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Abstract. A new interactive software tool is described, that visualizes 3D space group
symmetries. The software computes with Clifford (geometric) algebra. The space group
visualizer (SGV) originated as a script for the open source visual CLUCalc, which fully
supports geometric algebra computation.

Selected generators (Hestenes and Holt, JMP, 2007) form a multivector genera-
tor basis of each space group. The approach corresponds to an algebraic implementa-
tion of groups generated by reflections (Coxeter and Moser, 4th ed., 1980). The basic
operation is the reflection. Two reflections at non-parallel planes yield a rotation, two
reflections at parallel planes a translation, etc. Combination of reflections corresponds
to the geometric product of vectors describing the individual reflection planes.

We first give some insights into the Clifford geometric algebra description of
space groups. We relate the choice of symmetry vectors and the origin of cells in the
geometric algebra description and its implementation in the SGV to the conventional
crystal cell choices in the International Tables of Crystallography (T. Hahn, Springer,
2005). Finally we briefly explain how to use the SGV beginning with space group
selection. The interactive computer graphics can be used to fully understand how re-
flections combine to generate all 230 three-dimensional space groups.
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1. Introduction
Crystals are fundamentally periodic geometric arrangements of molecules (atoms or ions).
The directed distance between two such molecules is a Euclidean vector in R3. Intuitively
all symmetry properties of crystals depend on these vectors. Indeed, the geometric prod-
uct of vectors [7] combined with the conformal model of three-dimensional (3D) Eu-
clidean space [1,8,15,17,18,27] yield an algebra fully expressing crystal point and space
groups [10, 13, 19–21]. Two successive reflections at (non-) parallel planes express (rota-
tions) translations, etc. [4, 5] This leads to a 1:1 correspondence of geometric objects and
symmetry operators with vectors and their products (Lipschitz elements, called versors
in [13]), ideal for creating a suit of interactive visualizations using CLUCalc [24, 25] and
OpenGL [19–21].

We begin by explaining the representation of point and space groups in conformal
geometric algebra (sections 2 to 5). Then we relate the geometric algebra Bravais lattice
symmetry vectors [14] and origins to the conventional crystallographic cell vectors and
origin choices of [11] (section 6). Finally we explain the basic functions of the software
implementation, called Space Group Visualizer (SGV) [26] in section 7.

2. Cartan-Dieudonné and geometric algebra
Clifford’s associative geometric product [7] of two vectors simply adds the inner product
to the outer product of Grassmann

ab = a ·b+a∧b . (1)

Under this product parallel vectors commute and perpendicular vectors anti-commute

ax‖ = x‖a , ax⊥ =−x⊥a . (2)

This allows to write the reflection of a vector x at a hyperplane1 through the origin with
normal a as (see left side of Fig. 1)

x ′ =−a−1xa , a−1 =
a

a 2 . (3)

The composition of two reflections at hyperplanes, whose normal vectors a,b subtend the
angle α/2, yields a rotation around the intersection of the two hyperplanes (see right side
of Fig. 1) by α

x ′′ = (ab)−1xab , (ab)−1 = b−1 a−1 . (4)
Continuing with a third reflection at a hyperplane with normal c according to the Cartan–
Dieudonné theorem [2, 3, 6, 9] yields rotary reflections (equivalent to rotary inversions
with angle α−π) and inversions

x ′ =−(abc)−1xabc , x ′′ =− i−1x i , i .
= a∧b∧ c, (5)

1The corresponding matrix representation is known as Householder matrices. They are used in numerical
methods, e.g. for solving systems of linear equations, least square problems, Eigenvalue computations, QR-
decomposition, and for transforming symmetric to tridiagonal matrices. [9]
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FIGURE 1. Left: Reflection at a hyperplane normal to a. Right: Rota-
tion generated by two successive reflections at hyperplanes normal to
a,b by twice the angle ∠(a,b).

where .
= means equality up to non-zero scalar factors (which cancel out in (6)). In general

the geometric product of k normal vectors (the versor S) corresponds to the composition of
reflections to all symmetry transformations [13] of two-dimensional (2D) and 3D crystal
cell point groups (also called crystal classes)

x ′ = (−1)kS−1 xS. (6)

3. Two dimensional point groups
2D point groups [13] are generated by multiplying vectors selected [19–21] as in Fig. 2.
The index p can be used to denote these groups as in Table 1. For example the hexagonal
point group (the symmetry group of the hexagon, leaving the center point invariant) is
given by multiplying its two generating vectors a,b

6 = {a,b,R = ab,R2,R3,R4,R5,R6 =−1,aR2,bR2,aR4,bR4}. (7)

In (7) the vectors a,b represent reflections (3) at lines normal to a,b and passing through
the center of the hexagon of Fig. 2. The rotor R = ab represents according to (4) a double
reflection at the two lines passing through the center of the hexagon of Fig. 2 and normal
to a and b, respectively. Because ∠(a,b) = 30◦, the resulting rotation is by 2×30◦ = 60◦

around the center of the hexagon. The cyclic rotation subgroups are denoted in Table 1
with bars, e.g.

6̄ = {R = ab,R2,R3,R4,R5,R6 =−1 .
= 1} (8)

containing the six symmetry rotations of the hexagon of Fig. 2 around its invariant center
by 60◦, and the multiples 120◦, 180◦, 240◦, 300◦, and 360◦. The vectors aR2,bR2,aR4,bR4

in (7) are the normal directions of the remaining four lines (passing through the center of
the hexagon) of reflection symmetry of the hexagon. For further fully interactive illustra-
tions see e.g. the well-commented 2D point group Java applets online available at [16],
which include all 2D point groups of Table 1.



4 E. Hitzer and C. Perwass

FIGURE 2. Regular polygons (p = 1,2,3,4,6) and point group gener-
ating vectors a,b subtending angles π/p shifted to center.

TABLE 1. Geometric and international notation for 2D point groups.

Crystal Oblique Rectangular Trigonal Square Hexagonal
geometric 1̄ 2̄ 1 2 3 3̄ 4 4̄ 6 6̄
international 1 2 m mm 3m 3 4m 4 6m 6

4. Three dimensional point groups
The selection of three vectors a,b,c from each crystal cell [13, 19–21] for generating
all 3D point groups is indicated in Fig. 4. The choice of vectors a,b for point groups of
tetragonal, trigonal, and hexagonal point groups are further illustrated in Figs. 8, and Figs.
11 to 13; for these point groups the third vector c is perpendicular to the a,b plane, such
that a,b,c (in this order) form a right handed set of vectors. Finally, the choice of vectors
a,b,c for cubic point groups is illustrated in Figs. 14 and 15.

For the purpose of point groups keeping a single cell as a whole invariant, the
vectors a,b,c have always to be attached to the invariant center of the respective cell.
These three vectors are normals of characteristic hyperplanes passing through the center
of the respective crystal cell. The hyperplane reflections which the vectors represent and
their combinations as in (3) to (6) constitute all point symmetries of the 3D crystal cells.
The point symmetry transformations are applied to every vertex of a cell and keep the cell
as a whole invariant, transforming each vertex into another vertex.

FIGURE 3. Angular relations of pairs of geometric vectors of a,b,c:
∠(a,b) = π/p, ∠(b,c) = π/q, ∠(a,c) = π/2, p,q ∈ {1,2,3,4,6}.

Using ∠(a,b) and ∠(b,c) (see Fig. 3) we can denote all 32 3D point groups as in
Table 2. Again the overbar notation, like e.g. p̄ means that the two vectors concerned are
only to be used in the fixed rotor combination ab. If the closed overbar extends over both
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TABLE 2. Geometric 3D point group symbols [13] and generators
with a,b,c: ∠(a,b) = π/p, ∠(b,c) = π/q, ∠(a,c) = π/2, p,q ∈
{1,2,3,4,6}.

Symbol p = 1 p p̄ = 1̄ p̄ pq p̄q pq̄ p̄q̄ pq
Generators a a, b 1 ab a, b, c ab, c a, bc ab, bc abc

indexes pq all three vectors are only to be used in the fixed rotoinversion (alias rotary
reflection) combination abc of (5). For example the monoclinic point groups are then (int.
symbols: 2/m, m and 2, respectively)

22̄ = {c,R = a∧b = ic, i = cR,1}, 1 = {c,1}, 2̄ = {ic,1}. (9)

The maximum order point group of the monoclinic cell (called holohedry) has the geomet-
ric name 22̄. Looking at the group elements listed in (9), the groups 1 and 2̄ are obvious
subgroups of 22̄. To generate 22̄ we only need two versors: c (therefore 2 in the group
name 22̄) and R = a∧ b = ic (therefore 2̄ in the group name 22̄)2. Let us point out, that
the symbolic notation of Table 2 is fully isomorphic to the Coxeter notation used in Table
2 of [5], where the two indexes p,q play the very same roles.

FIGURE 4. 7 crystal cells with vector generators a,b,c: triclinic, mon-
oclinic, orthorhombic, tetragonal, trigonal (rhombohedral), hexagonal,
cubic.

5. Space groups
The smooth composition with translations is best done in the conformal model [1, 8, 15,
17,18,27] of Euclidean space (in the GA of R4,1), which adds two null-vector dimensions
for the origin e0 and infinity e∞

X = x+
1
2

x2e∞ + e0, e2
0 = e2

∞ = X2 = 0, X · e∞ =−1. (10)

2The systematic geometric name of the monoclinic holohedry with generators a∧b and c should actually be
2̄2 (and not 22̄). This 2̄2 corresponds 1:1 to the choice of UNIQUE AXIS c in Table 5. Applying the systematic
construction of generators to the geometric point group symbol 22̄ would instead lead to the versors a and b∧c.
In [14] therefore the following cyclic renaming of vectors a→ c, b→ a, and c→ b must be assumed in order
to arrive at the versor generators c and a∧b from 22̄. Special for monoclinic groups is that in order to correctly
represent a 180◦ rotation the bivector a∧b is chosen instead of the geometric product ab = a ·b+a∧b.
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TABLE 3. Computing with reflections and translations. The vectors
a,b are pictured in Fig. 2.

∠(a,b) 180◦ 90◦ 60◦ 45◦ 30◦

Ta b = bT−a bTa bTa−b bTa−b bTa−b
Tb a = aT−b aTb aTb−a aTb−2a aTb−3a

The inner product of two conformal points gives their Euclidean distance and therefore a
plane m equidistant from two points A,B as

X ·A =−1
2
(x−a)2 ⇒ X · (A−B) = 0, m = A−B ∝ n−d e∞, (11)

where n is a unit normal to the plane and d its signed scalar distance from the origin.
Reflecting at two parallel planes m,m′ with distance t/2 we get the translation operator
(by t )

X ′ = m′mX mm′ = T−1
t XTt, Tt = 1+

1
2

te∞. (12)

Reflection at two non-parallel planes m,m′ yields the rotation around the m,m′-intersection
by twice the angle subtended by m,m′.

Group theoretically the conformal group C(3) is isomorphic to O(4,1) and the Eu-
clidean group E(3) is the subgroup of O(4,1) leaving infinity e∞ invariant [13]. Now
general translations and rotations are represented by geometric products of vectors (Lip-
schitz elements, called versors in [13]). To study combinations of versors it is useful to
know that (cf. Table 3)

Tt a = aTt ′ , t ′ =−a−1ta . (13)
Applying these techniques one can compactly tabulate geometric space group symbols

and generators [13]. Table 4 implements this for the 13 monoclinic space groups.
In order to denote Bravais lattices we use the letters P (primitive or principal, one

vertex per cell), I (body-centered), A, B, C (single face-centered), F (face-centered), H
(hexagonally centered), R (rhombohedral). Primitive lattice cells are illustrated in Figs. 4,
6, 14, 15, and 16, placing one general element at each vertex. Body-centered lattice cells
are illustrated in Figs. 9, and 10. Face-centered lattice cells are illustrated in Figs. 7, 20,
and 21. All non-primitive Bravais lattices have extra fractional translations as generators,
see Fig. 5 (compare also Fig. 6 of [14]).

All this is interactively visualized by the Space Group Visualizer [26]. Fig. 6 shows
the SGV screenshot of space group P22̄1 (Int. name P21/m, No. 11).

6. Relations of cell vectors and origins of GA space group generators
with conventional crystallographic cells

In this section we compare crystal cells defined in the course of creating the new crys-
tallographic space group representation in geometric algebra [14] with the conventional
crystal cells of the International Tables for Crystallography [11] (referred to as ITA2005).
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FIGURE 5. Non-primitive Bravais lattices as seen in the SGV. Top row,
left to right: Monoclinic C (generator TC = T 1/2

a+b), orthorhombic I, C,
and F . Center row, left to right: Tetragonal I, trigonal/hexagonal H, F ,
and R. Bottom row, left to right: Cubic I and F .

The definitions of the three-dimensional Bravais lattices and their symmetry vectors in
Fig. 5 (cf. also Fig. 6 of [14]) and the explicit GA versor generators of space groups
specified in Table 5 of [14] are used with minor modifications in the Space Group Visu-
alizer (SGV) [26]. In [14] the origins of crystal cells and their symmetry are implicitly
determined by the generators of Table 5. The SGV makes this explicit in the form of the
geometric algebra cell (GA cell).

Yet in crystallography certain centers of symmetry (e.g. centers of inversion sym-
metry, or intersection points of rotation and screw axis) have deliberately been chosen as
points of origin for conventional crystal cells. These conventional cell origins OITA2005 do
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FIGURE 6. SGV screenshot of space group P22̄1 (Int. name P21/m,
No. 11), cell choice: UNIQUE AXIS b (see Tables 4 and 5). Inversion
centers (gray balls): c∧abT (ka+ lb+mc),k, l,m∈ {0,1,2}, screw axis
(red): c∧ aT (ka+ 1

2 b+mc),k,m ∈ {0,1,2}, reflection planes (blue):
bT ([ 1

2 + l]b), l ∈ {0,1}.

TABLE 4. Monoclinic space group versor (Lipschitz element) genera-
tors, T A = T 1/2

b+c, int. = international [11], geo. = geometric, alt. = alter-
native, columns 3 and 4: [13]. Ta,Tb,Tc suppressed.

Int.# Int. name Geo. name Geo. generators Int. generators Alt. generators
3 P2 P2̄ ic = a∧b
4 P21 P2̄1 icT 1/2

c
5 C2 A2̄ ic, T A

6 Pm P1 c
7 Pc Pa1 cT 1/2

a
8 Cm A1 c, T A

9 Cc Aa1 cT 1/2
a , T A

10 P2/m P22̄ c, ic i, ic i, c
11 P21/m P22̄1 c, icT 1/2

c i, icT 1/2
c i, cT 1/2

c
12 C2/m A22̄ c, ic, T A iT A, icT A,T A i, c, T A

13 P2/c Pa22̄ cT 1/2
a , ic i, icT 1/2

a i, cT 1/2
a

14 P21/c Pa22̄1 cT 1/2
a , icT 1/2

c i, icT 1/2
a+c i, cT 1/2

a+c
15 C2/c Aa22̄ cT 1/2

a , ic, T A i, icT 1/2
a ,T A i, cT 1/2

a ,T A
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in many cases differ from the GA Cell origins OGA Cell. Similarly the Bravais lattices de-
fined in Fig. 5 (cf. also Fig. 6 of [14]) and in sections 2.1.3 and 9.1 of [11] are not always
identical. We denote the symmetry vectors of [14] used in the SGV with italic lower case
bold fonts a, b and c. We denote the conventional crystal cell vectors of [11] by upright
lower case bold fonts a, b and c. We always specify origin shift vectors ∆O in the {a,b,c}
system of geometric symmetry vectors.

We define

∆OITA2005 = OITA2005−OGA Cell, (14)

or, if no GA Cell is explicitly declared as such in the SGV, as

∆OITA2005 = OITA2005−OSGV standard. (15)

In the SGV the notation ITA2005 is not used. Instead cells named IT Cell, IT Cell 1 and IT
Cell 2 can be selected in the SGV, and if different the cell named GA Cell. The position,
size, shape and orientation of a cell depicted in a space group entry in [11] corresponds
to the IT Cell. If [11] provides several diagrams entitled CELL CHOICE 1 (or ORIGIN
CHOICE 1) and CELL CHOICE 2 (or ORIGIN CHOICE 2), then these will corresponds
in position, size, shape and orientation to IT Cell 1 and IT Cell 2, respectively. This leads
to the definitions

∆OIT Cell = OIT Cell−OGA Cell,

∆OIT Cell 1 = OIT Cell 1−OGA Cell,

∆OIT Cell 2 = OIT Cell 2−OGA Cell. (16)

In the following we conduct the comparison for each crystal family. Where nec-
essary additional crystal family specific information is given, including family specific
notation. For ease of notation we refer to space groups by numbers from 1 to 230 as used
in [11] and [14].

6.1. Triclinic space groups # 1,2
In this case both symmetry vectors and origins agree

(a,b,c) = (a,b,c), ∆OITA2005 = 0. (17)

Let us emphasize that we mean with (a,b,c) = (a,b,c) a vector by vector identity: a = a,
b = b, and c = c.

6.2. Monoclinic space groups # 3–15
For monoclinic cells the origins are always identical

∆OITA2005 = 0, (18)

and the symmetry vectors of [14] agree with the cells referred to in ITA2005 as UNIQUE
AXIS b or UNIQUE AXIS b, CELL CHOICE 1. The details are given in Table 5.
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TABLE 5. Comparison of geometric symmetry vectors [14] and con-
ventional cell vectors (ITA2005) for monoclinic cells.

Space groups # 3, 4, 6, 10, 11
UNIQUE AXIS b: (a,b,c) = (a,b,c)
UNIQUE AXIS c: (a,b,c) = (c,a,b)
Space groups # 5, 7, 8, 9, 12, 13, 14, 15
UNIQUE AXIS b, CELL CHOICE 1: (a,b,c) = (a,b,c)
UNIQUE AXIS b, CELL CHOICE 2: (a,b,c) = (−a− c,b,a)
UNIQUE AXIS b, CELL CHOICE 3: (a,b,c) = (c,b,−a− c)
UNIQUE AXIS c, CELL CHOICE 1: (a,b,c) = (c,a,b)
UNIQUE AXIS c, CELL CHOICE 2: (a,b,c) = (a,−a− c,b)
UNIQUE AXIS c, CELL CHOICE 3: (a,b,c) = (−a− c,c,b)

6.3. Orthorhombic space groups # 16–74
The key reference figure apart from the individual space group entries in ITA2005 is Fig.
2.2.6.5. of ITA2005. Note well that the symmetry vectors of [14] and the conventional
cell vectors of ITA2005 agree always

(a,b,c) = (a,b,c) (19)

except for space group # 18 for which we currently have in the SGV

(a,b,c) = (c,a,b). (20)

Table 6 therefore lists only the origin shifts. The alternative origin shifts in the third col-
umn of Table 6 lead to fully equivalent cells, but are listed because they are the ones
actually used in the SGV. As an example Fig. 7 shows the three views (IT Cell 1, IT Cell
2, GA Cell) of the orthorhombic space group Fd2d2d (Int. name Fddd, No. 70) as gener-
ated in the Space Group Visualizer. To avoid cluttering, only the rotation axis are shown.
The IT Cell 1 view differs in its choice of origin from the other two views, as denoted in
Table 6. Actually the IT Cell 2 and GA Cell also have different but equivalent choices of
origin, as can easily be seen by comparing the center and right parts of Fig. 7.

6.4. Tetragonal space groups # 75–142
The key reference figure apart from the individual space group entries in ITA2005 is Fig.
2.2.6.7. of ITA2005. Note well that the symmetry vectors of [14] and the conventional
cell vectors of ITA2005 are always related by (see Fig. 8)

(a,b,c) = (a,b−a,c). (21)

Tables 7 and 8 therefore list only the origin shifts. The alternative origin shifts in the third
columns of tables 7 and 8 lead to fully equivalent cells, but are listed because they are the
ones actually used in the SGV. Table 8 lists the tetragonal groups which have two origin
choices in ITA2005.

As an example Fig. 9 shows the two views (IT Cell, GA Cell) of the tetragonal
space group I4̄12̄2̄ (Int. name I4122, No. 98) as generated in the Space Group Visualizer.
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FIGURE 7. SGV views of orthorhombic space group Fd2d2d (Int. name
Fddd, No. 70), compare Table 6. Left: IT Cell 1 (ORIGIN CHOICE 1).
Center: IT Cell 2 (ORIGIN CHOICE 2). Right: GA Cell.

FIGURE 8. Tetragonal cell symmetry vectors a,b of [14] and the con-
ventional cell vectors a,b of ITA2005.

To avoid cluttering, only the 90◦ screw axis are shown. The IT Cell view differs in its
choice of origin from the GA Cell view, which is clearly seen from the different positions
of the 90◦ screw axis in the ab-plane, and denoted in Table 7.

A second example Fig. 10 shows the three views (IT Cell 1, IT Cell 2, GA Cell)
of the tetragonal space group I4̄1a2 (Int. name I41/a, No. 88) as generated in the Space
Group Visualizer. All symmetries located in the cell are shown: inversions (grey balls),
glide reflections (gold, 70% plane size), 90◦ screw axis (blue), 90◦ rotoinversions (pale
red). The three views differ in their origins, as can clearly be seen comparing the level of
the glide planes, and of the blue 90◦ screw axis, and as denoted in Table 8.

6.5. Trigonal space groups # 143–167
The key reference figures apart from the individual space group entries in ITA2005 are
Fig. 2.2.6.8. and Fig. 2.2.6.9. of ITA2005. For the (obverse) rhombohedral setting Fig.
5.1.3.6.(a) and Fig. 5.1.3.6.(b) of ITA2005 serve as reference. The (obverse) rhombohe-
dral cell vectors ar, br, and cr of ITA2005 [compare also the trigonal (rhombohedral) cell



12 E. Hitzer and C. Perwass

TABLE 6. Comparison of geometric symmetry vectors [14] and con-
ventional cell vectors (ITA2005) for orthorhombic cells.

Space group # Origin shift Alternative
16, 17, 20, 21, 22, 23, 25, 26,

27, 31, 35, 36, 37, 38, 42, ∆OITA2005 = 0
44, 47, 49, 65, 66, 69, 71

18 ∆OIT Cell =
1
4 a+ 1

4 c

19, 28, 29, 40, 46, 51, 54, 67 ∆OIT Cell =
1
4 a # 67: ∆OIT Cell =

1
4 b

24,30,39,52 ∆OIT Cell =
1
4 b

53,63 ∆OIT Cell =
1
4 c

32,33,34,41,45,55,56,58,72 ∆OIT Cell =
1
4 a+ 1

4 b

43 ∆OIT Cell =
1
8 a− 1

8 b 3
8 a+ 3

8 b

57,74,64 ∆OIT Cell =
1
4 b+ 1

4 c

60 ∆OIT Cell =
1
4 a+ 1

4 c

61,62,73 ∆OIT Cell =
1
4 a+ 1

4 b+ 1
4 c

48: ORIGIN CHOICE 1 ∆OIT Cell 1 =
1
4 a+ 1

4 b+ 1
4 c

48: ORIGIN CHOICE 2 ∆OIT Cell 2 = 0

50: ORIGIN CHOICE 1 ∆OIT Cell 1 =
1
4 a+ 1

4 b
50: ORIGIN CHOICE 2 ∆OIT Cell 2 = 0

59: ORIGIN CHOICE 1 ∆OIT Cell 1 = 0

59: ORIGIN CHOICE 2 ∆OIT Cell 2 =
1
4 a+ 1

4 b

68: ORIGIN CHOICE 1 ∆OIT Cell 1 =
1
4 a+ 1

4 b+ 1
4 c

68: ORIGIN CHOICE 2 ∆OIT Cell 2 =
1
4 a

70: ORIGIN CHOICE 1 ∆OIT Cell 1 =− 1
8 a− 1

8 b− 1
8 c 3

8 a+ 3
8 b− 1

8 c

70: ORIGIN CHOICE 2 ∆OIT Cell 2 = 0 1
2 a+ 1

2 b

of Fig. 4] are thus related to the hexagonal cell vectors a, b, and c of ITA2005 by

(ar,br,cr) = (
2
3

a+
1
3

b+
1
3

c, −1
3

a+
1
3

b+
1
3

c, −1
3

a− 2
3

b+
1
3

c). (22)

Space group vectors and origins of trigonal crystal cells characterized by the geo-
metric symmetry vectors a and b enclosing the angle 60◦ = 180◦/3 as shown in Fig. 11
are compared in Table 9. The geometric symmetry vectors and origins OGA Cell of trigo-
nal space groups with Bravais lattices F or H (Fig. 5, cf. also Fig. 6 of [14]) are shown
in Fig. 12 together with the cell vectors and the origins OITA2005 used in ITA2005. Space
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FIGURE 9. SGV views of tetragonal space group I4̄12̄2̄ (Int. name
I4122, No. 98), compare Table 7. Left: IT Cell. Right: GA Cell.

FIGURE 10. SGV views of tetragonal space group I4̄1a2 (Int. name
I41/a, No. 88), compare Table 8. Left: IT Cell 1 (ORIGIN CHOICE 1).
Center: IT Cell 2 (ORIGIN CHOICE 2). Right: GA Cell.

groups characterized by a and b enclosing the angle 30◦ = 180◦/6 as shown in Fig. 13
are compared in Table 10.

For both trigonal and hexagonal space groups the definition of the IT Cell origin
shift used in the SGV is

∆OIT Cell = ∆OITA2005 +a. (23)

6.6. Hexagonal space groups # 168–194
The key reference figures apart from the individual space group entries in ITA2005 are
Fig. 2.2.6.8. and Fig. 2.2.6.9. of ITA2005.
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TABLE 7. Comparison of geometric symmetry vectors [14] and con-
ventional cell vectors (ITA2005) for tetragonal cells with a unique ori-
gin in ITA2005.

Space group # Origin shift Alternative
75, 76, 77, 78, 79, 81, 82
83, 84, 87, 89, 90, 97, 99
100, 101, 103, 105, 107 ∆OITA2005 = 0
111, 115, 119, 121, 123

124, 131, 132, 139
104, 106, 113, 117

127, 128, 135 ∆OIT Cell =
1
4 b

91 ∆OIT Cell =− 1
8 c

92, 96 ∆OIT Cell =
1
2 a+ 1

4 c

93, 112, 116, 120 ∆OIT Cell =
1
4 c

94, 108, 140 ∆OIT Cell =
1
2 a

95 ∆OIT Cell =
1
8 c

80, 98, 102, 136 ∆OIT Cell =
1
2 a+ 1

4 b # 98: 1
2 a− 1

4 b

# 102, 136: − 1
2 a+ 1

4 b

109 ∆OIT Cell =− 1
4 a+ 1

4 b − 1
4 a− 1

4 b

110 ∆OIT Cell =
1
4 a− 1

4 b

122 ∆OIT Cell =
1
4 a+ 1

8 c 1
4 a− 3

8 c

114, 118 ∆OIT Cell =
1
4 b+ 1

4 c

FIGURE 11. Trigonal cell symmetry vectors a,b of [14] enclosing the
angle 60◦ = 180◦/3, and the conventional cell vectors a,b of ITA2005.
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TABLE 8. Comparison of geometric symmetry vectors [14] and con-
ventional cell vectors (ITA2005) for tetragonal cells with two origin
choices in ITA2005.

Space group # Origin shift Alternative
85, 129, 130

ORIGIN CHOICE 1 ∆OIT Cell 1 =
1
2 a # 129, 130: − 1

2 a
ORIGIN CHOICE 2 ∆OIT Cell 2 =

1
4 b

86: ORIGIN CHOICE 1 ∆OIT Cell 1 =
1
2 a+ 1

4 c

86: ORIGIN CHOICE 2 ∆OIT Cell 2 =
1
2 a+ 1

4 b

88: ORIGIN CHOICE 1 ∆OIT Cell 1 =− 1
2 a+ 1

4 b+ 1
8 c 1

2 a+ 1
4 b+ 1

8 c

88: ORIGIN CHOICE 2 ∆OIT Cell 2 =
1
4 a+ 1

4 c

125: ORIGIN CHOICE 1 ∆OIT Cell 1 =
1
4 b

125: ORIGIN CHOICE 2 ∆OIT Cell 2 = 0

126: ORIGIN CHOICE 1 ∆OIT Cell 1 =
1
4 b+ 1

4 c
126: ORIGIN CHOICE 2 ∆OIT Cell 2 = 0

133, 134
ORIGIN CHOICE 1 ∆OIT Cell 1 =− 1

2 a+ 1
4 b+ 1

4 c
ORIGIN CHOICE 2 ∆OIT Cell 2 = 0

137, 138
ORIGIN CHOICE 1 ∆OIT Cell 1 =

1
2 a+ 1

4 c − 1
2 a+ 1

4 c
ORIGIN CHOICE 2 ∆OIT Cell 2 =

1
4 b

141: ORIGIN CHOICE 1 ∆OIT Cell 1 =− 1
4 a+ 1

4 b+ 1
8 c 3

4 a+ 1
4 b+ 1

8 c

141: ORIGIN CHOICE 2 ∆OIT Cell 2 =
1
4 c

142: ORIGIN CHOICE 1 ∆OIT Cell 1 =
1
4 a+ 1

4 b+ 1
8 c

142: ORIGIN CHOICE 2 ∆OIT Cell 2 =
1
2 a+ 1

4 c

Space group vectors and origins of hexagonal crystal cells characterized by the geo-
metric symmetry vectors a and b enclosing the angle 30◦ = 180◦/6 are compared in Table
11. Note well that for this case the symmetry vectors of [14] and the conventional cell vec-
tors of ITA2005 are always related by

(a,b,c) = (a−b,a,c), (24)

a relationship, which is also illustrated in Fig. 13. Space groups characterized by a and
b enclosing the angle 60◦ = 180◦/3 are compared in Table 12. The geometric symmetry
vectors of [14] and of ITA2005 are illustrated for space groups 174, 187, 188 in Fig. 11,
and for space groups 189, 190 in Fig. 12, respectively.
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TABLE 9. Comparison of geometric symmetry vectors [14] and con-
ventional cell vectors (ITA2005) and origin shifts for trigonal cells with
a and b enclosing the angle 60◦ = 180◦/3.

# 143, 144, 145, 149, 156, 158: (a,b,c) = (−b,a,c)
∆OITA2005 = b
# 151: (a,b,c) = (−b,a,c)
∆OITA2005 = b+ 1

3 c or b− 1
3 c, ∆OIT Cell =

1
3 c or − 1

3 c
# 153: (a,b,c) = (−b,a,c)
∆OITA2005 = b+ 1

6 c, ∆OIT Cell =
1
6 c

# 146, 160, 161:
∆OITA2005 = b
HEXAGONAL AXES: (a,b,c) = (−b,a,c)
RHOMBOHEDRAL AXES: (ar,br,cr) of (22)
# 155 with Bravais lattice F [14]:
∆OITA2005 =− 1

3 a+ 2
3 b, ∆OIT Cell = 0

HEXAGONAL AXES: (a,b,c) = ( 1
3 a− 2

3 b, 1
3 a+ 1

3 b, c)
RHOMBOHEDRAL AXES: (ar,br,cr) of (22)
# 150, 152, 154, 157, 159 with Bravais lattice H [14]: (a,b,c) = ( 1

3 a− 2
3 b, 1

3 a+ 1
3 b, c)

∆OITA2005 =− 1
3 a+ 2

3 b, ∆OIT Cell = 0

TABLE 10. Comparison of geometric symmetry vectors [14] and con-
ventional cell vectors (ITA2005) and origin shifts for trigonal cells with
a and b enclosing the angle 30◦ = 180◦/6.

# 147, 162, 164: (a,b,c) = (a−b,a,c)
∆OITA2005 = b−a
# 163, 165: (a,b,c) = (a−b,a,c)
∆OITA2005 =−a+b+ 1

4 c, ∆OIT Cell =
1
4 c

# 148, 166:
∆OITA2005 =−a+b
HEXAGONAL AXES: (a,b,c) = (a−b,a,c)
RHOMBOHEDRAL AXES: (ar,br,cr) of (22)
# 167:
∆OITA2005 =−a+b+ 1

4 c, ∆OIT Cell =
1
4 c

HEXAGONAL AXES: (a,b,c) = (a−b,a,c)
RHOMBOHEDRAL AXES: (ar,br,cr) of (22)
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FIGURE 12. Trigonal cell symmetry vectors a,b of [14] enclosing the
angle 60◦ = 180◦/3, and the conventional cell vectors a,b of ITA2005.
In the geometric algebra representation of [14] the Bravais lattices F or
H are used (Fig. 5, cf. also Fig. 6 of [14]).

FIGURE 13. Trigonal cell symmetry vectors a,b of [14] enclosing the
angle 30◦ = 180◦/6, and the conventional cell vectors a,b of ITA2005.

6.7. Cubic space groups # 195–230
The key reference figure apart from the individual space group entries in ITA2005 is Fig.
2.2.6.10. of ITA2005.

Space group vectors and origins of cubic crystal cells characterized by the geometric
symmetry vectors a and b enclosing the angle 60◦ = 180◦/3, and b and c enclosing the
same angle, are compared in Table 13. Note well that for this case the symmetry vectors
of [14] and the conventional cell vectors of ITA2005 are always related by (see Fig. 14)

(a,b,c) = (−1
2

a+
1
2

c,
1
2

a+
1
2

c, −1
2

a+b− 1
2

c). (25)

Space groups characterized by a and b enclosing the angle 45◦ = 180◦/4, and b
and c enclosing the angle 60◦ = 180◦/3, are compared in Table 14. Note well that for
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TABLE 11. Comparison of geometric cell origins [14] and conven-
tional cell origins (ITA2005) for hexagonal cells with a and b enclosing
the angle 30◦ = 180◦/6.

# 168, 169, 170, 171, 172, 173, 175, 177, 182, 183, 184, 185, 186, 191, 192:
∆OITA2005 =−a+b
# 176, 193, 194:
∆OITA2005 =−a+b+ 1

4 c, ∆OIT Cell =
1
4 c

# 179, 180:
∆OITA2005 =−a+b+ 1

6 c, ∆OIT Cell =
1
6 c

# 178, 181:
∆OITA2005 =−a+b+ 1

3 c or −a+b− 1
6 c, ∆OIT Cell =

1
3 c or − 1

6 c

TABLE 12. Comparison of geometric cell origins and symmetry vec-
tors [14] and conventional cell origins and vectors (ITA2005) for hexag-
onal cells with a and b enclosing the angle 60◦ = 180◦/3.

# 174, 187: (a,b,c) = (−b,a,c)
∆OITA2005 = b
# 188: (a,b,c) = (−b,a,c)
∆OITA2005 = b+ 1

4 c, ∆OIT Cell =
1
4 c

Space groups with Bravais lattice H [14]: (a,b,c) = ( 1
3 a− 2

3 b, 1
3 a+ 1

3 b, c)

# 189:
∆OITA2005 =− 1

3 a+ 2
3 b, ∆OIT Cell = 0

# 190:
∆OITA2005 =− 1

3 a+ 2
3 b+ 1

4 c, ∆OIT Cell =+ 1
4 c

FIGURE 14. Cubic cell symmetry vectors characterized by a and b en-
closing the angle 60◦ = 180◦/3, and b and c enclosing the same angle,
and the conventional cell vectors a,b,c of ITA2005.
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FIGURE 15. Cubic cell symmetry vectors characterized by a and b
enclosing the angle 45◦ = 180◦/4, and b and c enclosing the angle
60◦ = 180◦/3, and the conventional cell vectors a,b,c of ITA2005.

TABLE 13. Comparison of geometric symmetry vectors [14] and con-
ventional cell vectors (ITA2005) for cubic cells with geometric sym-
metry vectors a and b enclosing the angle 60◦ = 180◦/3, and b and c
enclosing the same angle.

Space group # Origin shift Alternative
195, 196, 197, 215
216, 217, 218, 220 ∆OITA2005 = 0

198, 199 ∆OIT Cell =
1
4 a+ 1

4 c

219 ∆OIT Cell =
1
4 b − 1

8 a+ 1
8 c

this case the symmetry vectors of [14] and the conventional cell vectors of ITA2005 are
always related by (see Fig. 15)

(a,b,c) = (a,b−a,c+a−b). (26)

7. Interactive Software Implementation
The realization in software relies on the visual multivector software CLUCalc [24, 25].
The excellent graphics rendering is based on OpenGL graphics. The space group symme-
try definitions described in the previous sections are denoted for each space group in the
form of an XML input file. The XML files serve as input for a CLUCalc script named
Space Group Visualizer (SGV) [26].

7.1. The Space Group Visualizer GUI
Fig. 16 shows the graphical user interface (GUI) of the SGV. The SGV toolbar is mag-
nified and annotated in Fig. 17. Depending on the displayed space group, basis vector
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TABLE 14. Comparison of geometric symmetry vectors [14] and con-
ventional cell vectors (ITA2005) for cubic cells with geometric sym-
metry vectors a and b enclosing the angle 45◦ = 180◦/4, and b and c
enclosing the angle 60◦ = 180◦/3.

Space group # Origin shift Alternative
200, 202, 204, 207
208, 209, 210, 211
212, 214, 223, 225 ∆OITA2005 = 0

226, 229
205, 206, 230 ∆OIT Cell =− 1

4 a+ 1
2 b− 1

4 c # 230: ∆OIT Cell =
3
4 a+ 1

2 b− 1
4 c

212, 213 ∆OIT Cell =
1
2 a

201, 222, 224
ORIGIN CHOICE 1 ∆OIT Cell 1 =− 1

4 a+ 1
2 b+ 1

4 c # 224: ∆OIT Cell 1 =
1
4 a− 1

2 b− 1
4 c

ORIGIN CHOICE 2 ∆OIT Cell 2 =− 1
2 a+ 1

2 b # 222: ∆OIT Cell 2 =
1
2 b+ 1

2 c
# 224: ∆OIT Cell 2 =

1
2 a− 1

2 b

203, 227
ORIGIN CHOICE 1 ∆OIT Cell 1 =

5
8 a− 1

4 b+ 3
8 c 1

8 a− 1
4 b− 1

8 c
ORIGIN CHOICE 2 ∆OIT Cell 2 =− 1

4 a+ 1
4 b # 203: ∆OIT Cell 2 =

1
4 a− 1

4 b

228
ORIGIN CHOICE 1 ∆OIT Cell 1 =− 1

8 a+ 1
4 b+ 1

8 c 3
8 a+ 1

4 b+ 1
8 c

ORIGIN CHOICE 2 ∆OIT Cell 2 =− 1
4 a+ 1

4 b

lengths and (or) angles may not be changed. This is indicated by toolbar elements shown
in gray.

7.2. Space group and symmetry selection

Figure 18 shows the interactive (hyperlink like) space group selection. Clicking blue text
elements in the browser panel on the left of the GUI allows to access crystal systems,
classes (point groups), and individual space groups.

Figure 19 illustrates the selection of symmetries from the complete list of Symme-
tries (left SGV GUI browser panel), which are present in the currently selected space
group. Symmetries that are to be displayed can be selected according to their properties
(angle, orientation, location, translation component). Several properties selected together
will display only those symmetries that satisfy all properties. Another way is to open
the generator list of a certain type of symmetry and select individual geometric algebra
generators to be displayed (or to be removed from the display).
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FIGURE 16. GUI of the Space Group Visualizer.

FIGURE 17. Toolbar of the Space Group Visualizer.

7.3. Mouse pointer interactivity
The mouse pointer allows a variety of visual interactions and animations, depending over
which part of the visualization it is placed. Moving the mouse pointer over a symmetry el-
ement visualization both animates the symmetry and displays detailed information about
this symmetry group element in the lower right corner. Animation means dynamic color
and size changes; and the motion of general elements along a trajectory tracing the sym-
metry operation incrementally. Placement of the mouse pointer over a general element
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FIGURE 18. Space group selection from the Space Group Visualizer
browser panel.

FIGURE 19. Space group selection of individual symmetries or groups
of symmetries to be displayed.

(locus) selector activates it (blinking). The mouse pointer over the rotation center selec-
tor allows to change the rotation center of the mouse activated view rotation (described
below).

The mouse pointer can be placed anywhere inside the visualization window. Hold-
ing down the left (right) mouse button and moving the mouse will rotate (translate) the
visualization. Alternative rotation axes (translation directions) are activated by addition-
ally holding the SHIFT key. With a 3D-mouse (3dconnexion) one can rotate and translate
the view along all axes simultaneously. First placing the mouse pointer over a general
element (locus) selector permits to translate and rotate it (together with all its symmetric
partners). This provides an excellent way to grasp how one general element and the 3D
symmetry represented in the space group determine the whole crystal structure.

A special feature of the SGV is the direct 3D graphics interaction. Simply placing
the mouse pointer over a symmetry activates it and allows to:
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FIGURE 20. Examples of interactive SGV Visualization > Lighting
menu effects for cubic space group F43 (Int. name Fm3̄m, No. 225). A
cell bar of 2 cells with all glide reflection planes is shown, all other sym-
metries are deselected. From left to right: relative and central lighting
off, relative lighting on, central lighting on, relative and central lighting
on.

• Select only the activated symmetry (left mouse button). All other symmetries disap-
pear from the view.
• Holding the CTRL key at the same time (while pressing the left mouse button)

shows all symmetries (and only these) of the same type.
• Clicking the right mouse button removes an activated symmetry from the view.
• Holding the CTRL key at the same time (while pressing the right mouse button)

removes all symmetries of the same type.

7.4. Visualization options in detail
The visualization drop down menu allows to toggle (activate and deactivate) the following
visual functions

• Full screen mode.
• Orthographic view. The orthographic view allows the most direct comparison with

ITA orthographic projections [11].
• Animation of the origin locus when a symmetry is activated (animated).
• Rotation animation of the whole view when it is pushed with the (left) mouse button.
• Reset the crystal view to visualizer default values.
• Reset general element (loci) positions.

The special visualization lighting menu provides a relative position light source. It is
positioned relative to the visualization coordinate frame and moves with the visualization.
Deselecting this option fixes the light source relative to the observer. The light source
can optionally be positioned at the center of the coordinate frame, which is relative (or
absolute) depending on the (de)selection of the relative position option, compare Fig. 20.
The ambient light submenu allows to adjust the brightness of the ambient light, leading
to more dramatic effects for darker settings.
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FIGURE 21. Parallel space group selection in the SGV window and the
online ITA [11] space group window.

The color scheme menu item allows to select the current color scheme. For example
a scheme with black background is more suitable for use in presentations, while a white
background is better for publications, etc. It is possible via an XML file to individually
define further color schemes. A color stereo option allows to specify cinema type stereo
colors, which are best viewed with corresponding cinema color glasses in order to perform
the full spatial 3D effect akin to virtual reality.

The cell type menu allows to select between different cell choices in the IT, Volume
A [11], and (if different) a special geometric algebra type cell, which has the generating
vectors a,b,c as cell axis attached to the cell origin.

7.5. Integration with the online International Tables of Crystallography
Through the window menu an additional window can be opened for displaying the pages
of a space group from the online version of the International Tables of Crystallography,
Volume A (ITA) [11]. For this the user must hold a valid user ID and password. When the
online ITA can be accessed, the SGV and the online ITA window will always show the
same space group. The user can synchronously navigate from space group to space group
either in the SGV or in the online ITA window (cf. Fig. 21).

7.6. Saving results
It often takes some time to interactively bring the visualization into a desired state, which
includes selection of a space group, selection and deselection of symmetry elements, 3D
translations and rotations, adjustments of size, color and lighting, etc. If the user wants to
save his work in order to show it to others, use it for teaching and presentations, produce
publications, images for the internet, etc. the File menu offers the options to do a one
step Quick Save View or a more detailed Save View. The latter will open a popup menu
in order to choose the destination folder and the desired file name and file format. File
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formats available are: PNG (default), JPEG, Bitmap, Postscript, JPEG + EPS (get the
same picture at once in two formats), and PNG with Bounding Box. The EPS option is
particularly useful for use with Latex. In this way most of the figures were produced in
this paper.

8. Conclusion

We have briefly reviewed the geometric algebra representation of R3 in the socalled con-
formal model and its use for the representation of 2D and 3D point groups and space
groups. The key point is to only use physical crystal lattice vectors for the group genera-
tion.

Next we explained the relationship of the geometric symmetry vectors and cell ori-
gins of [14] to the conventional choices of cell vectors and origins of ITA2005. These
relationships will certainly help crystallographers to familiarize themselves with the geo-
metric algebra representation of space groups. Being able to convert the vectors of both
descriptions back and forth also forms the basis of a future full scale conversion of geo-
metric versor generators into 4×4 crystallographic matrix expressions and into the other
conventional types of notation used in ITA2005, and vice versa.

The final part introduced the interactive software visualization of 3D space group
symmetries based on the established geometric algebra representation. This implementa-
tion uses the conformal model both for generating the graphics itself and for internally
computing with space group transformations.

Future options are the visualization of non-characteristic orbits of space group [28],
subperiodic space groups, and magnetic space groups. The latter seems particularly attrac-
tive as it may nicely integrate the bivector representation of spin [12] in the real Dirac-
Hestenes equation of relativistic quantum physics. Based on CLUCalc a first rudimentary
geometric algebra protein visualizer has been programmed recently for proteins of several
thousand (up to 10 000) atoms. A possible future molecule (or ion group) toolbox may
therefore be able to display complex biomolecule crystals as well.
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