Foundations of Multidimensional Wavelet Theory:

The Quaternion Fourier Transform and its Generalizations

Eckhard Hitzer

Department of Applied Physics, University of Fukui

Email: hitzer@mech.fukui-u.ac.jp

Keywords: Multidimensional Wavelets, Quaternion Fourier Transform, Clifford geometric algebra

1. Basic facts about Quaternions

Gauss, Rodrigues and Hamilton’s 4D quaternion algebra H over R:

\[ij = -ji = k, \quad jk = -kj = i, \quad ki = -ik = j, \quad i^2 = j^2 = k^2 = ijk = -1, \]

with isomorphisms \(H \approx \text{Cl}(0,2) \approx \text{Cl}^+(3,0) \).

\(\text{Cl}^+(3,0) \) is the even subalgebra of Clifford geometric algebra \(\text{Cl}(3,0) \), with basis \(\{1, e_{12} = e_1 e_2, \, e_{13} = e_1 e_3, \, e_{23} = e_2 e_3\} \) for an orthonormal basis \(\{e_1, \, e_2, \, e_3\} \) of \(\mathbb{R}^3 \). The quaternion

\[q = q_r + q_i + q_j + q_k \in H, \quad q_r, \, q_i, \, q_j, \, q_k \in \mathbb{R} \]

has the quaternion conjugate (reversion in \(\text{Cl}(3,0) \))

\[q^\ast = q_r - q_i - q_j - q_k, \]

This leads to the norm of \(q \in H \)

\[||q|| = \sqrt{(q^\ast q)} = \sqrt{(q_r^2 + q_i^2 + q_j^2 + q_k^2)}. \]

Quaternions (and quaternion valued functions) can be split in two ways:

\[q = q_r + iq_i + jq_j + kq_k \quad \text{or} \quad q = q_r + q_i = (q+iqj)/2 + (q-iqj)/2. \]

The second split allows to write

\[q_\pm = \{q_r \pm q_k + i(q_i - q_j)\} (1 \pm k)/2 = (1 \pm k)\{q_r \pm q_k + j(q_i - q_j)\}/2. \]

Applying (5) and (6) to the quaternionic kernel \(K = \text{exp}(-ixu) \text{exp}(-jyv) \) gives

\[K_\pm = \text{exp}(-i(xu \mp yv)) (1 \pm k)/2 = (1 \pm k) \text{exp}(-j(yv \mp xu))/2. \]

For 2D quaternion valued functions \(f, g \) we can define the inner product (\(x = xe_1 + ye_2 \))

\[(f, g) = \int f(x)g^\ast(x) \, dx dy, \]

with real scalar part

\[\langle f, g \rangle = \int f(x)g^\ast(x) \, dx dy, \]

and norm

\[||f|| = \sqrt{(f,f)} = \sqrt{\langle f, f \rangle}. \]
2. Quaternion Fourier Transform (QFT)

Ell [1] defined the QFT for application to 2D linear time-invariant systems of PDEs. Later it was extensively applied to 2D image processing [2], including color. This spurred research into optimized numerical applications. The invertible QFT of a 2D quaternion valued signal \(f \) is defined as

\[
F\{f\} = \frac{1}{2\pi} \int f(x) e^{-j(xu+yv)} dx dy.
\]

The scalar product (9) gives the Plancherel theorem

\[
\langle f, g \rangle = \frac{1}{2\pi} \| F\{f\} \| / 2\pi.
\]

As corollary we get the Parseval (Rayleigh’s) theorem for signal energy preservation

\[
\| f \| = \| F\{f\} \| / 2\pi.
\]

Equations (5) and (15) reduce the computation of \(F\{f\} \) to the four QFTs of real functions \(f, f', f, f' \). And (15) shows that every theorem for the QFT of real 2D functions results in a theorem for quaternion-valued functions. For example a general linear non-singular transformation \(A \) of the QFT of 2D real signals can in this way be generalized to 2D quaternion-valued functions (for \(B \) compare [2])

\[
F\{f(Ax)\}(u) = \frac{1}{\det B} [F\{f\}(B\cdot u) + F\{f\}(B\cdot u) + F\{f\}(B\cdot u) + F\{f\}(B\cdot u)] j.
\]

Instead of (11) we can define the invertible right sided QFT (Clifford FT) as

\[
F\{f\}(u) = \int f(x) e^{-j(xu+yv)} dx dy,
\]

and obtain the Plancherel theorem

\[
\langle f, g \rangle = \langle F\{f\}, F\{g\} \rangle / (2\pi)^2.
\]

As corollary we again get a Parseval identity

\[
\| f \| = \| F\{f\} \| / 2\pi = \| F\{f\} \| / 2\pi.
\]

For \(F \), linearity and dilation properties hold, some other properties need commutation dependent modifications.

3. \(GL(R^2) \) Transformation Properties

We observe that the split (7) results in two complex kernels \(K_{\pm} \) with complex units \(i \) (or \(j \)) apart from \((1 \pm k)/2\). We therefore analyze the transformation properties of \(F\{f\} \) in terms of \(F\{f_{\pm}\} \). We can prove that

\[
F\{f_{\pm}\}(u) = \int f_{\pm} e^{-j(yv+\mp xu)} dx dy = \int e^{\mp i(xu+yv)} f_{\pm} dx dy.
\]

Every \(A \in GL(R^2) \) can be decomposed to \(A=TR=RS \), with \(R \) a rotation, \(T \) and \(S \) symmetric with positive and negative eigenvalues (ev.). Positive (negative) ev. correspond to stretches (reflections and stretches perpendicular to line of reflection). Rotations can be composed by two reflections \(R_{u_m} U_{m} \). Elementary transformations are hence reflections (Cartan) and stretches. In Clifford geometric algebra \(U_{m} \) is given by the vector \(n \) normal to the line of reflection \(U_{m} x = -n^x n x \). Using \(xu+yv = x \cdot u - xu+yv = x \cdot (U_{m} u) \) we get

\[
F\{f\}(u) = \int f \cdot e^{-j \cdot x \cdot u} dx dy, \quad F\{f\}(u) = \int f \cdot e^{-j \cdot x \cdot (U_{m} u)} dx dy.
\]

We therefore get for automorphisms \(A \in GL(R^2) \), \(A^{-1} \) the adjoint inverse transformation of \(A \)
\[F\{f(Ax)(u)\} = |\text{det}A|^{-1} F\{f; (A^{-1}u) \}, \quad F\{f(Ax)(u)\} = |\text{det}A|^{-1} F\{f; (U_\varepsilon A^{-1}U_\varepsilon u) \}. \] (22)

The combination of (22) gives therefore
\[F\{f(Ax)(u)\} = |\text{det}A|^{-1} \left[F\{f; (A^{-1}u)\} + F\{f; (U_\varepsilon A^{-1}U_\varepsilon u) \} \right]. \] (23)

For axial stretches we get (ab ≠ 0, a,b ∈ R)
\[F\{f(As x)(u)\} = F\{f; (ue_1/a+ve_2/b)/|ab| \}. \] (24)

For reflections we get (a’ = U_\varepsilon a)
\[F\{f(Ua x)(u)\} = F\{f; (Ua u)\} + F\{f; (Ua' u)\}. \] (25)

For rotations we get
\[F\{f(Rx)(u)\} = F\{f; (Ru)\} + F\{f; (R' u)\}. \] (26)

4. Generalization to spatio-temporal signals

Quaternion isomorphisms and $GL(\mathbb{R}^{n,m})$ transformation laws allow generalization to higher dimensions. As an example we take an isomorphism to a subalgebra of the spacetime algebra $\text{Cl}(3,1)$ with time vector e_0, 3D volume $I_3 = e_1 e_2 e_3$, and spacetime volume $I_4 = e_0 e_1 e_2 e_3$, all three with negative square. \{e_0, I_3, I_4\} generate an algebra isomorphic to quaternions. This leads to an invertible spacetime FT for 4D multivector valued $\text{Cl}(3,1)$ functions f
\[F_s\{f\} (u) = \int \exp(-e_0 ts) f(x) \exp(-I_3 x' \cdot u') d^4x, \] (27)

With $d^4x = dt dx dy dz$, \(x = te_0 + x', \ x' = xe_1 + ye_2 + ze_3, \ u = se_0 + u', u' = ue_1 + ve_2 + we_3 \). The space time split
\[f_z = (f_{\pm} e_0/\sqrt{1})/2 \] (28)
yields therefore the transformation formulas (comp. [4,5])
\[F_u\{f_z\} (u) = \int f_z (x) \exp(-I_3 (x' \cdot u' - ts)) d^4x = \int \exp(-e_0 ts x' \cdot u') f_z (x) d^4x. \] (29)

Our new results will serve for the further development of discrete and continuous multivector wavelets.

References
[1] T. A. Ell, in Proc. Of the 32 Conf. on Decision and Control, IEEE, 1993, pp. 1830-1841
[5] For further literature see mathematics publication section of: http://sinai.mech.fukui-u.ac.jp/