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Abstract. First, the basic concepts of the multivector functions, vector dif-
ferential and vector derivative in geometric algebra are introduced. Second,
we define a generalized real Fourier transform on Clifford multivector-valued
functions (f : Rn → Cln,0, n = 3 (mod 4)). Third, we introduce a set of im-
portant properties of the Clifford Fourier transform on Cln,0, n = 3 (mod 4)
such as differentiation properties, and the Plancherel theorem. Finally, we
apply the Clifford Fourier transform properties for proving a directional un-
certainty principle for Cln,0, n = 3 (mod 4) multivector functions.
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1. Introduction

In the field of applied mathematics the Fourier transform has developed into an
important tool. It is a powerful method for solving partial differential equations.
The Fourier transform provides also a technique for signal analysis where the signal
from the original domain is transformed to the spectral or frequency domain. In
the frequency domain many characteristics of the signal are revealed. With these
facts in mind, we extend the Fourier transform in geometric algebra.

Brackx et al. [1] extended the Fourier transform to multivector valued function-
distributions in Cl0,n with compact support. They also showed some properties of
this generalized Fourier transform. A related applied approach for hypercomplex
Clifford Fourier transformations in Cl0,n was followed by Bülow et. al. [2].
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By extending the classical trigonometric exponential function exp(j x ∗ ξ)
(where ∗ denotes the scalar product of x ∈ Rm with ξ ∈ Rm, j the imaginary
unit) in [3, 4], McIntosh et. al. generalized the classical Fourier transform. Applied
to a function of m real variables this generalized Fourier transform is holomorphic
in m complex variables and its inverse is monogenic in m+1 real variables, thereby
effectively extending the function of m real variables to a monogenic function of
m+1 real variables (with values in a complex Clifford algebra). This generalization
has significant applications to harmonic analysis, especially to singular integrals
on surfaces in Rm+1. Based on this approach Kou and Qian obtained a Clif-
ford Payley-Wigner theorem and derived Shannon interpolation of band-limitted
functions using the monogenic sinc function [5, and references therein]. The Clif-
ford Payley-Wigner theorem also allows to derive left-entire (left-monogenic in
the whole Rm+1) functions from square integrable functions on Rm with compact
support.

In this paper we adopt and expand1 to Gn, n = 3 (mod 4) the generalization
of the Fourier transform in Clifford geometric algebra G3 recently suggested by
Ebling and Scheuermann [7]. We introduce detailed properties of the real2 Clifford
geometric algebra Fourier transform (CFT), which we subsequently use to define
and prove a general directional uncertainty principle for Gn multivector functions.

2. Clifford’s Geometric Algebra Gn of Rn

Let us consider now and in the following an orthonormal vector basis {e1, e2, . . . ,
en} of the real n-dimensional Euclidean vector space Rn with n = 3 (mod 4). Each
basis vector has unit square, i.e. e2k = 1, 1 ≤ k ≤ n. The geometric algebra over
Rn denoted by Gn then has the graded 2n-dimensional basis

{1, e1, e2, . . . , en, e12, e31, e23, . . . , in = e1e2 . . . en}. (2.1)

For the simplest case of n = 3 the basis reduces to

{1, e1, e2, e3, e23, e31, e12, i3 = e1e2e3}
= {1, i3, e1, i3e1 = e23, e2, i3e2 = e31, e3 = e2e23, e12 = e13e23} (2.2)
.
= {1, i3, e23, i3e23 = −e1, e31, i3e31 = −e2, e12 = e13e23, i3e12 = −e3}.

Equation (2.2) exemplifies for n = 3 the general isomorphisms

Gn ≈ Gn−1 × C ≈ G0,n−1 × C, (2.3)

1For further details and proofs in the case of n = 3 compare [6]. In the geometric algebra

literature [8] instead of the mathematical notation Clp,q the notation Gp,q is widely in use. It is

convention to abbreviate Gn,0 to Gn.
2The meaning of real in this context is, that we use the n-dimensional volume element in =
e1e2 . . . en of the geometric algebra Gn over the field of the reals R to construct the kernel of

the Clifford Fourier transformation of definition 4.1. This in has a clear geometric interpretation.
Note that i2n = −1 for n = 2, 3 (mod 4).
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which can be exploited to transfer results from a complexified Clifford algebra
G0,n−1 × C to the real geometric algebra Gn.

The grade selector is defined as 〈M〉k for the k-vector part of M , especially
〈M〉 = 〈M〉0. Then M can be expressed as

M = 〈M〉+ 〈M〉1 + 〈M〉2 + . . .+ 〈M〉n. (2.4)

The reverse of M is defined by the anti-automorphism

M̃ =

k=n∑
k=0

(−1)k(k−1)/2〈M〉k. (2.5)

The square norm of M is defined by

‖M‖2 = 〈MM̃〉, (2.6)

where

〈MÑ〉 = M ∗ Ñ =
∑
A

αAβA (2.7)

is a real valued (inner) scalar product for any M,N in Gn with M =
∑
A αAeA

and N =
∑
A βAeA, A ∈ {0, 1, 2, . . . , n, 12, 31, 23, . . . , 12 . . . n}, αA, βA ∈ R, and

eA the basis elements of (2.1). Especially for vectors a, b ∈ Rn we get (using the
costumary dot)

a · b = 〈ab〉 = a ∗ b =

n∑
A=1

αAβA (2.8)

As a consequence we obtain the multivector Cauchy-Schwarz inequality

|〈MÑ〉|2 ≤ ‖M‖2 ‖N‖2 ∀ M,N ∈ Gn. (2.9)

3. Multivector Functions, Vector Differential and Vector Derivative

Let f = f(x) be a multivector-valued function of a vector variable x in Gn. For
an arbitrary vector a we define3 the vector differential in the a direction as

a · ∇f(x) = lim
ε→0

f(x+ εa)− f(x)

ε
(3.1)

provided this limit exists and is well defined. The basis independent linear vector
derivative ∇ defined in [8, 9] obeys equation (3.1) for all vectors a and can be
expanded as

∇ = ek∂k = e1∂1 + e2∂2 + . . .+ en∂n, (3.2)

For use in later sections we state a number of elementary properties of the
vector differential and the vector derivative (compare [8, 9])

3Bracket convention: A · BC = (A · B)C 6= A · (BC) and A ∧ BC = (A ∧ B)C 6= A ∧ (BC)

for multivectors A,B,C ∈ Gp,q . The vector variable index x of the vector derivative is dropped:

∇x = ∇ and a · ∇x = a · ∇, but not when differentiating with respect to a different vector
variable (compare e.g. proposition 3.2).



4 Hitzer and Mawardi

Proposition 3.1 (Chain rule for g ◦ λ, λ ∈ R). Forf(x) = g(λ(x)), λ(x) ∈ R,

a · ∇f = {a · ∇λ(x)}∂g
∂λ

. (3.3)

Proposition 3.2 (Derivative from differential).

∇f = ∇a (a · ∇f) . (3.4)

Differentiating twice with the vector derivative, we get the differential Lapla-
cian operator ∇2. We can write ∇2 = ∇ ·∇+∇∧∇. But for integrable functions
∇∧∇ = 0. In this case we have ∇2 = ∇ · ∇.

The following form of the product rule deviates from [8] insofar as we do not
use the perhaps unfamiliar overdot notation of Hestenes and Sobczyk.

Proposition 3.3 (Product rule).

∇(fg) = (∇f)g +∇a f(a · ∇g) = (∇f)g +

n∑
k=1

ekf(∂kg) . (3.5)

Note that the multivector functions f and g in (3.5) do not necessarily commute.

Proposition 3.4 (Integration by parts).∫
Rn

g(x)[a · ∇h(x)]dnx =

[∫
Rn−1

g(x)h(x)dn−1x

]a·x=∞
a·x=−∞

−
∫
Rn

[a ·∇g(x)]h(x)dnx.

(3.6)

Remark 3.5. Proposition 3.4 reduces to the familiar coordinate form, if we insert
for a the grade 1 basis vectors ek, 1 ≤ k ≤ n of (2.1), because

ek · ∇ = ∂k and ek · x = xk. (3.7)

But since the introduction of a coordinate system is arbitrary, we can conversly
always rotate every chosen coordinate vector into the direction of the vector a
of proposition 3.4, which shows that the generalized form 3.4 for the integration
by parts formula is valid. Proposition 3.4 is used in the proof of the directional
uncertainty principle 5.1.

4. Clifford Fourier Transform (CFT)

Definition 4.1. The Clifford Fourier transform (CFT) of f(x) is the function F{f}:
Rn → Gn given by

F{f}(ω) =

∫
Rn

f(x) e−inω·x dnx, (4.1)

where we can write ω = ω1e1 + ω2e2 + . . .+ ωnen, x = x1e1 + x2e2 + . . .+ xnen
with e1, e2, . . . , en the basis vectors of Rn.

Note that

dnx =
dx1 ∧ dx2 ∧ . . . ∧ dxn

in
(4.2)
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Table 1. Properties of the Clifford Fourier transform (CFT)

Property Multivector Function CFT
Linearity αf(x)+β g(x) αF{f}(ω)+ βF{g}(ω)
Delay f(x− a) e−inω·aF{f}(ω)
Shift einω0·xf(x) F{f}(ω − ω0)
Scaling f(ax), a ∈ R \ {0} 1

|a|nF{f}(
ω
a )

Convolution (f?g)(x) F{f}(ω)F{g}(ω)
Vec. diff. a · ∇f(x) in a · ωF{f}(ω)

a · x f(x) in a · ∇ω F{f}(ω)
xf(x) in ∇ω F{f}(ω)

Vec. deriv. ∇mf(x) (in ω)mF{f}(ω)

Plancherel T.
∫
Rn f1(x)f̃2(x) dnx 1

(2π)n

∫
Rn F{f1}(ω) ˜F{f2}(ω) dnω

sc. Parseval T.
∫
Rn ‖f(x)‖2 dnx 1

(2π)n

∫
Rn ‖F{f}(ω)‖2 dnω

is scalar valued (dxk = dxkek, k = 1, 2, . . . , n, no summation). For the dimension
n = 3(mod 4) the pseudoscalar in acts like a commutative4 imaginary unit (i2n =
−1), i.e. in commutes with every element of Gn (it is central), and hence the Clifford
Fourier kernel e−inω·x will also commute with every element of Gn. We therefore
have the isomorphism (2.3) [exemplified for n = 3 in (2.2)]. And in consequence,
we also have an isomorphism between the presented Fourier transform and the
classical Fourier transform, which also provides a straighforward strategy for the
proofs of the properties of the CFT listed in table 1. An alternative way would be
to generalize the proofs for n = 3 in [6] to n = 3(mod 4). Due to the isomorphism,
the CFT of equation (4.2) can be broken down to a tupel of 2n−1 scalar complex
Fourier transforms, which also permits for numerical applications to make use of
well-established fast Fourier transform algorithms. This has already been exploited
for n = 3 in [7].

Theorem 4.2. The Clifford Fourier transform F{f} of f ∈ L2(Rn,Gn),∫
Rn ‖f‖2dnx <∞ is invertible and its inverse is calculated by

F−1[F{f}](x) = f(x) =
1

(2π)n

∫
Rn

F{f}(ω) einω·x dnω. (4.3)

A number of properties of the CFT are listed in table 1. A related formula
for polynomials of the vector derivative (compare line 9) can be found in [4]. The
reverse of line 10 and the square norm of line 11 are defined in (2.5) and (2.6),
respectively.

4It is possible to define the CFT for n = 2(mod 4) as well, but then care has to be taken of the
general non-commutativity of in with the elements of Gn.
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5. Uncertainty Principle

The uncertainty principle plays an important role in the development and under-
standing of quantum physics. It is also central for information processing [10].

In quantum physics it states e.g. that particle momentum and position can-
not be simultaneously known. The multivector function f(x) would represent the
spatial part of a separable wave function and its CFT F{f}(ω) the same wave
function in momentum space (compare [11, 12, 13]). The variance in space would
then be calculated as (k = 1, 2, 3)

(∆xk)2 =

∫
R3

〈f(x)(ek · x)2f̃(x)〉 d3x =

∫
R3

(ek · x)2‖f(x)‖2 d3x,

where it is customary to set without loss of generality the mean value of ek · x to
zero [13]. The variance in momentum space would be calculated as (l = 1, 2, 3)

(∆ωl)
2 =

1

(2π)3

∫
R3

〈F{f}(ω)(el · ω)2F̃{f}(ω)〉 d3ω

=
1

(2π)3

∫
R3

(el · ω)2 ‖F{f}(ω)‖2d3ω.

Again the mean value of el ·ω is costumarily set to zero, it merely corresponds to a
phase shift [13]. Using our mathematical units, the space-momentum uncertainty
relation of quantum mechanics is then expressed by (compare e.g. with (4.9) of [12,
page 86])

∆xk∆ωl =
1

2
δk,lF, (5.1)

where δk,l is the usual Kronecker symbol. Note that we have not normalized the
squares of the variances by division with F =

∫
R3 ‖f(x)‖2 d3x, therefore the extra

factor F on the right side of (5.1). Further explicit examples from image processing
can be found in [17].

In general in Fourier analysis such conjugate entities correspond to the vari-
ances of a function and its Fourier transform which cannot both be simultaneously
sharply localized (e.g. [10, 14]). Material on the classical uncertainty principle for
the general case of L2(Rn) without the additional condition lim|x|→∞ |x|2|f(x)| = 0
can be found in [15] and [16]. Felsberg [17] even notes for two dimensions: In 2D
however, the uncertainty relation is still an open problem. In [18] it is stated that
there is no straightforward formulation for the 2D uncertainty relation.

From the view point of geometric algebra an uncertainty principle gives us
information about how the variance of a multivector valued function and the vari-
ance of its Clifford Fourier transform are related. We can shed the restriction to
the parallel (k = l) and orthogonal (k 6= l) cases of (5.1) by looking at the x ∈ Rn
variance in an arbitrary but fixed direction a ∈ Rn and at the ω ∈ Rn variance in
an arbitrary but fixed direction b ∈ Rn. This leads to the following theorem.

Theorem 5.1 (Directional uncertainty principle). Let f be a multivector valued
function in Gn, n = 3 (mod 4), which has the Clifford Fourier transform F{f}(ω).
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Assume
∫
Rn ‖f(x)‖2 dnx = F < ∞, then the following inequality holds for arbi-

trary constant vectors a, b:∫
Rn

(a · x)2‖f(x)‖2 dnx 1

(2π)n

∫
Rn

(b · ω)2 ‖F{f}(ω)‖2dnω ≥ (a · b)2 1

4
F 2 (5.2)

Proof Applying the results stated so far we have5∫
Rn

(a · x)2 ‖f(x)‖2 dnx 1

(2π)n

∫
Rn

(b · ω)2 ‖F{f}(ω)‖2dnω

table 1, line 6
=

∫
Rn

(a · x)2 ‖f(x)‖2 dnx 1

(2π)n

∫
Rn

‖F{b · ∇f}(ω)‖2 dnω

sc. Parseval
=

∫
Rn

(a · x)2 ‖f(x)‖2 dnx
∫
Rn

‖b · ∇f(x)‖2 dnx

footnote 5
≥

(∫
Rn

a · x ‖f(x)‖ ‖b · ∇f(x)‖ dnx
)2

(2.9)

≥
(∫

Rn

a · x|〈f̃(x) b · ∇f(x)〉| dnx
)2

≥
(∫

Rn

a · x〈f̃(x) b · ∇f(x)〉 dnx
)2

.

Because of (2.6) and (2.7)

(b · ∇)‖f‖2 = 2〈f̃ (b · ∇)f〉, (5.3)

we furthermore obtain∫
Rn

(a · x)2 ‖f(x)‖2 dnx 1

(2π)n

∫
Rn

(b · ω)2 ‖F{f}(ω)‖2dnω

≥
(∫

Rn

a · x 1

2
(b · ∇‖f‖2) dnx

)2

Prop. 3.4
=

1

4

([∫
Rn−1

a · x‖f(x)‖2dn−1x
]b·x=∞
b·x=−∞

−
∫
Rn

[(b · ∇)(a · x)] ‖f(x)‖2 dnx
)2

=
1

4

(
0− a · b

∫
Rn

‖f(x)‖2 dnx)

)2

= (a · b)2 1

4
F 2.

Choosing b = ±a, i.e. b ‖ a, with a2 = 1 we get from theorem 5.1 the
uncertainty principle for parallel variance directions [compare with case k = l of

5φ, ψ : Rn → C,
∫
Rn |φ(x)|2dnx

∫
Rn |ψ(x)|2dnx ≥ (

∫
Rn φ(x) ¯ψ(x) dnx)2
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(5.1)]:∫
Rn

(a · x)2‖f(x)‖2 dnx 1

(2π)n

∫
Rn

(a · ω)2 ‖F{f}(ω)‖2dnω ≥ 1

4
F 2. (5.4)

Remark 5.2. In (5.4) equality holds for Gaussian multivector valued functions

f(x) = C0 e
−k x2

(5.5)

where C0 ∈ Gn is an arbitrary but constant multivector, 0 < k ∈ R. The proof for
this follows from the observation that we have for the f of (5.5)

−2k a · x f = a · ∇f. (5.6)

Choosing orthogonal directions a, b ∈ Rn we get from theorem 5.1 the un-
certainty principle for orthogonal variance directions [compare with case k 6= l of
(5.1)]:

Theorem 5.3. For a · b =0, i.e. b ⊥ a, we get∫
Rn

(a · x)2‖f(x)‖2 dnx 1

(2π)n

∫
Rn

(b · ω)2 ‖F{f}(ω)‖2dnω ≥ 0. (5.7)

Theorem 5.4. Under the same assumptions as in theorem 5.1, we obtain∫
Rn

x2 ‖f(x)‖2 dnx 1

(2π)n

∫
Rn

ω2 ‖F{f}(ω)‖2dnω ≥ n

4
F 2. (5.8)

Remark 5.5. For the proof of theorem 5.4 we first insert x2 =
∑n
k=1(ek ·x)2,ω2 =∑n

l=1(el · ω)2. After that we apply (5.4) and (5.7) depending on the relative di-
rections of the vectors ek and el.

6. Conclusions

The (real) Clifford Fourier transform extends the traditional Fourier transform on
scalar functions to Gn multivector functions with n = 3 (mod 4). Basic properties
and rules for differentiation, convolution, the Plancherel and Parseval theorems
were introduced.6 We then presented a general directional uncertainty principle
in the geometric algebra Gn, n = 3 (mod 4) which describes how the variances (in
arbitrary but fixed directions) of a multivector-valued function and its Clifford
Fourier transform relate. The formula of the uncertainty principle in Gn, n =
3 (mod 4) can be extended to Gn, n = 2 (mod 4) taking due care of the resulting
general non-commutativity of in with the elements of Gn.

It is known that the Fourier transform is successfully applied to solving equa-
tions in all of classical and quantum physics such as the heat equation, wave equa-
tions, etc. The same is true for applications of the Fourier transform to problems
in image processing and signal theory. Therefore in the future, we can apply geo-
metric algebra and the Clifford Fourier transform to solve such problems involving
the whole range of k-vector fields (k = 0, 1, 2, . . . , n) in geometric algebras Gn with
n = 3 (mod 4) and study the inevitably remaining uncertainties of the solutions.

6Similar formulas for n = 2 are also given and applied in [7].
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[2] T. Bülow, M. Felsberg and G. Sommer, Non-commutative Hypercomplex Fourier
Transforms of Multidimensional Signals, in G. Sommer (ed.), Geom. Comp. with Cliff.
Alg., Theor. Found. and Appl. in Comp. Vision and Robotics, Springer, (2001), 187–
207.

[3] C. Li, A. McIntosh and T. Qian, Clifford Algebras, Fourier Transform and Singular
Convolution Operators On Lipschitz Surfaces, Revista Matematica Iberoamericana,
10 (3), (1994), 665–695.

[4] A. McIntosh, Clifford Algebras, Fourier Theory, Singular Integrals, and Harmonic
Functions on Lipschitz Domains, chapter 1 of J. Ryan (ed.), Clifford Algebras in
Analysis and Related Topics, CRC Press, Boca Raton, 1996.

[5] T. Qian, Paley-Wiener Theorems and Shannon Sampling in the Clifford Analysis
Setting in R. Ablamowicz (ed.), Clifford Algebras - Applications to Mathematics,
Physcis, and Engineering, Birkäuser, Basel, (2004), 115–124.
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