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Abstract

DRAFT VERSION
We study the real representations of the Poincare group and its relation with the complex

representations. The classical electromagnetic field — from which the Poincare group was
originally defined — is a real representation of the Poincare group.

We show that there is a map from the complex to the real irreducible representations of
a Lie group on a Hilbert space — the map is known in the finite-dimensional representations
of a real Lie algebra.

We show that all the finite-dimensional real representations of the restricted Lorentz
group are also representations of the full Lorentz group, in contrast with many complex
representations.

We study the unitary irreducible representations of the Poincare group with discrete spin
and show that for each pair of complex representations with positive/negative energy, there
is one real representation; we show that there are unitary transformations, defining linear
and angular momenta spaces which are common for the real and complex representations.
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1. Introduction

1.1. Motivation

Henri Poincaré defined the Poincare group as the set of transformations that leave in-
variant the Maxwell equations for the classical electromagnetic field. The classical electro-
magnetic field is a real representation of the Poincare group.

The complex representations of the Poincare group were systematically studied[1–6] and
used in the definition of quantum fields[7, 8]. These studies were very important in the
evolution of the role of symmetry in the Quantum Theory[9], which is based on complex
Hilbert spaces[10].

We could not find in the literature a systematic study on the real representations of the
Poincare group — even though representation theory[11, 12] and Quantum Theory [13–19]
on real Hilbert spaces were investigated before — as it seems to be a common assumption
that all fields of all modern theories must be quantum fields and therefore, somehow, every
consistent representation must be complex. However, due to the existence of a map between
real and complex representations, the motivation for this study is independent of the validity
of such assumption.

The reasons motivating this study are:
1) The real representations of the Poincare group play a main role in the classical electro-

magnetism and general relativity[20]. It is reasonable to think that the real representations
of the Poincare group will still play an important role in the most modern theories based
on the classical electromagnetism and general relativity. As an example, the self-adjoint
quantum fields — such as the Higgs boson, Majorana fermion or quantum electromagnetic
field — transform as real representations under the action of the Poincare group[8].

2) The parity — included in the full Poincare group — and charge-parity transfor-
mations are not symmetries of the Electroweak interactions[21]. It is not clear why the
charge-parity is an apparent symmetry of the Strong interactions[22] or how to explain the
matter-antimatter asymmetry[23] through the charge-parity violation. We will show that
that all the finite-dimensional real representations of the restricted Lorentz group are also
representations of the parity; and that there are linear and angular momenta spaces which
are common for the real and complex representations of the Poincare group, therefore in-
dependent of the charge and matter-antimatter properties. These results may be useful in
future studies of the parity and charge-parity violations.

1.2. On the map from the complex to the real irreducible representations of a group

Many representations of a group— such as the finite-dimensional representations of
semisimple Lie groups[24] or the unitary representations of separable locally compact groups[25]
— are direct sums (or integrals) of irreducible representations.

The study of irreducible representations on complex Hilbert spaces is in general easier
than on real Hilbert spaces, because the field of complex numbers is the algebraic closure
— where any polynomial equation has a root — of the field of real numbers. Given a real
Hilbert space, we can always obtain a complex Hilbert space through complexification —
extension of the scalar multiplication to include multiplication by complex numbers.
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Yet, given an irreducible representation on a real Hilbert space V, the representation on
the complex Hilbert space resulting from the complexification of V may be reducible, because
there is a 2-dimensional real representation of the field of complex numbers. Therefore, the
complex representations are not a generalization of the real representations, in the same way
that the complex numbers are a generalization of the real numbers.

There is a well studied map, one-to-one or two-to-one and surjective up to equivalence,
from the complex to the real linear finite-dimensional irreducible representations of a real
Lie algebra[11, 26]. In Section 2, we show that there is a similar map from the complex to
the real irreducible representations of a Lie group on a Hilbert space. The proof is similar
to the known proofs[11] but, instead of the second form of Schur’s lemma, it uses the first
form of Schur’s lemma, valid for representations on infinite-dimensional Hilbert spaces.

Related studies, but for less general types of groups or representations, can be found in
the references[12–15, 27].

1.3. Finite-dimensional representations of the Lorentz group

The Poincare group, also called inhomogeneous Lorentz group, is the semi-direct product
of the translations and Lorentz Lie groups[24]. Whether or not the Lorentz and Poincare
groups include the parity and time reversal transformations depends on the context and
authors. To be clear, we use the prefixes full/restricted when including/excluding par-
ity and time reversal transformations. The Pin(3,1)/SL(2,C) groups are double covers of
the full/restricted Lorentz group. The semi-direct product of the translations with the
Pin(3,1)/SL(2,C) groups is called IPin(3,1)/ISL(2,C) Lie group — the letter (I) stands for
inhomogeneous.

A projective representation of the Poincare group on a complex/real Hilbert space is an
homomorphism, defined up to a complex phase/sign, from the group to the automorphisms
of the Hilbert space. Since the IPin(3,1) group is a double cover of the full Poincare group,
their projective representations are the same[28]. All finite-dimensional projective represen-
tations of a simply connected group, such as SL(2,C), are well defined representations[5].
Both SL(2,C) and Pin(3,1) are semi-simple Lie groups, and so all its finite-dimensional rep-
resentations are direct sums of irreducible representations[24]. Therefore, the study of the
finite-dimensional projective representations of the restricted Lorentz group reduces to the
study of the finite-dimensional irreducible representations of SL(2,C).

The Dirac spinor is an element of a 4 dimensional complex vector space, while the Ma-
jorana spinor is an element of a 4 dimensional real vector space[29–32]. The complex finite-
dimensional irreducible representations of SL(2,C) can be written as linear combinations of
tensor products of Dirac spinors.

In Section 3 we will review the Pin(3,1) and SL(2,C) semi-simple Lie groups and its
relation with the Majorana, Dirac and Pauli matrices. We will obtain all the real finite-
dimensional irreducible representations of SL(2,C) as linear combinations of tensor products
of Majorana spinors, using the map from Section 2. Then we will check that all these real
representations are also projective representations of the full Lorentz group, in contrast with
the complex representations which are not all projective representations of the full Lorentz
group.
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1.4. Unitary representations of the Poincare group

According to Wigner’s theorem, the most general transformations, leaving invariant the
modulus of the internal product of a Hilbert space, are: unitary or anti-unitary operators,
defined up to a complex phase, for a complex Hilbert; unitary, defined up to a signal, for a
real Hilbert[33]. This motivates the study of the (anti-)unitary projective representations of
the full Poincare group.

All (anti-)unitary projective representations of ISL(2,C) are, up to isomorphisms, well
defined unitary representations, because ISL(2,C) is simply connected[5]. Both ISL(2,C)
and IPin(3,1) are separable locally compact groups and so all its (anti-)unitary projective
representations are direct integrals of irreducible representations[25]. Therefore, the study
of the (anti-)unitary projective representations of the restricted Poincare group reduces to
the study of the unitary irreducible representations of ISL(2,C).

The spinor fields, space-time dependent spinors, are solutions of the free Dirac equation[34].
The real/complex Bargmann-Wigner fields[35, 36], space-time dependent linear combina-
tions of tensor products of Majorana/Dirac spinors, are solutions of the free Dirac equation
in each tensor index. The complex unitary irreducible projective representations of the
Poincare group with discrete spin can be written as complex Bargmann-Wigner fields.

In Section 4, we will obtain all the real unitary irreducible projective representations of
the Poincare group, with discrete spin, as real Bargmann-Wigner fields, using the map from
Section 2. For each pair of complex representations with positive/negative energy, there is
one real representation. We will define the Majorana-Fourier and Majorana-Hankel unitary
transforms of the real or complex Bargmann-Wigner fields. Then we relate the Majorana
transforms to the linear and angular momenta of a representation of the Poincare group.

The free Dirac equation is diagonal in the Newton-Wigner representation[37], related
to the Dirac representation through a Foldy-Wouthuysen transformation[38, 39] of Dirac
spinor fields. The Majorana-Fourier transform, when applied on Dirac spinor fields, is
related with the Newton-Wigner representation and the Foldy-Wouthuysen transformation.
In the context of Clifford Algebras, there are studies on the geometric square roots of -1
[17, 18, 40] and on the generalizations of the Fourier transform[41], with applications to
image processing[42].

2. On the map from the complex to the real irreducible representations of a
group

2.1. Representations on real and complex Hilbert spaces

Definition 2.1. A representation (MG, V ) of a Lie group G[43] on a real or complex Hilbert
space V is defined by:

1) the representation space V , which is an Hilbert space;
2) the representation group homomorphism M : G→ B(V ) from the group elements to

the bounded automorphisms with a bounded inverse, such that the map M ′ : G × V → V
defined by M ′(g, v) ≡M(g)v is continuous.

4



Definition 2.2. Let Vn, with n ∈ {1, 2}, be two Hilbert spaces. The representations
(Mn,G, Vn) of a group G on the Hilbert spaces Vn are equivalent iff there is a linear bi-
jection α : V1 → V2 such that for all g ∈ G, α ◦M1,G(g) = M2,G(g) ◦ α.

Definition 2.3. Consider a representation (MG, V ). An equivariant endomorphism of
(MG, V ) is an endomorphism of V commuting with MG(g), for all g ∈ G.

Definition 2.4. Let W be a closed linear subspace of V . (MG,W ) is a (topological) sub-
representation of (MG, V ) iff W is invariant under the group action, that is, for all w ∈ W :
(M(g)w) ∈ W , for all g ∈ G.

Definition 2.5. A representation (MG, V ) is (topologically) irreducible iff their only sub-
representations are the non-proper or trivial sub-representations: (MG, V ) and (MG, {0}),
where {0} is the null space. An irreducible representation is called irrep.

Lemma 2.6 (Schur’s lemma). If the representation (MG, V ) is irreducible then the equiv-
ariant bounded endomorphisms of (MG, V ) are either automorphisms or the null map.

Proof. Let T be an equivariant endomorphism of (MG, V ). Then (MG, VT ) is a subrepresen-
tations, where VT ≡ {v ∈ V : Tv = 0}. The kernel of a bounded linear operator is a closed
subspace. If (MG, V ) is irreducible, then either VT = V or VT = {0}. If VT = V then T is
the null map. If VT = {0}, since T is linear, Tu = Tv implies u = v for u, v ∈ V ; therefore
T is one-to-one and hence an automorphism.

Definition 2.7. Consider a representation (MG, V ) on a complex Hilbert space. A C-
conjugation operator of (MG, V ) is an anti-linear bounded involution of V commuting with
MG(g), for all g ∈ G.

Lemma 2.8. Consider an irreducible representation (MG, V ) on a complex Hilbert space.
A C-conjugation operator of (MG, V ), if it exists, is unique up to an isomorphism.

Proof. Let θ1,θ2 be two C-conjugation operators of (MG, V ). Since (MG, V ) is irreducible,
the equivariant endomorphism T ≡ (1 + θ2θ1) is either an automorphism or the null map.

If T is the null map, then θ2 = −θ1 = αθ1α
−1; where the equivariant automorphism of

(MG, V ), α, is defined by αv ≡ iv for v ∈ V .
If T is an automorphism, then θ2 = Tθ1T

−1.

Definition 2.9. Consider a representation (MG, V ) on a complex Hilbert space.
The representation is C-real iff there is an C-conjugation operator. The subset of C-real

irreducible representations is RG(C).
The representation is C-pseudoreal iff there is no C-conjugation operator but there is an

equivariant anti-automorphism of (MG, V ) the representation is equivalent to its complex
conjugate. The subset of C-pseudoreal irreducible representations is PG(C).

The representation is C-complex iff there is there is no equivariant anti-automorphism
of (MG, V ). The subset of C-complex irreducible representations is CG(C).
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Definition 2.10. Consider a representation (MG,W ) on a real Hilbert space. A R-imaginary
operator of (MG,W ), J , is an equivariant bounded automorphism of (MG,W ) verifying
J2 = −1.

Lemma 2.11. Consider an irreducible representation (MG,W ) on a real Hilbert space. A
R-imaginary operator of (MG,W ), if it exists, is unique up an isomorphism or a sign.

Proof. Let J1,J2 be two R-imaginary operators of (MG,W ). Since (MG,W ) is irreducible,
the equivariant endomorphism T ≡ (1 − J2J1) is either an automorphism or the null map.
If T is the null map, then J2 = −J1. If T is an automorphism, then J2 = TJ1T

−1.

Definition 2.12. Consider the irreducible representation (MG,W ) on a real Hilbert space.
The representation is R-real iff there is no R-imaginary operator. The subset of R-real

irreducible representations is RG(R).
The representation is R-pseudoreal iff there is a R-imaginary operator, unique up to an

isomorphism. The subset of R-pseudoreal irreducible representations is PG(R).
The representation is R-complex iff there is a R-imaginary operator, non-unique up to

an isomorphism. The subset of R-complex irreducible representations is CG(R).

Definition 2.13. Consider a representation (MG,W ) on a real Hilbert space. The rep-
resentation (MG,W

c) is the complexification of the representation (MG,W ), defined as
W c ≡ C ⊗ W , with the multiplication by scalars such that a(bw) ≡ (ab)w for a, b ∈ C
and w ∈ W . The internal product of W c is defined as:

< vr + ivi, ur + iui >c≡< vr, ur > + < vi, ui > +i < vr, ui > −i < vi, ur >

for ur, ui, vr, vi ∈ W and < vr, ur > is the internal product of W .

Definition 2.14. Consider a representation (MG, V ) on a complex Hilbert space. The
representation (MG, V

r) is the realification of the representation (MG, V ), defined as V r ≡
V is a real Hilbert space with the multiplication by scalars restricted to reals such that
a(v) ≡ (a+ i0)v for a ∈ R and v ∈ V . The internal product of V r is defined as

< v, u >r≡
< v, u > + < u, v >

2

for u, v ∈ V and < v, u > is the internal product of V .

2.2. The map from complex to real representations

Definition 2.15. Consider a group G. The map M is defined (up to equivalence) as:

M(MG, V ) ≡ (MG, Vθ)

where (MG, V ) is a C-real irreducible representation on a complex Hilbert space V , θ is the
C-conjugation operator (unique up to equivalence) of (MG, V ) and Vθ ≡ {1+θ

2
v : v ∈ V }.

M(MG, V ) ≡ (M ,
GV

r)

where (MG, V ) is a C-pseudoreal or C-complex irreducible representation on a complex
Hilbert space V ; (MG, V

r) is the realification of (MG, V ).
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Proposition 2.16. Consider a group G. M is a map from RG(C) to RG(R) and from
PG(C) ∪ CG(C) to PG(R) ∪ CG(R).

Proof. Consider an irreducible representation on a complex Hilbert space (MG, V ). There is
a R-imaginary operator J of the representation (MG, V

r), defined by J(u) ≡ iu, for u ∈ V r.
Let (MG, X

r) be a proper non-trivial subrepresentation of (MG, V
r). Then J is an R-

imaginary operator of (MG, Y
r) and (M r

G, Z
r), where Y r ≡ {u + Jv : u, v ∈ Xr} and

Zr ≡ {u : u, Ju ∈ Xr}. Then (MG, Y ) and (MG, Z) are subrepresentations of (MG, V ),
where the complex Hilbert spaces Y ≡ Y r and Z ≡ Zr have the scalar multiplication such
that (a+ib)(y) = ay+bJy, for a, b ∈ R and y ∈ Y or y ∈ Z. If Y = {0}, then Z = Xr = {0}
which is in contradiction with Xr being non-trivial. If Z = V , then Y = V and Xr = V r

which is in contradiction with Xr being non-trivial. So Z = {0} and Y = V , which implies
that V = (Xr)c.

Then there is a C-conjugation operator of (MG, V ), θ, defined by θ(u + iv) ≡ u − iv,
for u, v ∈ Xr. We have Xr = Vθ. Suppose there is a R-imaginary operator of (MG, Vθ), J

′.
Then (MG, V±), where V± ≡ {1±iJ ′

2
v : v ∈ V }, are proper non-trivial subrepresentations of

(MG, V ), in contradiction with (MG, V ) being irreducible.
Therefore, if (MG, V ) is C-real, then (MG, Vθ) is R-real irreducible. If (MG, V ) is C-

pseudoreal or C-complex, then (MG, V
r
θ ) is R-pseudoreal or R-complex, irreducible.

Proposition 2.17. Consider a group G. M is a surjective map from RG(C) to RG(R) and
from PG(C) ∪ CG(C) to PG(R) ∪ CG(R).

Proof. Consider an irreducible representation (MG,W ) on a real Hilbert space. There is
a C-conjugation operator of (MG,W

c), θ, defined by θ(u + iv) ≡ (u − iv) for u, v ∈ W ,
verifying (W c)θ = W .

Let (MG, X
c) be a proper non-trivial subrepresentation of (MG,W

c). Then θ is a C-
conjugation operator of the subrepresentations (MG, Y

c) and (MG, Z
c), where Y c ≡ {u+θv :

u, v ∈ Xc} and Zc ≡ {u : u, θu ∈ Xc}. Therefore, Y c = {u + iv : u, v ∈ Y } and
Zc = {u+ iv : u, v ∈ Z}, where Y ≡ {1+θ

2
u : u ∈ Y c} and Z ≡ {1+θ

2
u : u ∈ Zc} are invariant

subspaces of W . If Y = {0} then Z = {0} and Y c = Xc = {0}, in contradiction with Xc

being non-trivial. If Z = W then Y = W and Zc = Xc = W c, in contradiction with Xc

being proper. Therefore Z = {0} and Y = W , which implies Zc = {0} and Y c = W c.
So, (MG,W ) is equivalent to (MG, (X

c)r), due to the existence of the bijective linear map
α : (Xc)r → W , α(u) = u+ θu, α−1(u+ θu) = u, for u ∈ (Xc)r.

There is a R-imaginary operator of (MG,W ), J , defined as J(u + θu) ≡ (iu − iθu) for
u ∈ Xc. We can check that Xc = WJ ≡ {1−iJ

2
w : w ∈ W c} and θ(WJ) = W−J . Suppose

that there is a C-conjugation operator of (MG,WJ), θ′. Then θ′ anti-commutes with J and
(MG,W±) is a proper non-trivial subrepresentation of (MG,W ), where W± ≡ {1±θ

2
w : w ∈

W}, in contradiction with (MG,W ) being irreducible.
Therefore, if (MG,W ) is R-real, then (MG,W

c) is C-real irreducible. We have for V ≡
W c, M(MG, V ) = (MG, Vθ) is equivalent to (MG,W ).

If (MG,W ) is R-pseudoreal or R-complex, then (MG,WJ) is C-pseudoreal or C-complex,
irreducible. We have that for V ≡ WJ ,M(MG, V ) = (M r

G, V
r) is equivalent to (MG,W ).
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Proposition 2.18. Consider a group G. Up to equivalence, M defines a one-to-one sur-
jective map from RG(C) to RG(R) and from PG(C) to PG(R); and a two-to-one surjective
map from CG(C) to CG(R).

Proof. Consider an irreducible representation (MG,W ) on a real vector space. There is a
C-conjugation operator of (MG,W

c), θ.
If (MG,W ) is R-real, then (MG,W

c) is C-real irreducible. Therefore the correspondence
Vθ ≡ W is, up to isomorphisms, uniquely determined.

If (MG,W ) is R-pseudoreal or R-complex, then (MG,WJ) is C-pseudoreal or C-complex
irreducible. The correspondence V ≡ WJ only depends on J , the R-imaginary opera-
tor of (MG,W ). J is unique up a sign and isomorphisms. There is an equivariant anti-
automorphism of (MG, V ), S, iff there is an equivariant automorphism of (MG, V

r). S
exists iff the R-imaginary operator of (MG, V

r), J , is unique up to equivalence.

2.3. Unitary and completely reducible representations

Definition 2.19. A representation is completely reducible iff it can be expressed as a direct
sum (or direct integral) of irreducible representations.

Remark 2.20 (Weyl theorem). All finite-dimensional representations of a semi-simple Lie
group (such as SL(2,C)) are completely reducible.

Remark 2.21. Let Hn, with n ∈ {1, 2}, be two Hilbert spaces with internal products <,>:
Hn ×Hn → F,(F = R,C). A linear operator U : H1 → H2 is unitary iff:

1) it is surjective;
2) for all x ∈ H1, < U(x), U(x) >=< x, x >.

Remark 2.22. Given two real Hilbert spaces H1, H2 and an unitary operator U : H1 → H2,
the inverse operator U−1 : H2 → H1 is defined by:

< x,U−1y >=< Ux, y >, x ∈ H1, y ∈ H2

Proposition 2.23. Let Hn, with n ∈ {1, 2}, be two complex Hilbert spaces and Hr
n its

complexification. The following two statements are equivalent:
1) The operator U : H1 → H2 is unitary;
2) The operator U r : Hr

1 → Hr
2 is unitary, where U r(h) ≡ U(h), for h ∈ H1.

Proof. Since < h, h >=< h, h >r and U r(h) = U(h), for h ∈ H1, we get the result.

Remark 2.24. All unitary representations of a separable locally compact group (such as the
Poincare group) are completely reducible.
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3. Finite-dimensional representations of the Lorentz group

3.1. Majorana, Dirac and Pauli Matrices and Spinors

Definition 3.1. Fm×n is the vector space of m × n matrices whose entries are elements of
the field F.

In the next remark we state the Pauli’s fundamental theorem of gamma matrices. The
proof can be found in the reference[44].

Remark 3.2 (Pauli’s fundamental theorem). Let Aµ, Bµ, µ ∈ {0, 1, 2, 3}, be two sets of
4× 4 complex matrices verifying:

AµAν + AνAµ = −2ηµν (1)

BµBν +BνBµ = −2ηµν (2)

Where ηµν ≡ diag(+1,−1,−1− 1) is the Minkowski metric.
1) There is an invertible complex matrix S such that Bµ = SAµS−1, for all µ ∈

{0, 1, 2, 3}. S is unique up to a non-null scalar.
2) If Aµ and Bµ are all unitary, then S is unitary.

Proposition 3.3. Let αµ, βµ, µ ∈ {0, 1, 2, 3}, be two sets of 4× 4 real matrices verifying:

αµαν + αναµ = −2ηµν (3)

βµβν + βνβµ = −2ηµν (4)

Then there is a real matrix S, with |detS| = 1, such that βµ = SαµS−1, for all µ ∈ {0, 1, 2, 3}.
S is unique up to a signal.

Proof. From remark 3.2, we know that there is an invertible matrix T ′, unique up to a
non-null scalar, such that βµ = T ′αµT

′−1. Then T ≡ T ′/|det(T ′)| has |detT | = 1 and it is
unique up to a complex phase.

Conjugating the previous equation, we get βµ = T ∗αµT ∗−1. Then T ∗ = ei2θT for some
real number θ. Therefore S ≡ eiθT is a real matrix, with |detS| = 1, unique up to a
signal.

Definition 3.4. The Majorana matrices, iγµ, µ ∈ {0, 1, 2, 3}, are 4 × 4 complex unitary
matrices verifying:

(iγµ)(iγν) + (iγν)(iγµ) = −2ηµν (5)

The Dirac matrices are γµ ≡ −i(iγµ).

In the Majorana bases, the Majorana matrices are 4 × 4 real orthogonal matrices. An
example of the Majorana matrices in a particular Majorana basis is:

iγ1 =

[
+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 +1

]
iγ2 =

[
0 0 +1 0
0 0 0 +1

+1 0 0 0
0 +1 0 0

]
iγ3 =

[
0 +1 0 0

+1 0 0 0
0 0 0 −1
0 0 −1 0

]

iγ0 =

[
0 0 +1 0
0 0 0 +1
−1 0 0 0
0 −1 0 0

]
iγ5 =

[
0 −1 0 0

+1 0 0 0
0 0 0 +1
0 0 −1 0

]
= −γ0γ1γ2γ3

(6)
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In reference [45] it is proved that the set of five anti-commuting 4 × 4 real matrices is
unique up to isomorphisms. So, for instance, with 4 × 4 real matrices it is not possible to
obtain the euclidean signature for the metric.

Definition 3.5. The Dirac spinor is a 4× 1 complex column matrix, C4×1.

The space of Dirac spinors is a 4 dimensional complex vector space.

Lemma 3.6. The charge conjugation operator Θ, is an anti-linear involution commuting
with the Majorana matrices iγµ. It is unique up to a complex phase.

Proof. In the Majorana bases, the complex conjugation is a charge conjugation operator. Let
Θ and Θ′ be two charge conjugation operators operators. Then, ΘΘ′ is a complex invertible
matrix commuting with iγµ, therefore, from Pauli’s fundamental theorem, ΘΘ′ = c, where c
is a non-null complex scalar. Therefore Θ′ = c∗Θ and from Θ′Θ′ = 1, we get that c∗c = 1.

Definition 3.7. Let Θ be a charge conjugation operator.
The set of Majorana spinors, Pinor, is the set of Dirac spinors verifying the Majorana

condition (defined up to a complex phase):

Pinor ≡ {u ∈ C4×1 : Θu = u} (7)

The set of Majorana spinors is a 4 dimensional real vector space. Note that the linear
combinations of Majorana spinors with complex scalars do not verify the Majorana condi-
tion.

There are 16 linear independent products of Majorana matrices. These form a basis of
the real vector space of endomorphisms of Majorana spinors, End(Pinor). In the Majorana
bases, End(Pinor) is the vector space of 4× 4 real matrices.

Definition 3.8. The Pauli matrices σk, k ∈ {1, 2, 3} are 2 × 2 hermitian, unitary, anti-
commuting, complex matrices. The Pauli spinor is a 2 × 1 complex column matrix. The
space of Pauli spinors is denoted by Pauli.

The space of Pauli spinors, Pauli, is a 2 dimensional complex vector space and a 4
dimensional real vector space. The realification of the space of Pauli spinors is isomorphic
to the space of Majorana spinors.

3.2. On the Lorentz, SL(2,C) and Pin(3,1) groups

Remark 3.9. The Lorentz group, O(1, 3) ≡ {λ ∈ R4×4 : λTηλ = η}, is the set of real
matrices that leave the metric, η = diag(1,−1,−1,−1), invariant.

The proper orthochronous Lorentz subgroup is defined by SO+(1, 3) ≡ {λ ∈ O(1, 3) :
det(λ) = 1, λ0

0 > 0}. It is a normal subgroup. The discrete Lorentz subgroup of parity and
time-reversal is ∆ ≡ {1, η,−η,−1}.

The Lorentz group is the semi-direct product of the previous subgroups, O(1, 3) = ∆ n
SO+(1, 3).
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Definition 3.10. The set Maj is the 4 dimensional real space of the linear combinations
of the Majorana matrices, iγµ:

Maj ≡ {aµiγµ : aµ ∈ R, µ ∈ {0, 1, 2, 3}} (8)

Definition 3.11. Pin(3, 1) [28] is the group of endomorphisms of Majorana spinors that
leave the space Maj invariant, that is:

Pin(3, 1) ≡
{
S ∈ End(Pinor) : |detS| = 1, S−1(iγµ)S ∈Maj, µ ∈ {0, 1, 2, 3}

}
(9)

Proposition 3.12. The map Λ : Pin(3, 1)→ O(1, 3) defined by:

(Λ(S))µνiγ
ν ≡ S−1(iγµ)S (10)

is two-to-one and surjective. It defines a group homomorphism.

Proof. 1) Let S ∈ Pin(3, 1). Since the Majorana matrices are a basis of the real vector
space Maj, there is an unique real matrix Λ(S) such that:

(Λ(S))µνiγ
ν = S−1(iγµ)S (11)

Therefore, Λ is a map with domain Pin(3, 1). Now we can check that Λ(S) ∈ O(1, 3):

(Λ(S))µαη
αβ(Λ(S))νβ = −1

2
(Λ(S))µα{iγα, iγβ}(Λ(S))νβ = (12)

= −1

2
S{iγµ, iγν}S−1 = SηµνS−1 = ηµν (13)

We have proved that Λ is a map from Pin(3, 1) to O(1, 3).
2) Since any λ ∈ O(1, 3) conserve the metric η, the matrices αµ ≡ λµνiγ

ν verify:

{αµ, αν} = −2λµαη
αβλνβ = −2ηµν (14)

In a basis where the Majorana matrices are real, from Proposition 3.3 there is a real invertible
matrix Sλ, with |detSΛ| = 1, such that λµνiγ

ν = S−1
λ (iγµ)Sλ. The matrix SΛ is unique up

to a sign. So, ±Sλ ∈ Pin(3, 1) and we proved that the map Λ : Pin(3, 1) → O(1, 3) is
two-to-one and surjective.

3) The map defines a group homomorphism because:

Λµ
ν(S1)Λν

ρ(S2)iγρ = Λµ
νS
−1
2 iγνS2 (15)

= S−1
2 S−1

1 iγµS1S2 = Λµ
ρ(S1S2)iγρ (16)

Remark 3.13. The group SL(2,C) = {eθjiσj+bjσj
: θj, bj ∈ R, j ∈ {1, 2, 3}} is simply

connected. Its projective representations are equivalent to its ordinary representations[5].
There is a two-to-one, surjective map Υ : SL(2,C)→ SO+(1, 3), defined by:

Υµ
ν(T )σν ≡ T †σµT (17)

Where T ∈ SL(2,C), σ0 = 1 and σj, j ∈ {1, 2, 3} are the Pauli matrices.
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Lemma 3.14. Consider that {M+,M−, iγ
5M+, iγ

5M−} and {P+, P−, iP+, iP−} are orthonor-
mal basis of the 4 dimensional real vector spaces Pinor and Pauli, respectively, verifying:

γ0γ3M± = ±M±, σ3P± = ±P± (18)

The isomorphism Σ : Pauli→ Pinor is defined by:

Σ(P+) = M+, Σ(iP+) = iγ5M+ (19)

Σ(P−) = M−, Σ(iP−) = iγ5M− (20)

The group Spin+(3, 1) ≡ {Σ ◦ A ◦ Σ−1 : A ∈ SL(2,C)} is a subgroup of Pin(1, 3). For
all S ∈ Spin+(1, 3), Λ(S) = Υ(Σ−1 ◦ S ◦ Σ).

Proof. From remark 3.13, Spin+(3, 1) = {eθjiγ5γ0γj+bjγ0γj : θj, bj ∈ R, j ∈ {1, 2, 3}}. Then,
for all T ∈ SL(2, C):

−iγ0Σ ◦ T † ◦ Σ−1iγ0 = Σ ◦ T−1 ◦ Σ−1 (21)

Now, the map Υ : SL(2,C)→ SO+(1, 3) is given by:

Υµ
ν(T )iγν = (Σ ◦ T−1 ◦ Σ−1)iγµ(Σ ◦ T ◦ Σ−1) (22)

Then, all S ∈ Spin+(3, 1) leaves the space Maj invariant:

S−1iγµS = Υµ
ν(Σ

−1 ◦ S ◦ Σ)iγν ∈Maj (23)

Since all the products of Majorana matrices, except the identity, are traceless, then det(S) =
1. So, Spin+(3, 1) is a subgroup of Pin(1, 3) and Λ(S) = Υ(Σ−1 ◦ S ◦ Σ).

Definition 3.15. The discrete Pin subgroup Ω ⊂ Pin(3, 1) is:

Ω ≡ {±1,±iγ0,±γ0γ5,±iγ5} (24)

The previous lemma and the fact that Λ is continuous, implies that Spin+(1, 3) is a
double cover of SO+(3, 1). We can check that for all ω ∈ Ω, Λ(±ω) ∈ ∆. That is, the
discrete Pin subgroup is the double cover of the discrete Lorentz subgroup. Therefore,
Pin(3, 1) = Ω n Spin+(1, 3)

Since there is a two-to-one continuous surjective group homomorphism, Pin(3, 1) is a
double cover of O(1, 3), Spin+(3, 1) is a double cover of SO+(1, 3) and Spin+(1, 3)∩ SU(4)
is a double cover of SO(3). We can check that Spin+(1, 3) ∩ SU(4) is equivalent to SU(2).

3.3. Finite-dimensional representations of SL(2,C)

Remark 3.16. Since SL(2,C) is a semisimple Lie group, all its finite-dimensional (real or
complex) representations are direct sums of irreducible representations.
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Remark 3.17. The finite-dimensional complex irreducible representations of SL(2,C) are
labeled by (m,n), where 2m, 2n are natural numbers. Up to equivalence, the representation
space V(m,n) is the tensor product of the complex vector spaces V +

m and V −n , where V ±m is a
symmetric tensor with 2m Dirac spinor indexes, such that γ5

kv = ±v, where v ∈ V ±m and
γ5
k is the Dirac matrix γ5 acting on the k-th index of v.

The group homomorphism consists in applying the same matrix of Spin+(1, 3), corre-
spondent to the SL(2, C) group element we are representing, to each index of v. V(0,0) is
equivalent to C and the image of the group homomorphism is the identity.

These are also projective representations of the time reversal transformation, but, for
m 6= n, not of the parity transformation, that is, under the parity transformation, (V +

m ⊗
V −n )→ (V −m ⊗ V +

n ) and under the time reversal transformation (V +
m ⊗ V −n )→ (V +

m ⊗ V −n ).

Lemma 3.18. The finite-dimensional real irreducible representations of SL(2,C) are labeled
by (m,n), where 2m, 2n are natural numbers and m ≥ n. Up to equivalence, the represen-
tation space W(m,n) is defined for m 6= n as:

W(m,n) ≡ {
1 + (iγ5)1 ⊗ (iγ5)1

2
w : w ∈ Wm ⊗Wn}

W(m,m) ≡ {
1 + (iγ5)1 ⊗ (iγ5)1

2
w : w ∈ (Wm)2}

where Wm is a symmetric tensor with m Majorana spinor indexes, such that (iγ5)1(iγ5)kw =
−w, where w ∈ Wm; (iγ5) k is the Majorana matrix iγ5 acting on the k-th index of w; (Wm)2

is the space of the linear combinations of the symmetrized tensor products (u⊗ v + v ⊗ u),
for u, v ∈ Wm.

The group homomorphism consists in applying the same matrix of Spin+(1, 3), corre-
spondent to the SL(2, C) group element we are representing, to each index of the tensor. In
the (0, 0) case, W(0,0) is equivalent to R and the image of the group homomorphism is the
identity.

These are also projective representations of the full Lorentz group, that is, under the
parity or time reversal transformations, (Wm,n → Wm,n).

Proof. For m 6= n the complex irreducible representations of SL(2,C) are C-complex. The
complexification of W(m,n) verifies W c

(m,n) = (V +
m ⊗ V −n )⊕ (V −m ⊗ V +

n ).

For m = n the complex irreducible representations of SL(2,C) are C-real. In a Majorana
basis, the C-conjugation operator of V(m,m), θ, is defined as θ(u⊗v) ≡ v∗⊗u∗, where u ∈ V +

m

and v ∈ V −m . We can check that there is a bijection α : W(m,m) → (V(m,m))θ, defined by

α(w) ≡ 1−i(iγ5)1⊗1
2

w; α−1(v) ≡ v + v∗, for w ∈ W(m,m), v ∈ (V(m,m))θ.
Using the map from chapter 1, we can check that the representations W(m,n), with m ≥ n,

are the unique finite-dimensional real irreducible representations of SL(2,C), up to isomor-
phisms.

We can check that W c
(m,n) is equivalent to W c

(n,m), therefore, invariant under the parity
or time reversal transformations.
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As examples of real irreducible representations of SL(2, C) we have for (1/2, 0) the
Majorana spinor, for (1/2, 1/2) the linear combinations of the matrices {1, γ0~γ}, for (1, 0)
the linear combinations of the matrices {i~γ,~γγ5}. The group homomorphism is defined as
M(S)(u) ≡ Su and M(S)(A) ≡ SAS†, for S ∈ Spin+(1, 3), u ∈ Pinor, A ∈ {1, ~γγ0} or
A ∈ {i~γ,~γγ5}.

We can check that the domain of M can be extended to Pin(1, 3), leaving the considered
vector spaces invariant. For m = n, we can define the “pseudo-representation” W ′

(m,m) ≡
{((iγ5)1⊗1)w : w ∈ W(m,m)} which is equivalent toW(m,m) as an SL(2, C) representation, but
under parity transforms with the opposite sign. As an example, the “pseudo-representation”
(1/2, 1/2) is defined as the linear combinations of the matrices {iγ5, iγ5~γγ0}.

4. Unitary representations of the Poincare group

4.1. Hilbert spaces of Pauli and Majorana spinor fields

Definition 4.1. Consider that {M+,M−, iγ
0M+, iγ

0M−} and {P+, P−, iP+, iP−} are or-
thonormal basis of the 4 dimensional real vector spaces Pinor and Pauli, respectively,
verifying:

γ3γ5M± = ±M±, σ3P± = ±P±

Let H be a real Hilbert space. For all h ∈ H, the bijective linear map ΘH : Pauli⊗R H →
Pinor ⊗R H is defined by:

ΘH(h⊗R P+) = h⊗R M+, ΘH(h⊗R iP+) = h⊗R iγ
0M+

ΘH(h⊗R P−) = h⊗R M−, ΘH(h⊗R iP−) = h⊗R iγ
0M−

Definition 4.2. Let Hn, with n ∈ {1, 2}, be two real Hilbert spaces and U : Pauli⊗RH1 →
Pauli⊗R H2 be an operator. The operator UΘ : Pinor⊗R H1 → Pinor⊗R H2 is defined as
UΘ ≡ ΘH2 ◦ U ◦Θ−1

H1
.

The space of Majorana spinors is isomorphic to the realification of the space of Pauli
spinors.

Definition 4.3. The real Hilbert space Pinor(X) ≡ Pinor ⊗ L2(X) is the space of square
integrable functions with domain X and image in Pinor.

Definition 4.4. The complex Hilbert space Pauli(X) ≡ Pauli ⊗ L2(X) is the space of
square integrable functions with domain X and image in Pauli.

Remark 4.5. The Fourier Transform FP : Pauli(R3)→ Pauli(R3) is an unitary operator
defined by:

FP{ψ}(~p) ≡
∫
dn~x

e−i~p·~x√
(2π)n

ψ(~x), ψ ∈ Pauli(R3)

Where the domain of the integral is R3.
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Remark 4.6. The inverse Fourier transform verifies:

−~∂2 F−1
P {ψ}(~x) = (F−1

P ◦R){ψ}(~x)

i~∂k F−1
P {ψ}(~x) = (F−1

P ◦R
′
k){ψ}(~x)

Where ψ ∈ Pauli(R3) and R,R′k : Pauli(R3) → Pauli(R3), with k ∈ {1, 2, 3}, are linear
maps defined by:

R{ψ}(~p) ≡ (~p)2ψ(~p)

R′k{ψ}(~p) ≡ ~pk ψ(~p)

Definition 4.7. Let ~x ∈ R3. The spherical coordinates parametrization is:

~x = r(sin(θ) sin(ϕ)~e1 + sin(θ) sin(ϕ)~e2 + cos(θ)~e3)

where {~e1, ~e2, ~e3} is a fixed orthonormal basis of R3 and r ∈ [0,+∞[, θ ∈ [0, π], ϕ ∈ [−π, π].

Definition 4.8. Let

S3 ≡ {(p, l, µ) : p ∈ R≥0; l, µ ∈ Z; l ≥ 0;−l ≤ µ ≤ l}

The Hilbert space L2(S3) is the real Hilbert space of real Lebesgue square integrable functions
of S3. The internal product is:

< f, g >=
+∞∑
l=0

l−1∑
µ=−l

∫ +∞

0

dpf(p, l, µ)g(p, l, µ), f, g ∈ L2(S3)

Definition 4.9. The Spherical transform HP : Pauli(R3) → Pauli(S3) is an operator
defined by:

HP{ψ}(p, l, µ) ≡
∫
r2drd(cos θ)dϕ

2p√
2π
jl(pr)Ylµ(θ, ϕ)ψ(r, θ, ϕ), ψ ∈ Pauli(R3)

The domain of the integral is R3. The spherical Bessel function of the first kind jl [46], the
spherical harmonics Ylµ[47] and the associated Legendre functions of the first kind Plµ are:

jl(r) ≡rl
(
− 1

r

d

dr

)l sin r
r

Ylµ(θ, ϕ) ≡

√
2l + 1

4π

(l −m)!

(l +m)!
P µ
l (cos θ)eiµϕ

P µ
l (ξ) ≡(−1)µ

2ll!
(1− ξ2)µ/2

dl+µ

dξl+µ
(ξ2 − 1)l
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Remark 4.10. Due to the properties of spherical harmonics and Bessel functions, the Spher-
ical transform is an unitary operator. The inverse Spherical transform verifies:

−~∂2 H−1
P {ψ}(~x) = (H−1

P ◦R){ψ}(~x)

(−x1i∂2 + x2i∂1) H−1
P {ψ}(~x) = (H−1

P ◦R
′){ψ}(~x)

Where ψ ∈ Pauli(S3) and R,R′ : Pauli(S3)→ Pauli(S3) are linear maps defined by:

R{ψ}(p, l, µ) ≡ p2ψ(p, l, µ)

R′{ψ}(p, l, µ) ≡ µ ψ(p, l, µ)

Definition 4.11. The real vector space Pinorj, with 2j a positive integer, is the space of
linear combinations of the tensor products of 2j Majorana spinors, symmetric on the spinor
indexes. The real vector space Pinor0 is the space of linear combinations of the tensor
products of 2 Majorana spinors, anti-symmetric on the spinor indexes.

Definition 4.12. The real Hilbert space Pinorj(X) ≡ Pinorj⊗L2(X) is the space of square
integrable functions with domain X and image in Pinorj.

Definition 4.13. The Hilbert space Pinorj,n, with (j − ν) an integer and −j ≤ n ≤ j is
defined as:

Pinorj,n ≡ {Ψ ∈ Pinorj :

k=2j∑
k=1

(
γ3γ5

)
k
Ψ = 2nΨ}

Where
(
γ3γ5

)
k

is the matrix γ3γ5 acting on the Majorana index k. Given

Definition 4.14. The Spherical transform HM : Pinorj(R3) → Pinorj(S3) is an operator
defined by:

HM{ψ}(p, l, J, ν) ≡
l∑

µ=−l

j∑
n=−j

< lµjn|Jν >
(
HΘ
P

)
1
{ψ}(p, l, µ, n), ψ ∈ Pinorj(R3)

< lµjn|Jν > are the Clebsh-Gordon coefficients and ψ(p, l, µ, n) ∈ Pinorj,n such that
ψ(p, l, µ) =

∑j
n=−j ψ(p, l, µ, n). (j − n), (J − ν) and (J − j) are integers, with −J ≤ ν ≤ J

and |j − l| ≤ J ≤ j + l.
(
HΘ
P

)
1

is the realification of the transform HP , with the imaginary

number replaced by the matrix iγ0 acting on the first Majorana index of ψ.

Proposition 4.15. Consider a unitary operator U : Pinorj(X) → Pinorj(R3), defined by
U{Ψ}(~x) ≡

∫
X dXU(~x,X)Ψ(X) and such that H2 ◦ U = U ◦ E2, where

iH{Ψ}(~x) ≡
(
γ0~/∂ + iγ0m

)
k
Ψ(~x)
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the Majorana matrices act on some Majorana index k; E2{Φ}(X) ≡ E2(X)Φ(X) with
E(X) ≥ m ≥ 0 a real number.

Then the operator U ′ : Pinor(X)→ Pinor(R3) is unitary, where U ′ is defined by:

U ′{Ψ}(~x) ≡
∫
X
dX

E(X) +H(~x)γ0√
E(X) +m

√
2E(X)

U(~x,X)Ψ(X)

Proof. We have that

< U ′{Ψ}, U ′{Ψ} >=

∫
d3~xdXdY

Ψ†(Y )U †(~x,X)
E(Y ) + γ0H(~x)√
E(Y ) +m

√
2E(Y )

E(X) +H(~x)γ0√
E(X) +m

√
2E(X)

U(~x,X)Ψ(X)

From the symmetry of H2(~x), in the integral we can set E2(X) = E2(Y ) and hence E(X) =
E(Y ). Since we have:

E(X) + γ0H(~x)√
E(X) +m

√
2E(X)

E(X) +H(~x)γ0√
E(X) +m

√
2E(X)

= 1

And U is unitary, we get < U ′{Ψ}, U ′{Ψ} >=< Ψ,Ψ >.
We also have that

< U−1{Ψ}, U−1{Ψ} >=

∫
dXd3~xd3~y

Ψ†(~y)
E(X) +H(~y)γ0√
E(X) +m

√
2E(X)

U(~y,X)U †(~x,X)
E(X) + γ0H(~x)√
E(X) +m

√
2E(X)

Ψ(~x)

Since U is unitary, we get < U ′−1{Ψ}, U ′−1{Ψ} >=< Ψ,Ψ >. Therefore, U ′ is unitary.

Definition 4.16. The complex Hilbert space Diracj(X) ≡ Pinorj(X)⊗C is the complexi-
fication of Pinorj(X).

4.2. On the Poincare, ISL(2,C) and IPin(3,1) groups

Definition 4.17. The IP in(3, 1) group is defined as the semi-direct product Pin(3, 1)nR4,
with the group’s product defined as (A, a)(B, b) = (AB, a + Λ(A)b), for A,B ∈ Pin(3, 1)
and a, b ∈ R4 and Λ(A) is the Lorentz transformation corresponding to A.

The ISL(2, C) group is isomorphic to the subgroup of IP in(3, 1), obtained when Pin(3, 1)
is restricted to Spin+(1, 3). The full/restricted Poincare group is the representation of the
IP in(3, 1)/ISL(2, C) group on Lorentz vectors, defined as {(Λ(A), a) : A ∈ Pin(3, 1), a ∈
R4}.
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4.3. Majorana spinor field representation of the Poincare group

Consider a Majorana spinor field Ψ ∈ Pinor(R3). Let the Dirac Hamiltonian, H, be
defined in the configuration space by:

iH{Ψ}(~x) ≡ (γ0~γ · ~∂ + iγ0m)Ψ(~x), m ≥ 0

In the Majorana-momentum space:

iH{Ψ}(~p) ≡ iγ0EpΨ(~p)

The free Dirac equation is verified by:

(∂0 + iH)e−iHx
0{Ψ} = 0

We can check that the free Dirac equation in the Majorana-momentum space is equal to the
free Dirac equation in the Newton-Wigner representation[37], related to the Dirac represen-
tation through a Foldy-Wouthuysen transformation[38, 39] of Dirac spinor fields.

Definition 4.18. Given a Majorana spinor field Ψ ∈ Pinor(R3), we define Ψ(x) ≡ e−iHx
0{Ψ}(~x).

The Majorana spinor field projective representation of the Poincare group is defined, up to
a sign, as:

P (ΛS, b){Ψ}(x) ≡ ±SΨ(Λ−1
S x+ b)

Where ΛS ∈ O(1, 3), S ∈ Pin(3, 1) is such that Λµ
S νγ

ν = SγµS−1 and b ∈ R4.

The translations in space-time are given by P (1, b). Doing a Majorana-Fourier transform,
we get: P (1, b){Ψ}(x0, ~p) ≡ e−iγ

0p·bΨ(x0, ~p), with p2 = m2. Therefore, p is related with the
4-momentum of the Poincare representation.

The rotations are defined by P (R, 0), where R is a rotation. Doing a Majorana-Hankel
transform, we get for a rotation along z by an angle θ:

P (R, 0){Ψ}(x0, p, l, µ) ≡ eiγ
0(µ+ 1

2
)θΨ(x0, p, l, µ)

Therefore, µ is related with the angular momentum of a spin one-half Poincare represen-
tation.

4.4. Finite mass case

Remark 4.19. The complex irreducible projective representations of the Poincare group
with finite mass split into positive and negative energy representations, which are complex
conjugate of each other. They are labeled by one number j, with 2j being a natural number.
The positive energy representation spaces Vj are, up to isomorphisms, written as:

Ψj(x) ≡
∫

d3~p

(2π)3

2j∏
k=1

( /pγ0 +m√
Ep +m

√
2Ep

)
k
e−ip·xΨj(~p)
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where p0 = Ep and Ψj(~p) is a symmetric tensor product of Dirac spinor fields defined on the
3-momentum space, verifying (γ0)kΨj(~p) = Ψj(~p). The matrices with the index k apply in
the corresponding spinor index of Ψj

The representation space V0 is, up to isomorphisms, written as:

Ψ0(x) ≡
∫

d3~p

(2π)3

/pγ0 +m√
Ep +m

√
2Ep

e−ip·x(1 + γ0)(iγ5)Ψ0(~p)
/pγ0 +m√

Ep +m
√

2Ep

where p0 = Ep and Ψ0(~p) is a scalar defined on the 3-momentum space.
The representation map consists in applying the spin one-half representation map to

every spinor index.

Proposition 4.20. The real irreducible projective representations of the Poincare group with
finite mass are labeled by one number j, with 2j being a natural number. The representation
spaces Wj with j > 0 are, up to isomorphisms, written as:

Ψj(x) ≡
∫

d3~p

(2π)3

2j∏
k=1

( /pγ0 +m√
Ep +m

√
2Ep

)
k

(
e−iγ

0p·x
)

1
Ψj(~p)

where p0 = Ep and Ψj(~p) is a symmetric tensor product of Majorana spinor fields defined on
the 3-momentum space, verifying (iγ0)kΨj(~p) = (iγ0)1Ψj(~p). The matrices with the index k
apply on the corresponding spinor index of Ψj.

The representation space W0 is, up to isomorphisms, written as:

Ψ0(x) ≡
∫

d3~p

(2π)3

/pγ0 +m√
Ep +m

√
2Ep

e−iγ
0p·xiγ5Ψ0(~p)

/pγ0 +m√
Ep +m

√
2Ep

where p0 = Ep and Ψ0(~p) is a scalar defined on the 3-momentum space.
The representation map consists in applying the spin one-half representation map to

every spinor index.

4.5. Null mass case

When the mass goes to zero, the representation spaces that we had are no longer irre-
ducible, since the helicity becomes invariant under Lorentz transformations. This is indepen-
dent of whether the representation is real or complex. The subspaces V ±j or W±

j , where for

all Ψj ∈ V ±j or Ψj ∈ W±
j , (~/pγ5)kΨj(~p) = ±Ψj(~p) for all the indexes k, are the irreducible

representations for null mass and discrete helicity. These are not invariant under parity.
There are also massless representations with continuous spin, which will not be studied.

5. Conclusion

The complex representations are not a generalization of the real representations, in the
same way that the complex numbers are a generalization of the real numbers. There is a
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map, one-to-one or two-to-one and surjective up to equivalence, from the complex to the
real irreducible representations of a Lie group on a Hilbert space.

All the real finite-dimensional projective representations of the restricted Lorentz group
are also projective representations of the full Lorentz group, in contrast with the complex
representations which are not all projective representations of the full Lorentz group.

We obtained all the real unitary irreducible projective representations of the Poincare
group, with discrete spin, as real Bargmann-Wigner fields. For each pair of complex repre-
sentations with positive/negative energy, there is one real representation. The Majorana-
Fourier and Majorana-Hankel unitary transforms of the real or complex Bargmann-Wigner
fields are related to the linear and angular momenta of a representation of the Poincare
group, that is, there are linear and angular momenta spaces which are common for the real
and complex representations of the Poincare group, therefore independent of the charge and
matter-antimatter properties. This allows to define, with a common formalism, momenta
spaces for the classical electromagnetic field or for the quantum Dirac field, for instance.
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