Determinants in Geometric Algebra

Eckhard M.S. Hitzer

16 June 2003

1 Definition

Let f be a linear map\(^1\) of a real linear vector space \mathbb{R}^n into itself, an endomorphism

$$f : \mathbf{a} \in \mathbb{R}^n \rightarrow \mathbf{a}' \in \mathbb{R}^n.$$

This map is extended by outermorphism (symbol \mathcal{f}) to act linearly on multivectors

$$f(\mathbf{a}_1 \wedge \mathbf{a}_2 \ldots \wedge \mathbf{a}_k) = f(\mathbf{a}_1) \wedge f(\mathbf{a}_2) \ldots \wedge f(\mathbf{a}_k), \quad k \leq n.$$

By definition f is grade-preserving and linear, mapping multivectors to multivectors. Examples are the reflections, rotations and translations described earlier. The outermorphism of a product of two linear maps fg is the product of the outermorphisms $\mathcal{f}\mathcal{g}$

$$f[g(\mathbf{a}_1)] \wedge f[g(\mathbf{a}_2)] \ldots \wedge f[g(\mathbf{a}_k)] = f[g(\mathbf{a}_1) \wedge g(\mathbf{a}_2) \ldots \wedge g(\mathbf{a}_k)] = \mathcal{f}\mathcal{g}.$$

with $k \leq n$. The square brackets can safely be omitted.

The n–grade pseudoscalars of a geometric algebra are unique up to a scalar factor. This can be used to define the determinant\(^2\) of a linear map as

$$\det(f) = \mathcal{f}(I)I^{-1} = \mathcal{f}(I) \circ I^{-1} \quad \text{and therefore} \quad \mathcal{f}(I) = \det(f)I.$$

For an orthonormal basis $\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}$ the unit pseudoscalar is $I = \mathbf{e}_1 \mathbf{e}_2 \ldots \mathbf{e}_n$ with inverse $I^{-1} = (-1)^n \mathbf{e}_n \mathbf{e}_{n-1} \ldots \mathbf{e}_1 = (-1)^n (-1)^{n(n-1)/2} I$, where g gives the number of basis vectors, that square to -1 (the linear space is then $\mathbb{R}^{p,q}$).

According to Grassmann n–grade vectors represent oriented volume elements of dimension n. The determinant therefore shows how these volumes change under linear maps. Composing two linear maps gives the product of these volume factors

$$\mathcal{f}\mathcal{g}(I) = \mathcal{f}[\det(g)I] = \det(g) \mathcal{f}(I) = \det(g) \det(f)I.$$

Therefore

$$\det(fg) = \det(g) \det(f).$$

\(^1\)The treatment in this section largely follows [1].

\(^2\)The symbol (\cdot) means the (symmetric) scalar product of two multivectors, i.e. the scalar (◦–grade) part of their geometric product.
2 Adjoint and Inverse Linear Maps

For every linear map \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \) exists\(^3\) a unique adjoint linear map \(\tilde{f} : \mathbb{R}^m \rightarrow \mathbb{R}^n \), such that

\[
b \ast \tilde{f}(a) = \tilde{f}(b) \ast a, \quad \forall a, b \in \mathbb{R}^n.
\]

The adjoint linear map extends again via outer-morphism

\[
\tilde{f}(a_1 \wedge a_2 \ldots \wedge a_k) = \tilde{f}(a_1) \wedge \tilde{f}(a_2) \ldots \wedge \tilde{f}(a_k), \quad k \leq n.
\]

In general we have for multivectors \(A, B \) that

\[
B \ast \tilde{f}(A) = \tilde{f}(B) \ast A,
\]

which can be applied to the defining\(^4\) relationship[3] for the (right) contraction

\[
(C \mathcal{L} A) \ast B = C \ast (A \wedge B), \quad \forall \text{ multivectors} \ A, B, C.
\]

For simple grade \(c \)-vectors \(C \) and \(a \)-vectors \(A \), the right contraction \((C \mathcal{L} A) \) is a grade \(c - a \) sub-space multivector of \(C \) perpendicular to \(A \). We now get \(\forall A, B, C \)

\[
\tilde{f}(C \mathcal{L} A) \ast B = (C \mathcal{L} A) \ast \tilde{f}(B) = C \ast \left((A \wedge f(B)) \right) = C \ast \left(f^{-1}(A) \wedge \tilde{f}(B) \right) = C \ast \left(\tilde{f}^{-1}(A) \wedge f\right) = \tilde{f}(C) \ast \left(\tilde{f}^{-1}(A) \wedge f\right) = \tilde{f}(C \mathcal{L} \tilde{f}^{-1}(A)) \ast B,
\]

and therefore

\[
\tilde{f}(C \mathcal{L} A) = \tilde{f}(C) \mathcal{L} \tilde{f}^{-1}(A).
\]

By substituting the pseudoscalar \(I \) for \(C \) and left multiplying with the inverse \(I^{-1} \) we get a general formula for calculating the inverse of \(\tilde{f} \)

\[
I^{-1} \tilde{f}(IA) = I^{-1}(\tilde{f}(I) \mathcal{L} \tilde{f}^{-1}(A)) = I^{-1} \tilde{f}(I) \tilde{f}^{-1}(A) = \det(f) \tilde{f}^{-1}(A),
\]

where we used the fact that right contraction with a pseudoscalar is nothing but the geometric product and that \(f \) is grade preserving.

In the derivation of \(\tilde{f}^{-1} \) we tacitly used the following property of the determinant obtained by applying \(B \ast \tilde{f}(A) = \tilde{f}(B) \ast A \)

\[
\det(f) = \tilde{f}(I) \ast I^{-1} = I \ast \tilde{f}(I^{-1}) = \tilde{f}(I) \ast I^{-1} = \det(\tilde{f}),
\]

because of the symmetry of the scalar product and because \(I^{-1} = (-1)^{n(n-1)/2} I \).

An analogous explicit expression can be derived for \(\tilde{f}^{-1} \)

\[
\tilde{f}^{-1}(A) = \det(f)^{-1} \tilde{f}(fA) I^{-1}, \quad \tilde{f}^{-1}(A) = \det(f)^{-1} \tilde{f}(fA) I^{-1}.
\]

These formulas are very compact and computationally efficient. They show that the inverse mappings can be constructed as double-dualities. Duality here means multiplication with the pseudoscalar \(I \) or \(I^{-1} \).

\(^3\)An explicit definition for the adjoint linear map can be given as \(\tilde{f}(a) = e^k (f(e_l) \ast a) \), with \(e^k \ast e_l = \delta^{k}_{l} \) (the Kronecker delta symbol), where \(1 \leq k, l \leq n \). Here the vectors \(\{e_1, e_2, \ldots, e_n\} \) form (a not necessarily orthonormal nor orthogonal) basis of \(\mathbb{R}^n \).

\(^4\)The symbols \((\ast) \) and \((\wedge) \) denote the (symmetric) scalar and the antisymmetric outer product parts of the geometric product of multivectors.
References

