 2 hermitian, unitary, anti-
commuting, complex matrices. The Pauli spinor is a 2 × 1 complex column matrix. The
space of Pauli spinors is denoted by Pauli.

The space of Pauli spinors, Pauli, is a 2 dimensional complex vector space and a 4
dimensional real vector space. The realification of the space of Pauli spinors is isomorphic
to the space of Majorana spinors.

3.2. On the Lorentz, SL(2,C) and Pin(3,1) groups

Remark 3.9. The Lorentz group, O(1, 3) ≡ {λ ∈ R4×4 : λTηλ = η}, is the set of real
matrices that leave the metric, η = diag(1,−1,−1,−1), invariant.

The proper orthochronous Lorentz subgroup is defined by SO+(1, 3) ≡ {λ ∈ O(1, 3) :
det(λ) = 1, λ0

0 > 0}. It is a normal subgroup. The discrete Lorentz subgroup of parity and
time-reversal is ∆ ≡ {1, η,−η,−1}.

The Lorentz group is the semi-direct product of the previous subgroups, O(1, 3) = ∆ n
SO+(1, 3).

Definition 3.10. The set Maj is the 4 dimensional real space of the linear combinations
of the Majorana matrices, iγµ:

Maj ≡ {aµiγµ : aµ ∈ R, µ ∈ {0, 1, 2, 3}} (8)

Definition 3.11. Pin(3, 1) [36] is the group of endomorphisms of Majorana spinors that
leave the space Maj invariant, that is:

Pin(3, 1) ≡
{
S ∈ End(Pinor) : |detS| = 1, S−1(iγµ)S ∈Maj, µ ∈ {0, 1, 2, 3}

}
(9)
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Proposition 3.12. The map Λ : Pin(3, 1)→ O(1, 3) defined by:

(Λ(S))µνiγ
ν ≡ S−1(iγµ)S (10)

is two-to-one and surjective. It defines a group homomorphism.

Proof. 1) Let S ∈ Pin(3, 1). Since the Majorana matrices are a basis of the real vector
space Maj, there is an unique real matrix Λ(S) such that:

(Λ(S))µνiγ
ν = S−1(iγµ)S (11)

Therefore, Λ is a map with domain Pin(3, 1). Now we can check that Λ(S) ∈ O(1, 3):

(Λ(S))µαη
αβ(Λ(S))νβ = −1

2
(Λ(S))µα{iγα, iγβ}(Λ(S))νβ = (12)

= −1

2
S{iγµ, iγν}S−1 = SηµνS−1 = ηµν (13)

We have proved that Λ is a map from Pin(3, 1) to O(1, 3).
2) Since any λ ∈ O(1, 3) conserve the metric η, the matrices αµ ≡ λµνiγ

ν verify:

{αµ, αν} = −2λµαη
αβλνβ = −2ηµν (14)

In a basis where the Majorana matrices are real, from Proposition 3.3 there is a real invertible
matrix Sλ, with |detSΛ| = 1, such that λµνiγ

ν = S−1
λ (iγµ)Sλ. The matrix SΛ is unique up

to a sign. So, ±Sλ ∈ Pin(3, 1) and we proved that the map Λ : Pin(3, 1) → O(1, 3) is
two-to-one and surjective.

3) The map defines a group homomorphism because:

Λµ
ν(S1)Λν

ρ(S2)iγρ = Λµ
νS
−1
2 iγνS2 (15)

= S−1
2 S−1

1 iγµS1S2 = Λµ
ρ(S1S2)iγρ (16)

Remark 3.13. The group SL(2,C) = {eθjiσj+bjσj : θj, bj ∈ R, j ∈ {1, 2, 3}} is simply
connected. Its projective representations are equivalent to its ordinary representations[6].

There is a two-to-one, surjective map Υ : SL(2,C)→ SO+(1, 3), defined by:

Υµ
ν(T )σν ≡ T †σµT (17)

Where T ∈ SL(2,C), σ0 = 1 and σj, j ∈ {1, 2, 3} are the Pauli matrices.

Lemma 3.14. Consider that {M+,M−, iγ
5M+, iγ

5M−} and {P+, P−, iP+, iP−} are orthonor-
mal basis of the 4 dimensional real vector spaces Pinor and Pauli, respectively, verifying:

γ0γ3M± = ±M±, σ3P± = ±P± (18)
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The isomorphism Σ : Pauli→ Pinor is defined by:

Σ(P+) = M+, Σ(iP+) = iγ5M+ (19)

Σ(P−) = M−, Σ(iP−) = iγ5M− (20)

The group Spin+(3, 1) ≡ {Σ ◦ A ◦ Σ−1 : A ∈ SL(2,C)} is a subgroup of Pin(1, 3). For
all S ∈ Spin+(1, 3), Λ(S) = Υ(Σ−1 ◦ S ◦ Σ).

Proof. From remark 3.13, Spin+(3, 1) = {eθjiγ5γ0γj+bjγ0γj : θj, bj ∈ R, j ∈ {1, 2, 3}}. Then,
for all T ∈ SL(2, C):

−iγ0Σ ◦ T † ◦ Σ−1iγ0 = Σ ◦ T−1 ◦ Σ−1 (21)

Now, the map Υ : SL(2,C)→ SO+(1, 3) is given by:

Υµ
ν(T )iγν = (Σ ◦ T−1 ◦ Σ−1)iγµ(Σ ◦ T ◦ Σ−1) (22)

Then, all S ∈ Spin+(3, 1) leaves the space Maj invariant:

S−1iγµS = Υµ
ν(Σ

−1 ◦ S ◦ Σ)iγν ∈Maj (23)

Since all the products of Majorana matrices, except the identity, are traceless, then det(S) =
1. So, Spin+(3, 1) is a subgroup of Pin(1, 3) and Λ(S) = Υ(Σ−1 ◦ S ◦ Σ).

Definition 3.15. The discrete Pin subgroup Ω ⊂ Pin(3, 1) is:

Ω ≡ {±1,±iγ0,±γ0γ5,±iγ5} (24)

The previous lemma and the fact that Λ is continuous, implies that Spin+(1, 3) is a
double cover of SO+(3, 1). We can check that for all ω ∈ Ω, Λ(±ω) ∈ ∆. That is, the
discrete Pin subgroup is the double cover of the discrete Lorentz subgroup. Therefore,
Pin(3, 1) = Ω n Spin+(1, 3)

Since there is a two-to-one continuous surjective group homomorphism, Pin(3, 1) is a
double cover of O(1, 3), Spin+(3, 1) is a double cover of SO+(1, 3) and Spin+(1, 3)∩ SU(4)
is a double cover of SO(3). We can check that Spin+(1, 3) ∩ SU(4) is equivalent to SU(2).

3.3. Finite-dimensional representations of SL(2,C)

Remark 3.16. Since SL(2,C) is a semisimple Lie group, all its finite-dimensional (real or
complex) representations are direct sums of irreducible representations.

Remark 3.17. The finite-dimensional complex irreducible representations of SL(2,C) are
labeled by (m,n), where 2m, 2n are natural numbers. Up to equivalence, the representation
space V(m,n) is the tensor product of the complex vector spaces V +

m and V −n , where V ±m is a
symmetric tensor with 2m Dirac spinor indexes, such that γ5

kv = ±v, where v ∈ V ±m and
γ5
k is the Dirac matrix γ5 acting on the k-th index of v.
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The group homomorphism consists in applying the same matrix of Spin+(1, 3), corre-
spondent to the SL(2, C) group element we are representing, to each index of v. V(0,0) is
equivalent to C and the image of the group homomorphism is the identity.

These are also projective representations of the time reversal transformation, but, for
m 6= n, not of the parity transformation, that is, under the parity transformation, (V +

m ⊗
V −n )→ (V −m ⊗ V +

n ) and under the time reversal transformation (V +
m ⊗ V −n )→ (V +

m ⊗ V −n ).

Lemma 3.18. The finite-dimensional real irreducible representations of SL(2,C) are labeled
by (m,n), where 2m, 2n are natural numbers and m ≥ n. Up to equivalence, the represen-
tation space W(m,n) is defined for m 6= n as:

W(m,n) ≡ {
1 + (iγ5)1 ⊗ (iγ5)1

2
w : w ∈ Wm ⊗Wn}

W(m,m) ≡ {
1 + (iγ5)1 ⊗ (iγ5)1

2
w : w ∈ (Wm)2}

where Wm is a symmetric tensor with m Majorana spinor indexes, such that (iγ5)1(iγ5)kw =
−w, where w ∈ Wm; (iγ5)k is the Majorana matrix iγ5 acting on the k-th index of w; (Wm)2

is the space of the linear combinations of the symmetrized tensor products (u⊗ v + v ⊗ u),
for u, v ∈ Wm.

The group homomorphism consists in applying the same matrix of Spin+(1, 3), corre-
spondent to the SL(2, C) group element we are representing, to each index of the tensor. In
the (0, 0) case, W(0,0) is equivalent to R and the image of the group homomorphism is the
identity.

These are also projective representations of the full Lorentz group, that is, under the
parity or time reversal transformations, (Wm,n → Wm,n).

Proof. For m 6= n the complex irreducible representations of SL(2,C) are C-complex. The
complexification of W(m,n) verifies W c

(m,n) = (V +
m ⊗ V −n )⊕ (V −m ⊗ V +

n ).

For m = n the complex irreducible representations of SL(2,C) are C-real. In a Majorana
basis, the C-conjugation operator of V(m,m), θ, is defined as θ(u⊗v) ≡ v∗⊗u∗, where u ∈ V +

m

and v ∈ V −m . We can check that there is a bijection α : W(m,m) → (V(m,m))θ, defined by

α(w) ≡ 1−i(iγ5)1⊗1
2

w; α−1(v) ≡ v + v∗, for w ∈ W(m,m), v ∈ (V(m,m))θ.
Using the map from Section 2, we can check that the representations W(m,n), with m ≥ n,

are the unique finite-dimensional real irreducible representations of SL(2,C), up to isomor-
phisms.

We can check that W c
(m,n) is equivalent to W c

(n,m), therefore, invariant under the parity
or time reversal transformations.

As examples of real irreducible representations of SL(2, C) we have for (1/2, 0) the
Majorana spinor, for (1/2, 1/2) the linear combinations of the matrices {1, γ0~γ}, for (1, 0)
the linear combinations of the matrices {i~γ,~γγ5}. The group homomorphism is defined as
M(S)(u) ≡ Su and M(S)(A) ≡ SAS†, for S ∈ Spin+(1, 3), u ∈ Pinor, A ∈ {1, ~γγ0} or
A ∈ {i~γ,~γγ5}.
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We can check that the domain of M can be extended to Pin(1, 3), leaving the considered
vector spaces invariant. For m = n, we can define the “pseudo-representation” W ′

(m,m) ≡
{((iγ5)1⊗1)w : w ∈ W(m,m)} which is equivalent toW(m,m) as an SL(2, C) representation, but
under parity transforms with the opposite sign. As an example, the “pseudo-representation”
(1/2, 1/2) is defined as the linear combinations of the matrices {iγ5, iγ5~γγ0}.

4. Unitary representations of the Poincare group

4.1. Bargmann-Wigner fields

Definition 4.1. Consider that {M+,M−, iγ
0M+, iγ

0M−} and {P+, P−, iP+, iP−} are or-
thonormal basis of the 4 dimensional real vector spaces Pinor and Pauli, respectively,
verifying:

γ3γ5M± = ±M±, σ3P± = ±P±

Let H be a real Hilbert space. For all h ∈ H, the bijective linear map ΘH : Pauli⊗R H →
Pinor ⊗R H is defined by:

ΘH(h⊗R P+) = h⊗R M+, ΘH(h⊗R iP+) = h⊗R iγ
0M+

ΘH(h⊗R P−) = h⊗R M−, ΘH(h⊗R iP−) = h⊗R iγ
0M−

Definition 4.2. Let Hn, with n ∈ {1, 2}, be two real Hilbert spaces and U : Pauli⊗RH1 →
Pauli⊗R H2 be an operator. The operator UΘ : Pinor⊗R H1 → Pinor⊗R H2 is defined as
UΘ ≡ ΘH2 ◦ U ◦Θ−1

H1
.

The space of Majorana spinors is isomorphic to the realification of the space of Pauli
spinors.

Definition 4.3. The real Hilbert space Pinor(X) ≡ Pinor ⊗ L2(X) is the space of square
integrable functions with domain X and image in Pinor.

Definition 4.4. The complex Hilbert space Pauli(X) ≡ Pauli ⊗ L2(X) is the space of
square integrable functions with domain X and image in Pauli.

Remark 4.5. The Fourier Transform FP : Pauli(R3)→ Pauli(R3) is an unitary operator
defined by:

FP{ψ}(~p) ≡
∫
dn~x

e−i~p·~x√
(2π)n

ψ(~x), ψ ∈ Pauli(R3)

Where the domain of the integral is R3.

Remark 4.6. The inverse Fourier transform verifies:

−~∂2 F−1
P {ψ}(~x) = (F−1

P ◦R){ψ}(~x)

i~∂k F−1
P {ψ}(~x) = (F−1

P ◦R
′
k){ψ}(~x)
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Where ψ ∈ Pauli(R3) and R,R′k : Pauli(R3) → Pauli(R3), with k ∈ {1, 2, 3}, are linear
maps defined by:

R{ψ}(~p) ≡ (~p)2ψ(~p)

R′k{ψ}(~p) ≡ ~pk ψ(~p)

Definition 4.7. Let ~x ∈ R3. The spherical coordinates parametrization is:

~x = r(sin(θ) sin(ϕ)~e1 + sin(θ) sin(ϕ)~e2 + cos(θ)~e3)

where {~e1, ~e2, ~e3} is a fixed orthonormal basis of R3 and r ∈ [0,+∞[, θ ∈ [0, π], ϕ ∈ [−π, π].

Definition 4.8. Let

S3 ≡ {(p, l, µ) : p ∈ R≥0; l, µ ∈ Z; l ≥ 0;−l ≤ µ ≤ l}

The Hilbert space L2(S3) is the real Hilbert space of real Lebesgue square integrable functions
of S3. The internal product is:

< f, g >=
+∞∑
l=0

l−1∑
µ=−l

∫ +∞

0

dpf(p, l, µ)g(p, l, µ), f, g ∈ L2(S3)

Definition 4.9. The Spherical transform HP : Pauli(R3) → Pauli(S3) is an operator
defined by:

HP{ψ}(p, l, µ) ≡
∫
r2drd(cos θ)dϕ

2p√
2π
jl(pr)Ylµ(θ, ϕ)ψ(r, θ, ϕ), ψ ∈ Pauli(R3)

The domain of the integral is R3. The spherical Bessel function of the first kind jl [53], the
spherical harmonics Ylµ[54] and the associated Legendre functions of the first kind Plµ are:

jl(r) ≡rl
(
− 1

r

d

dr

)l sin r
r

Ylµ(θ, ϕ) ≡

√
2l + 1

4π

(l −m)!

(l +m)!
P µ
l (cos θ)eiµϕ

P µ
l (ξ) ≡(−1)µ

2ll!
(1− ξ2)µ/2

dl+µ

dξl+µ
(ξ2 − 1)l

Remark 4.10. Due to the properties of spherical harmonics and Bessel functions, the Spher-
ical transform is an unitary operator. The inverse Spherical transform verifies:

−~∂2 H−1
P {ψ}(~x) = (H−1

P ◦R){ψ}(~x)

(−x1i∂2 + x2i∂1) H−1
P {ψ}(~x) = (H−1

P ◦R
′){ψ}(~x)

Where ψ ∈ Pauli(S3) and R,R′ : Pauli(S3)→ Pauli(S3) are linear maps defined by:

R{ψ}(p, l, µ) ≡ p2ψ(p, l, µ)

R′{ψ}(p, l, µ) ≡ µ ψ(p, l, µ)
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Definition 4.11. The real vector space Pinorj, with 2j a positive integer, is the space of
linear combinations of the tensor products of 2j Majorana spinors, symmetric on the spinor
indexes. The real vector space Pinor0 is the space of linear combinations of the tensor
products of 2 Majorana spinors, anti-symmetric on the spinor indexes.

Definition 4.12. The real Hilbert space Pinorj(X) ≡ Pinorj⊗L2(X) is the space of square
integrable functions with domain X and image in Pinorj.

Definition 4.13. The Hilbert space Pinorj,n, with (j − ν) an integer and −j ≤ n ≤ j is
defined as:

Pinorj,n ≡ {Ψ ∈ Pinorj :

k=2j∑
k=1

(γ0)1

(
γ0γ3γ5

)
k
Ψ = 2nΨ}

Where
(
γ3γ5

)
k

is the matrix γ3γ5 acting on the Majorana index k. Given

Definition 4.14. The Spherical transform H′P : Pinorj(R3) → Pinorj(S3) is an operator
defined by:

H′P{ψ}(p, l, J, ν) ≡
l∑

µ=−l

j∑
n=−j

< lµjn|Jν >
(
HΘ
P

)
1
{ψ}(p, l, µ, n), ψ ∈ Pinorj(R3)

< lµjn|Jν > are the Clebsh-Gordon coefficients and ψ(p, l, µ, n) ∈ Pinorj,n such that
ψ(p, l, µ) =

∑j
n=−j ψ(p, l, µ, n). (j − n), (J − ν) and (J − j) are integers, with −J ≤ ν ≤ J

and |j − l| ≤ J ≤ j + l.
(
HΘ
P

)
1

is the realification of the transform HP , with the imaginary

number replaced by the matrix iγ0 acting on the first Majorana index of ψ.

Proposition 4.15. Consider a unitary operator U : Pinorj(R3) → Pinorj(X) such that
U ◦H2 = E2 ◦ U , where

iH{Ψ}(~x) ≡
(
γ0~/∂ + iγ0m

)
k
Ψ(~x)

the Majorana matrices act on some Majorana index k; E2{Φ}(X) ≡ E2(X)Φ(X) with
E(X) ≥ m ≥ 0 a real number.

Then the operator U ′ : Pinor(R3)→ Pinor(X) is unitary, where U ′ is defined by:

U ′ ≡ E + UHγ0U †
√
E +m

√
2E

Proof. Note that since E2 = U †H2U , E =
√
E2 commutes with UHγ0U †. We have that

(U ′)†(U ′) =
E + Uγ0HU †
√
E +m

√
2E

E + UHγ0U †
√
E +m

√
2E

= 1

We also have that (U ′)(U ′)† = 1. Therefore, U ′ is unitary.
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Definition 4.16. The Fourier-Majorana transform FM : Pinorj(R3) → Pinorj(R3) is an
unitary operator defined by:

FM{Ψ}(~p) ≡
∫
d3~x
( e−iγ0~p·~x√

(2π)3

)
1

2j∏
k=1

( Ep +H(~x)γ0√
Ep +m

√
2Ep

)
k
Ψ(~x), Ψ ∈ Pinorj(R3)

The matrices with the index k apply on the corresponding spinor index of Ψ.

Definition 4.17. The Hankel-Majorana transform HM : Pinorj(R3) → Pinorj(S3) is an
unitary operator defined by:

HM{Ψ}(p, l, J, ν) ≡
l∑

µ=−l

j∑
n=−j

< lµjn|Jν >
∫
d3~x

( 2p√
2π
jl(pr)Ylµ(θ, ϕ)

)
1

2j∏
k=1

( Ep +H(~x)γ0√
Ep +m

√
2Ep

)
k
Ψ(~x, n)

The matrices with the index k apply on the corresponding spinor index of Ψ ∈ Pinorj(R3).
< lµjn|Jν > are the Clebsh-Gordon coefficients and Ψ(~x, n) ∈ Pinorj,n such that Ψ(~x) =∑j

n=−j Ψ(~x, n).

The inverse Fourier-Majorana transform verifies:

(iH(~x))k F−1
M {ψ}(~x) = (F−1

M ◦R){ψ}(~x)

~∂l F−1
M {ψ}(~x) = (F−1

M ◦R
′){ψ}(~x)

Where ψ ∈ Pinorj(R3) and R,R′ : Pinorj(R3)→ Pinorj(R3) are linear maps defined by:

R{ψ}(~p) ≡ (iγ0)kEpψ(~p)

R′{ψ}(~p) ≡ (iγ0)1~pl ψ(~p)

The inverse Hankel-Majorana transform verifies:

(iH(~x))k H−1
M {ψ}(~x) = (H−1

M ◦R){ψ}(~x)

(−x1∂2 + x2∂1 +

2j∑
k=1

(iγ0γ3γ5)k) H−1
M {ψ}(~x) = (H−1

M ◦R
′){ψ}(~x)

Where ψ ∈ Pinorj(S3) and R,R′ : Pinorj(S3)→ Pinorj(S3) are linear maps defined by:

R{ψ}(p, l, J, ν) ≡ (iγ0)kEpψ(p, l, J, ν)

R′{ψ}(p, l, J, ν) ≡ (iγ0)1ν ψ(p, l, J, ν)
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Definition 4.18. The space of (real) Bargmann-Wigner fields BWj(R3) is defined as:

BWj ≡ {Ψ ∈ Pinorj(R3) :
(
eiH(~x)t

)
k
Ψ =

(
eiH(~x)t

)
1
Ψ; 1 ≤ k ≤ 2j; t ∈ R}

Note that if the equality e−iH1tΨ = e−iH2tΨ holds for all differentiable Ψ ∈ H then for
the continuous linear extension the equality holds for all Ψ ∈ H, by the bounded linear
transform theorem.

Definition 4.19. The complex Hilbert space Diracj(X) ≡ Pinorj(X)⊗C is the complexifi-
cation of Pinorj(X). The space of complex Bargmann-Wigner fields is the complexification
of the space of real Bargmann-Wigner fields.

4.2. Real unitary representations of the Poincare group

Definition 4.20. The IP in(3, 1) group is defined as the semi-direct product Pin(3, 1)nR4,
with the group’s product defined as (A, a)(B, b) = (AB, a + Λ(A)b), for A,B ∈ Pin(3, 1)
and a, b ∈ R4 and Λ(A) is the Lorentz transformation corresponding to A.

The ISL(2, C) group is isomorphic to the subgroup of IP in(3, 1), obtained when Pin(3, 1)
is restricted to Spin+(1, 3). The full/restricted Poincare group is the representation of the
IP in(3, 1)/ISL(2, C) group on Lorentz vectors, defined as {(Λ(A), a) : A ∈ Pin(3, 1), a ∈
R4}.

Definition 4.21. Given a Lorentz vector l, the little group Gl is the subgroup of SL(2, C)
such that for all g ∈ Gl, g/l = /lg.

Proposition 4.22. Given a Lorentz vector l, consider a set of matrices αk ∈ SL(2, C)
verifying αk/l = /kαk. Let Hk ≡ {α−1

ΛS(k)Sαk : S ∈ SL(2, C)}. Then Hk = Gl.

Proof. We can check that Hk ⊂ Gl. For any s ∈ Gl, there is S = αΛS(k)sα
−1
k such that

s ∈ Hk.

For i/l = iγ0, we can set αp = /pγ0+m√
Ep+m

√
2m

and Gl = SU(2). For i/l = (iγ0 + iγ3), we can

set αp = RpBv, where the boost velocity is v =
E2
p−1

E2
p+1

along z and Rp = e−γ
2γ1θ/2e−γ

1γ3φ/2 is a

rotation from the z axis to the axis
~/p

Ep
= (sinφ cos θγ1 + sinφ sin θγ2 + cosφγ3); Gl = SE(2)

SE(2) = {(1 + iγ5(γ1a+ γ2b)(γ0 + γ3))eiγ
0γ3γ5θ : a, b, θ ∈ R}. (25)

Remark 4.23. The complex irreducible projective representations of the Poincare group
with finite mass split into positive and negative energy representations, which are complex
conjugate of each other. They are labeled by one number j, with 2j being a natural num-
ber. The positive energy representation spaces Vj are, up to isomorphisms, written as a
symmetric tensor product of Dirac spinor fields defined on the 3-momentum space, verifying
(γ0)kΨj(~p) = Ψj(~p). The matrices with the index k apply in the corresponding spinor index
of Ψj.
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The representation space V0 is, up to isomorphisms, written in a Majorana basis as a
complex scalar defined on the 3-momentum space.

The representation map is given by:

LS{Ψ}(~p) =

√
(Λ−1)0(p)

Ep

2j∏
k=1

(α−1
Λ(p)Sαp)kΨ(~Λ−1(p))

Ta{Ψ}(~p) = e−ip·aΨ(~p)

Where αp = /pγ0+m√
Ep+m

√
2m

.

Proposition 4.24. The real irreducible projective representations of the Poincare group with
finite mass are labeled by one number j, with 2j being a natural number. The representation
spaces Wj are, up to isomorphisms, written as a symmetric tensor product of Majorana
spinor fields defined on the 3-momentum space, verifying (iγ0)kΨj(~p) = (iγ0)1Ψj(~p). The
matrices with the index k apply in the corresponding spinor index of Ψj.

The representation space V0 is, up to isomorphisms, written in a Majorana basis as a
real scalar defined on the 3-momentum space, times the identity matrix of a Majorana spinor
space.

The representation map is given by:

LS{Ψ}(~p) =

√
(Λ−1)0(p)

Ep

2j∏
k=1

(α−1
Λ(p)Sαp)kΨ(~Λ−1(p))

Ta{Ψ}(~p) = e−iγ
0p·aΨ(~p)

Remark 4.25. The complex irreducible projective representations of the Poincare group
with null mass split into positive and negative energy representations, which are complex
conjugate of each other. They are labeled by one number j, with 2j being an integer num-
ber. The positive energy representation spaces Vj are, up to isomorphisms, written as a
symmetric tensor product of Dirac spinor fields defined on the 3-momentum space, verifying
(γ0)kΨj(~p) = Ψj(~p) and (γ3γ5)kΨj(~p) = ±Ψj(~p), with the plus sign if j is positive and the
minus sign if j is negative.

The representation space V0 is, up to isomorphisms, written in a Majorana basis as a
scalar defined on the 3-momentum space.

The representation map is given by:

LS{Ψ}(~p) =

√
(Λ−1)0(p)

Ep

2j∏
k=1

(eiγ
0γ3γ5θ)kΨ(~Λ−1(p))

Ta{Ψ}(~p) = e−ip·aΨ(~p)

Where θ is the angle of the rotation of the little group SE(2).
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Remark 4.26. The real irreducible projective representations of the Poincare group with
null mass are labeled by one number j, with 2j being an integer number. The positive
energy representation spaces Vj are, up to isomorphisms, written as a symmetric tensor
product of Majorana spinor fields defined on the 3-momentum space, verifying (iγ0)kΨj(~p) =
(iγ0)1Ψj(~p) and (γ3γ5)kΨj(~p) = ±Ψj(~p), with the plus sign if j is positive and the minus
sign if j is negative.

The representation space V0 is, up to isomorphisms, written in a Majorana basis as the
realification of the complex functions defined on the 3-momentum space, with the operator
correspondent to the imaginary unit given by the matrix iγ0 of a Majorana spinor space.

The representation map is given by:

LS{Ψ}(~p) =

√
(Λ−1)0(p)

Ep

2j∏
k=1

(eiγ
0γ3γ5θ)kΨ(~Λ−1(p))

Ta{Ψ}(~p) = e−iγ
0p·aΨ(~p)

Where θ is the angle of the rotation of the little group SE(2).

4.3. Localization

We can apply Fourier-Majorana transforms to the unitary representations, going from
the momenta to the coordinate space.

For m > 0, given a Lorentz transformation:

LS{Ψ}(x) = SΨ(Λ−1(x)) =

∫
d3~p√
(2π)3

S
/pγ0 +m√

Ep +m
√

2Ep
e−iγ

0Λ(p)·xΨ(~p)

=

∫
d3~p√
(2π)3

/Λ(p)γ0 +m√
Λ0(p) +m

√
2Λ0(p)

e−iγ
0Λ(p)·xR

√
Λ0(p)

Ep
Ψ(~p)

=

∫
d3~p√
(2π)3

(Λ−1)0(p)

Ep

/pγ0 +m√
Ep +m

√
2Ep

e−iγ
0p·xR

√
Ep

(Λ−1)0(p)
Ψ(~Λ−1(p))

Then:

FM ◦ LS{Ψ}(x0, ~p) = e−iγ
0Epx0R

√
(Λ−1)0(p)

Ep
Ψ(~Λ−1(p))

Where R = (α−1
Λ(p)Sαp).

For m = 0, given a Lorentz transformation:

LS{Ψ}(x) = SΨ(Λ−1(x)) =

∫
d3~p√
(2π)3

S
/pγ0

Ep
√

2
Rpe

−iγ0Λ(p)·xΨ(~p)

=

∫
d3~p√
(2π)3

(Λ−1)0(p)

Ep

/pγ0

Ep
√

2
Rpe

−iγ0p·xR

√
Ep

(Λ−1)0(p)
Ψ(~Λ−1(p))
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Then:

FM ◦ LS{Ψ}(x0, ~p) = e−iγ
0Epx0R

√
(Λ−1)0(p)

Ep
Ψ(~Λ−1(p))

Where R = eiγ
5γ3γ0θ.

Definition 4.27. Consider a measurable space (X,M), where M is a σ-algebra of subsets
of X. A projection-valued-measure, π, is a map from M to the set of self-adjoint projections
on a Hilbert space H such that π(X) is the identity operator on H and the function <
ψ, π(A)ψ >, with A ∈M is a measure on M , for all ψ ∈ H.

Definition 4.28. Suppose now that X is a representation of G. Then, a system of imprimi-
tivity is a pair (U, π), where π is a projection valued measure and U an unitary representation
of G on the Hilbert space H, such that U(g)π(A)U−1(g) = π(gA).

Remark 4.29 (Theorem 6.12 of [3]). There is a one-to-one correspondence between the
complex system of imprimitivity (U,P), based on R3, and the representations of SU(2). The
system (U,P) is equivalent to the system induced by the representation of SU(2).

Certainly, an unitary representation of the Poincare group is also an unitary represen-
tation of the Euclidean group. In order to be localizable, we want it to be a system of
imprimitivity (U,P) based on R3 for the Euclidean group. In coordinate space, the charac-
teristic function χA where A is a measurable subset of R3 is a projection valued measure of
a system of imprimitivity. The equality e−iH1tχAΨ = e−iH2tχAΨ holds almost everywhere,
then, since e−iH1t is bounded, there is no problem in the boundary of the subset A which
has null measure.

Then we obtain that all the irreducible real representations of the full Poincare group with
discrete spin or helicity are localizable. For the complex representations, for m = 0, there is
one projector γ5(in coordinate space) which is a Casimir operator, therefore, for anti-unitary
parity and time reversal operations, the irreducible complex (anti-)unitary representations
of the full Poincare group with m = 0 and discrete helicity are localizable.

Remark 4.30 (Corollary 9.15 of [3]). Let (V,P0) be a complex system of imprimitivity based
on R3 for the group M. Then, an arbitrary projection valued measure P based on R3 has
the property that (V,P) is also a system of imprimitivity for M if and only if there exists a
unitary operator Y commuting with V such that P=Y P0 Y-1.

Assuming the Dirac representation of the Poincare group, for a real irreducible represen-
tation of the Poincare group, since the representation is R-complex irreducible, Y = eiγ

0ϕ.
Upon complexification, Y = eiθeiγ

0ϕ. Now we can demand Y to be real and then to commute
with the time inversion operator, and we get Y = 1.

The system of imprimitivity (U,P), based on R3, is Poincare covariant because for time
x0 = 0 at point ~x = 0, we have for the Lorentz group L{Ψ}(0) = SΨ(0).
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The system of imprimitivity (U,P), based on R3 is compatible with causality because the
propagator ∆(x) = 0 for x2 < 0 (space-like x), where the propagator is defined for spin or
helicity 1/2 as:

∆(x) ≡
∫

d3~p

(2π)32Ep

/pγ0 +m√
Ep +m

e−iγ
0p·x /pγ

0 +m√
Ep +m

(26)

And verifies:

Ψ(x) =

∫
d3~y∆(x− y)Ψ(y) (27)

To show it we just need to do a Lorentz transformation such that x0 = 0 and then show
that ∆((0, ~x)) = 0 for ~x 6= 0.

Therefore a localization for real unitary irreducible representations of the Poincare group
with discrete spin and helicity, compatible with Poincare covariance and causality exists.

5. Conclusion

The complex irreducible representations are not a generalization of the real irreducible
representations, in the same way that the complex numbers are a generalization of the real
numbers. There is a map, one-to-one or two-to-one and surjective up to equivalence, from
the complex to the real irreducible representations of a Lie group on a Hilbert space.

All the real finite-dimensional projective representations of the restricted Lorentz group
are also projective representations of the full Lorentz group, in contrast with the complex
representations which are not all projective representations of the full Lorentz group.

We obtained all the real unitary irreducible projective representations of the Poincare
group, with discrete spin, as real Bargmann-Wigner fields. For each pair of complex repre-
sentations with positive/negative energy, there is one real representation. The Majorana-
Fourier and Majorana-Hankel unitary transforms of the real Bargmann-Wigner fields relate
the coordinate space with the linear and angular momenta spaces. The localization of the
real Bargmann-Wigner fields, compatible with causality and Poincare covariance, exists.

We might be interested in the position as an observable. Now the question is, given an
irreducible representation of the Poincare group, should the position be invariant under a
U(1) symmetry? Unfortunately, everyone known to the author that studied this problem
assumed that it should. But the answer a priori is no it should not, because the U(1)
is related with the gauge symmetry which is a local symmetry and it would be useful to
have a well defined notion of localization before we start considering local symmetries. The
localization problems[3, 25–29], only appear in real Hilbert spaces if we require that all the
observables are invariant under a U(1) symmetry—usually associated with the charge—,
this is related with the result in quantum field theory that causality requires the existence
of anti-particles[6].
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