
福井大学 工学部 研究報告 第 53 巻 第 1 号 2005 年 3 月
Mem. Fac. Eng. Univ. Fukui, Vol. 53, No. 1 (March 2005)

The GeometricAlgebra Java Package – Novel Structure Implementation of 5D Geometric
Algebra R4,1 for Object Oriented Euclidean Geometry, Space-Time Physics and Object

Oriented Computer Algebra

Eckhard MS HITZER* and Ginanjar UTAMA**

(Received February 18, 2005)

This paper first briefly reviews the algebraic background of the conformal (homogeneous)

model of Euclidean space in Clifford geometric algebra R4,1= Cl(4,1), concentrating on the
subalgebra structure. The subalgebras include space-time algebra (STA), Dirac and Pauli algebras,
as well as real and complex quaternion algebras, etc. The concept of the Horosphere is introduced
along with the definition of subspaces that intuitively correspond to three dimensional Euclidean
geometric objects. Algebraic expressions for the motions of these objects and their set theoretic
operations are given. It is shown how 3D Euclidean information on positions, orientations and
radii can be extracted.

The second main part of the paper concentrates on the GeometricAlgebra Java package
implementation of the Clifford geometric algebra R4,1 = Cl(4,1) and the homogeneous model of
3D Euclidean space. Details are exemplified by looking at the structure and code of the basic
MultiVector class and of the 3D Euclidean object model class Sphere. Finally code optimization
issues and the ongoing open source project implementation are discussed.

Key Words : Clifford Geometric Algebra, Java Multivector Software, Object Oriented Euclidean
Geometry, Space-Time Algebra, Computer Algebra

1. Introduction

The Clifford geometric algebra of three dimensional (3D)
Euclidean space nicely encodes the algebra of 3D subspaces,
providing geometric multivector product expressions of
rotations and set theoretic operations [1]. But in this framework
line and plane subspaces always contain the origin.

The homogeneous (conformal) model of 3D Euclidean
space in the Clifford geometric algebra R4,1 provides a way out.
Here positions of points, lines and planes, etc. off the origin can
be naturally encoded. Other advantages are the unified
treatment of rotations and translations and ways to encode
point pairs, circles and spheres. The creation of such
elementary geometric objects simply occurs by algebraically
joining a minimal number of points in the object subspace. The
__

* Dept. of Physical Engineering
** Dept. of Engineering Physics, Institute of Technology

Bandung, Indonesia

resulting multivector expressions completely encode in their
components positions, orientations and radii. The geometric
algebra R4,1 can be intuitively pictured as the algebra of origin,
Euclidean 3D space and infinity, where origin and infinity are
represented by additional linearly independent null-vectors.
This algebra seems most suitable for applications in computer
graphics, robotics and other fields [2], [3].

This paper therefore first gives a brief review of the basic
concepts of the geometric algebra R4,1, its subalgebra structure
and the socalled Horosphere [7]. Explicit details for the
construction of fundamental geometric objects in this model
are given, detailing how the 3D geometric information can be
extracted. We further explain how the simple multivector
representations of these objects can be manipulated in order to
move them in three dimensions and to express set theoretic
operations of union (join), intersection (meet), projections and
rejections.

This algebraic encoding of geometric objects and their
manipulations strongly suggests an object oriented software
implementation. This would allow computers to calculate with

this algebra and provide programmers with the means to most
suitably represent fundamental geometric objects, their 3D
properties and ways (methods) to manipulate these objects.
This happens on a higher algebraic level, so that the
programmer actually is freed of the need to first investigate
suitable less intuitive matrix representations.

The implementation chosen here is in the object oriented,
platform independent programming language Java in the form
of a Java package named GeometricAlgebra. This Java
implementation of R4,1 automatically includes the
implementations of a wide range of mathematically and
physically important lower dimensional algebras and
geometric algebras.

Finally, the reasons for this choice of implementation are
discussed along with details of the code and perspectives for
further improvement and development.

2. The Conformal Geometric Algebra Cl(4,1) of Origin,

Euclidean Three Space and Infinity

2.1 Geometric Algebra of 3D Euclidean Space

By reverting back to Clifford's original expression geometric
algebra we want to emphasize the geometric interpretation of
this algebra. Let us assume an orthonormal vector basis for the
real three dimensional Euclidean vector space R3 = R3,0 (NB:
upper index.)

{e1, e2, e3} (1)
Clifford's bilinear and associative geometric product [4] - [6] of
vectors

ab = a ┙b + a∧b = a∟b + a∧b = a∗b + a∧b (2)
generates the geometric algebra R3 = R3,0 (NB: lower index.)
The first term in each of the three expressions for the geometric
product given above is a symmetric grade zero scalar and fully
corresponds to the familiar scalar product of vectors (of
algebraic grade one). The second term is an antisymmetric
bivector as known from Grassmann's 19th century multivector
algebra (extension theory). It represents the oriented
parallelogram area which is spanned by the two vector factors
in the outer product (∧), algebraically it has grade two. The
three different expressions for the first term indicate, that left
contraction (┙) and right contraction (∟) and the scalar
product (∗) of vectors all yield the same scalar.

The left contraction of two simple multivectors (blades) Ak,
Bl with grades k, l (0≦k,l≦max, max = dimension of the
vector space, e.g. max = 3 for R3), respectively is defined as

Ak┙Bl = <Ak Bl>l-k , (2’)

where the angular bracket < >l-k means to extract only the grade

l-k part from the full geometric product AkBl . Similarly the
right contraction of two simple multivectors Ak, Bl is defined as

Ak ∟ Bl = <Ak Bl>k-l . (2’’)
The scalar product of Ak and Bl is defined as

Ak ∗ Bl = <Ak Bl> = <Ak Bl>0. (2’’’)
R3 is 23 = 8 dimensional with a basis of scalars, vectors,

bivectors and trivectors
{1, e1,e2,e3, i1 = e2e3, i2 = e3e1, i3 = e1e2, i = e1e2e3}. (3)

Scalars are dual (by multiplication with i) to the pseudoscalar
trivectors (proportional to i) according to

i2 = ii = - 1, (4)
and vectors are dual to bivectors according to

ie1 = i1, ie2 = i2, ie3 = i3. (5)
We can therefore rewrite the basis of Eq. (3) as a “complex”
scalar and vector basis

{1, e1,e2,e3, ie1 = i1, ie2 = i2, ie3 = i3, i = e1e2e3}, (3’)
because of Eq. (4). Or we can rewrite it as a “complex”
quaternion basis

{1, e1= - ii1,e2= - ii2,e3= - ii3, i1, i2, i3, i = e1e2e3}. (3’’)

2.2 Basis and Subspaces of Conformal 5D Space of Origin,
3D Euclidean Space and Infinity

By introducing (similar to projective geometry) a linearly
independent null-vector to represent the origin ň and a second
linearly independent null vector n to represent infinity, we
extend the basis of Eq. (1) to the five dimensional basis of the
vector space R4,1

{ň, e1, e2, e3, n}. (6)
As we see from this basis, R4,1 has two important subspaces,

the three dimensional Euclidean space and its orthogonal
complement, the Minkowski plane R1,1 spanned by the two
extra dimensions for origin and infinity

R1,1 = span[ň, n]. (7)
With the basis transformation

e0 = (n +2ň)/2, e4 = (n -2ň)/2, (8)
and the inverse transformation

n = e0 + e4, ň = (e0 - e4)/2, (9)
we can introduce an orthonormal non-null basis for R1,1 with
vectors of positive and negative square

{e0, e4}, e0
2= -1, e4

2= +1. (10)
So we can either use for R4,1 the basis of Eq. (6) or

{e0, e1, e2, e3, e4}. (11)
These two basis are linked by the transformations of Eqs. (8)
and (9). Usually it is convenient to work in the basis of Eq. (6),
but sometimes the work with the non-null basis of Eq. (11) can
be of advantage (e.g. for factorization).

2.3 Important Subalgebras

Apart from the Euclidean subalgebra R3 mentioned in
subsection 2.1, the conformal geometric algebra R4,1 of the 5D
vector space R4,1 has further three subalgebras, which are of
particular importance for object oriented Euclidean geometry:
one is isomorphic to the complex numbers, one to the
quaternions and finally the subalgebra of the Minkowski plane.
These three subalgebras also have major applications in
physics and computer algebra. A more comprehensive survey
of the rich subalgebra structure of the conformal geometric
algebra R4,1 is given in section 4.1.
2.3.1 Subalgebra of Scalars and Pseudoscalars

Scalars (R) and 5D pseudoscalars, proportional to
I = e0e1e2e3e4 = -i e0e4 = iN, I2 = - 1, (12)

with
N = - iI = - e0e4 = n∧ň, N2 = + 1, (13)

form according to Eq. (12) under the geometric product a
subalgebra of R4,1, which is isomorphic to complex numbers.
Compare also the multiplication Table 1.

Table 1 Multiplication table of scalar-pseudoscalar
subalgebra. (Products of left factor from left column and
right factor from top row.)

2.3.2 Subalgebra Isomorphic to Quaternions

The geometric algebra R3 of the Euclidean subspace R3 is
also a subalgebra of R4,1 and so is its even subalgebra, which
has a basis, that consists of real scalars and the three unit
bivectors that represent the oriented unit side faces of a unit
cube oriented with its edges along the three vectors of the
Euclidean basis of Eq. (1):

{1, i1, i2, i3} (14)
The multiplication table (Table 2) clearly shows the
isomorphism of this subalgebra with Hamilton's algebra of
quaternions.

Table 2 Multiplication table of subalgebra isomorphic to
quaternions. (Products of left factor from left column and
right factor from top row.)

 1 i1 i2 i3
1 1 i1 i2 i3
i1 i1 -1 - i3 i2
i2 i2 i3 -1 - i1
i3 i3 - i2 i1 -1

2.3.3 Subalgebra of the Minkowski Plane
The subalgebra R1,1 of the Minkowski plane subspace R1,1

has the following 22 = 4 dimensional basis
{1, n, ň, N} (15)

of scalars, vectors and the bivector N (N fully characterizes the
Minkowski plane subspace). Table 3 shows the corresponding
multiplication table.

Table 3 Multiplication table of the Minkowski plane
subalgebra. (Products of left factor from left column and
right factor from top row.)

 1 N ň N
1 1 N ň N
n n 0 -1+N n
ň ň -1-N 0 - ň
N N - n ň 1

2.4 Basis of the Conformal Geometric Algebra

We are now in a position to write down the complete 25 = 32
element basis of the conformal geometric algebra R4,1. It
contains grade by grade scalars, vectors, bivectors and the dual
elements of trivectors, quadrivectors and pseudoscalars.

 1 I
1 1 I
I I -1

grade
(0) 1
(1) e1, e2, e3, n, ň
(2) i1, i2, i3, e1n, e2n, e3n, e1ň, e2ň, e3ň, N

___________________________________ (16)
(3) I i1, Ii2, Ii3, i1n, i2n, i3n, i1ň, i2ň, i3ň, i = IN
(4) i1N, i2N, i3N, I n, Iň
(5) I

All elements of Eq. (16) below the horizontal line are dual (by
multiplication with I) to elements above the line. This fact and
the subalgebra structure of R4,1 explained in sections 2.3.1 to
2.3.3 yield a very neat notation for general multivectors in the
32 dimensional conformal geometric algebra.

2.5 Three Level Approach

The three levels which we use to categorize general
multivectors in the conformal geometric algebra R4,1
correspond to the subalgebras of complex numbers,
quaternions and the Minkowski plane algebra R1,1. We can
now write each general multivector as a linear combination of
four complex quaternions

m = q + qnn + qňň + qNN. (17)
Each of the four complex quaternions q, qn, qň, qN is in turn a
complex linear combination of two real quaternions. For
example the complex quaternion

qn = qn,r + I qn,i (18)
where the indexes r and i signify the real and imaginary parts
respectively. Every real quaternion can be written explicitly as
a linear combination of the basis elements Eq. (14), e.g.

qn,i = qn,i,0 + qn,i,1 i1 + qn,i,2 i2 + qn,i,3 i3 (19)
where the word real of real quaternion means, that the four
scalar coefficients are all real

qn,i,0, qn,i,1, qn,i,2, qn,i,3 R (20)
This three level approach makes the programming indeed very
modular and well structured. Eqs. (18) and (19) also show, that
each complex quaternion q, qn, qň and qN is isomorphic to the
geometric algebra of three-dimensional Euclidean space of Eq.
(3), because of Eq. (12): I = iN.

3 Conformal (Homogeneous) Model of Euclidean Space

3.1 The Horosphere

The notion of light cone in Minkowski space R3,1 as the set
of all light rays emanating from one point is familiar from
special relativity. All vectors on the light cone square to zero.
The Horosphere is a 3D section of the 4D light cone of the
space R4,1 keeping the component in the direction of ň equal to
one. It was introduced by F.A. Wachter (1792-1817), an
assistant of Gauss [7], [10].

A point x in Euclidean space can be specified in terms of
three orthonormal basis vectors of Eq. (1) as

x = x1e1 + x2e2 + x3e3 (21)
Its one-to-one corresponding conformal point X on the
Horosphere is defined by adding an infinity and an origin part

X = x + 1/2 x2 n + ň (22)
with x2 = x2, with the result that X2 = 0.

3.2 Geometric Product

The geometric product of Eq. (2) of two conformal points
P1= p1+1/2 p1

2 n +ň, P2= p2+1/2 p2 2 n +ň (23)
yields

P1P2 = P1∗P2 + P1∧P2, (24)
with the scalar contraction part

P1∗P2 = -1/2 (p1 - p2)2 . (25)
The contraction part therefore directly corresponds to the
squared Euclidean distance. The second term on the right hand
side of Eq. (24) fully corresponds to the pair of conformal
points P1, P2 (or of Euclidean points p1, p2), which can be fully
extracted from P1∧P2, as explained in section 3.6.1.

3.3 Subspaces, Joining

Similar to the projective definition of lines with the help of
the outer product by Grassmann, we have the following two

useful propositions in geometric algebra of a real
n-dimensional linear vector space [6]. For vectors x, p1, p2, … pr
in that vector space

{p1, p2,…pr} (r ≤ n) linearly independent
⇔ p1∧p2∧…∧pr ≠ 0 (26)

and
x ∈ span[p1, p2,…pr] (r ≤ n)
⇔ x ∧p1∧p2∧…∧pr = 0 (27)

We get the following subspaces of the Horosphere by joining
general conformal points P1, P2, P3, P4 and infinity n with the
outer product of geometric algebra. We list the subspaces in
terms of their Euclidean equivalents.[10], [12]
z Pairs of points P1, P2 form P1∧P2
z Circles through P1, P2, P3 corresponding to P1∧P2∧P3
z Straight lines through P1, P2 and infinity corresponding to

P1∧P2∧n
z Spheres through P1, P2, P3, P4 corresponding to

P1∧P2∧P3∧P4
z Planes through P1, P2, P3 and infinity corresponding to

P1∧P2∧P3∧n

3.4 Translators and Rotors

It is a major benefit of introducing the extra dimensions of
origin ň and infinity n, that translations can be implemented
like rotations by monomial multivector products. The general
form[10] of both transformations for conformal points X is

X → X’ = UXŨ, UŨ = 1. (28)
For rotations by an angle ϑ in the Euclidean bivector plane i
about the origin, U becomes a rotor
 R(iϑ) = ± exp(- iϑ/2), R̃(iϑ) = ± exp(+ iϑ/2). (29)
For translations by a 3D Euclidean translation vector t the
multivector U becomes a translator

T(t) = ± exp(nt/2) = ± (1 + nt/2),
T̃(t) = ± (1 - nt/2), (30)

The two terms expansion formula holds because of the null
property Eq. (6) of n. A rotation by an angle ϑ in the plane i
about any Euclidean center of rotation a is obtained by shifting
the center of rotation to and from the origin, before and after the
rotation, respectively. For this combined transformation U has
simply to be replaced by

R’(iϑ,a) = T(a) R(iϑ) T̃(a) (31)
The reverse order [6] translator T̃(a) first translates the center of
rotation a by -a to the origin. A general combination of a
rotation by an angle ϑ in the plane i about any Euclidean center
of rotation a combined with a subsequent translation by a 3D
Euclidean vector t is finally described by inserting for U in Eq.
(28) the motor (motion operator)

M(iϑ, a, t) = T(t) R’(iϑ, a) . (32)

3.5 Join, Meet and Projection

The join[6] is the set theoretic union of subspaces. (NB: Some
mistakes in [12] are put right here.) From Eq. (27) we see that in
geometric algebra (and Grassmann algebra) the basic operation
of join is the elementary operation of the outer product. This
fully applies for joining linearly independent vectors (each
representing a one dimensional subspace [11]). Compare the
examples of joining two, three and four conformal point
(vectors) in section 3.3. In general one can simply take the
outer product of the basis vectors of a (sub)space to get a
simple join multivector that fully represents that (sub)space
according to Eqs. (26) and (27). If follows that for two simple
multivectors K, L that represent two disjoint subspaces, the set
theoretic union (join J) is also given by the outer product

J = K∧L . (33)
A different formula applies for J in case that the two subspaces
K and L are not disjoint, i.e. that they have a common simple
(blade) multivector factor M, that characterizes the set theoretic
intersection, called meet according to

K = K’∧M, L = M∧L’. (34)
Because M is a simple multivector it has with respect to the
geometric product the inverse

M-1 = M/M2 (35)
where we also need to assume that M is not a null-multivector,
i.e. M2 ≠ 0.
Notice that the use of null-vectors in section 3.3 for modeling
Euclidean objects does not necessarily mean that the resulting
multivectors square to zero. In Table 3 we see that e.g. N =
n∧ň has the square N2 = 1. Another example are the radii of
the circles and spheres, which are given by the properly
normed squares of the multivectors P1∧P2∧P3 and
P1∧P2∧P3∧P4 [37]. The meet M of two intersecting spheres is a
circle and will therefore not square to zero, if the radius is not
zero.

For non-disjoint subspaces, the simple join multivector
(blade) can be calculated [8] by

J = K∧L’ = K∧(M -1 ┙L) . (36)
Knowing the join, we can in turn use it to calculate[8] the meet
M by

M = (K ┙J -1) ┙L . (37)
In general the sign of the square of the meet M2 is of great
importance [2],[9]. For example the meet of a line and a sphere is
a bivector [38]. For M2 > 0 it represents a pair of intersection
points, but M2 < 0 means that the line and the sphere are
disjoint. Similarly the meet M of two spheres is a trivector.
For M2 < 0 it represents the circle of intersection, but M2 > 0
means that the spheres are disjoint. (NB: The signs of M2 are

different for the cases of bivectors and trivectors.) In both cases
M2 = 0 encodes a single point of tangential intersection.

Finally the projection [8] of the subspace represented by K
onto the subspace represented by L (think e.g. of the projection
of a line onto a plane) is given by

PL(K) = (K ┙L-1) ┙L . (38)
Because of the linearity of the projection formula, the simple
multivector K can even be replaced by a general
inhomogeneous multivector (which can be understood as
representing a collection of subspaces).

Complimentary to the projection is the rejection[8] of the
subspace represented by K off the subspace represented by L. It
defines the subspace of K perpendicular to L. It is given by

(K ∧L-1) ┙L . (39)

3.6 3D Information in Homogeneous Objects

The homogenous multivectors of section 3.3 completely
encode positions, directions, moments and radii of the
corresponding three dimensional (3D) objects in Euclidean
space. An overview of this is given in Table 4. Here we only
give a brief summary of important formulas, for more details
consult [37].

Table 4 3D information in homogeneous objects. The left
column lists the homogeneous multivectors of section 3.3,
that represent the geometric objects.

homogeneous object 3D information
point P position p

point pair P1∧P2 positions p1, p2

line direction vector,
moment bivector

circle plane bivector, center, radius
plane plane bivector,

location vector
sphere center, radius

3.6.1 Point and Pair of Points

The (additive) conformal split returns the Euclidean position
p of a conformal point P

p = (P∧N)N . (40)
Definition (22) shows how to get P in terms of p.

The Euclidean positions p1, p2 (without loss of generality: p1
= √p1

2 ≤ p2 = √p2
2) of a pair of points represented by the

conformal bivector
V2 = P1∧P2 = b + 1/2 vn – uň – 1/2 gN (41)

can be fully reconstructed from the various components of V2.
These are the Euclidean bivector b, two Euclidean vectors u, v

(lengths u = √u2, v = √v2) and the real scalar g.
s =1/2 g2 - u∗v, t = (s2 - u2v2)1/2,

p1=(s+t)1/2/u, p2= (s-t)1/2/u, (42)
p1 = p1 (p1

2u +v) / | p1
2u +v| ,

p2 = p2 (p2
2u +v) / | p2

2u +v|
3.6.2 Lines

Given two conformal points P1 and P2 the conformal
trivector

Vline = P1∧P2∧n = mn + d N (43)
consists of the Euclidean bivector momentum m and the
Euclidean direction vector d of the line. A Euclidean
parametric equation for the line is then

x = (m + a) d-1 , a ∈ R . (44)
3.6.3 Cirlces

General conformal trivectors of the form
V3 = P1∧P2 ∧P3

= c∧Ic +[1/2 (r2+c2) Ic - c(c ┙Ic)]n + Icň - (c ┙Ic) N, (45)
with Euclidean circle plane bivector

Ic = -{[V3+(V3∗i) i] ∧n}N , (46)
circle radius

r2 = -V3
2/Ic

2 (47)
and Euclidean circle center

c = c∥ + c⊥,
c∥ = -[(V3∟n)∟ň]Ic

-1 , c⊥ = - (V3∗i) i Ic
-1. (48)

For the special case that the circle plane includes the origin (c⊥
= 0), we get a much simpler expression

V3 = - [C - 1/2 r2n] Ic N . (49)
The conformal center

C = c + 1/2 c2 n + ň (50)
can then be extracted as

C = -V3/IcN + 1/2 r2n . (51)
3.6.4 Planes

Given three conformal points P1, P2 and P3, the conformal
4-vector

Vplane = P1∧P2∧P3∧n = d Ipn - Ip N, (52)
represents the plane through the Euclidean points p1, p2 and p3.
The orientation of the plane is given by the Euclidean bivector

Ip = - (Vplane n) ∟ň . (53)
The Euclidean origin to plane distance vector d can be
extracted by

d = (Vplane∧ň) Ip
-1 N . (54)

3.6.5 Spheres
General conformal 4-vectors of the form

V4 = P1∧P2∧P3∧P4 = (C-1/2 r2 n) is N (55)
represent spheres through the conformal points P1, P2, P3 and
P4. The sphere radius is obtained from

r2 = V4
2 / (V4∧n)2 . (56)

The conformal sphere center is then given by

C = - V4/(V4∧n) + 1/2 r2n . (57)
The Euclidean pseudoscalar (proportional to i) of Eq. (55) is

is = - (V4∧n) N . (58)

4. Java Implementation of R4,1, the Homogeneous Model of
Euclidean Space and the Subalgebras of R4,1

4.1 Software Implementation

We have seen that the (conformal) geometric algebra allows
to work with an algebra of subspaces. Within this algebra, the
homogeneous model of Euclidean space allows
straight-forward definitions of elementary geometric objects
(points, pairs of points, lines, circles, spheres, planes) from a
minimum of points on these objects. The Euclidean geometric
characteristics of these objects, like position orientation, radius,
etc. appear as easy-to-identify component parts of the object
multivectors. Rotations and translations, join, intersection,
projection and rejection can all be realized as simple monomial
geometric products of multivectors within the algebra.

These properties very much suggest an object oriented
programming implementation of conformal geometric algebra.
Because of the subalgebras of the conformal geometric algebra,
this includes automatically a wealth of implementations of
further important geometric algebras (GA):
z algebra of scalar real numbers
z algebra of complex numbers
z algebra of quaternions. Quaternions are isomorphic to

the even subalgebra of the GA of 3D Euclidean space.
z algebra of complex quaternions
z GAs of Euclidean lines, planes and 3D and 4D spaces.

Especially the GA of 3D Euclidean space is
isomorphic to the Pauli matrix algebra of quantum
mechanics.

z GAs of the non-Euclidean (Minkowski) vector spaces
R1,1, R2,1, R3,1, R4,1, including all their subalgebras.
Especially R3,1 is the algebra of spacetime (STA)
important for physical applications and isomorphic to
the algebra of Dirac matrices. The even subalgebra of
the STA is in turn isomorphic to the GA of 3D
Euclidean space [40].

Because geometric algebra presents a unified approach to
mathematics, physics and whatever applications are needed in
engineering sciences, especially including computer science,
the unified software implementations of all the algebras listed
above will be of great benefit.

There are several design choices available for implementing
the conformal model in an object oriented manner. One
approach is grade-by-grade classes so that we have (scalar,)

vector, bivector, trivector, quadrivector and pseudoscalar
classes. Higher grade (grade > 1) objects would be generated
by the geometric product of lower grade objects. For example a
bivector is the grade two part result of the geometric product of
two vectors. In this way vectors become primary class objects
and the MultiVector class is composed of graded objects. One
of the authors has tried this approach [39] for three dimensional
geometric algebra and found on one hand that grade selection
then simply returns the specific grade object, but on the other
hand the full multivector multiplication is harder to implement,
because we have to perform multiplications between different
grade objects.

Another approach is to declare MultiVector the primary
class object. This way we have to manage the 32 elements
internally, either using selective matrix multiplication or by
taking advantage of the subspace structure of the conformal
model mentioned in section 2.5.

By now various implementations of the conformal algebra
and the homogeneous model in C/C++ are available [13],[14].
Calculations can also be done with geometric algebra packages
added to major computer algebra softwares. This is part of
widely available (much of it freeware for download) geometric
algebra software [15]. But it seems that so far no Java
implementation of conformal geometric algebra exists.

4.2 Why Java?

Java is a free object oriented programming language
introduced and maintained by Sun Microsystems [16]. It is
platform independent, simple and provides many good libraries
and tools. It has support from both commercial vendors and the
open source community, and has become a major language in
enterprise application development. Special characteristics are
Java applets operating in web browsers, interactivity and
facilities for networking. Java allows to process text, graphics
and sounds, including animations. It is nowadays available on
more than half a billion desktop computers, and used for over
300 million smart cards. 74 % of professional software
developers make use of Java and it has become an international
university standard for teaching and research.

Therefore the Java package GeometricAlgebra development
began at the University of Fukui [17]. It is open source software
freely available under the GNU Lesser General Public License
[18].

4.3 The GeometricAlgebra Java Package

The GeometricAlgebra Java package so far consists of ten
objects (classes) and associated methods. For an overview of
these classes compare Table 5.

Table 5 Ten basic implemented classes of the
GeometricAlgebra Java package.

ComplexNumber
ComplexQuat
MultiVector

BasicMultiVectors
PointC
Line

Circle
Sphere

GeometricObject
SwingDrawable

The main class is called MultiVector. It is constructed in a
modular way with the help of the auxiliary classes
ComplexNumber and ComplexQuat(ernion). These are all
immutable classes, because they act as data types, so they can
not be changed once created. A collection of frequently used
basic multivectors is the BasicMultiVectors class. PointC,
Circle and Sphere [12] are special kinds of the GeometricObject
class. The GeometricObject class has reference to the
MultiVector class. It has command methods that every of its
child classes needs [such as .meet(MultiVector mv2)] that
return another MultiVector. The GeometricObject class
implements SwingDrawable which has drawing methods used
e.g. in the visual application KamiWaAi [12]. In this respect the
GeometricAlgebra package still shows dependence to Swing.

The methods allow the implementation of the geometric
product and derived products, component and grade
manipulations and other important geometric algebra
operations. Further algebraically not essential methods are for
visual application development. In the following we will
concentrate on describing the MultiVector class and its
methods. We will further choose the class Sphere in order to
give an example for how a special geometric object is defined
as a multivector and can be used by way of its associated
methods.
4.3.1 The Java Class MultiVector

The most important class MultiVector is based on the class
ComplexQuat, encoding complex quaternions. ComplexQuat
in turn is based on the class ComplexNumber. A
ComplexNumber simply is a pair of double floating point type
numbers for real and imaginary parts with methods for
returning their values. Further methods allow addition,
subtraction and multiplication .mult(ComplexNumber cn) of
ComplexNumber(s). In the GeometricAlgebra package the

class ComplexNumber implements the subalgebra of real
scalars and 5D pseudoscalars I of section 2.3.1.

A ComplexQuat consists of a linear array of four
ComplexNumber(s). The first encodes the complex scalar
component and the other three the three basic Euclidean
bivectors i1, i2, i3 and their duals (multiplied by I). The methods
for ComplexQuat are largely similar to the ones of
ComplexNumbers. The multiplication
method .mult(ComplexQuat cq2) implements the quaternion
multiplication table using the .add(ComplexNumber
cn), .sub(ComplexNumber cn) and .mult(ComplexNumber cn)
methods of the class ComlexNumber.

A MultiVector consists of a linear array of four
ComplexQuat objects in one to one correspondence with the
four complex quaternions of equation Eq. (17). The methods
for returning them are therefore simply
called .getScPart(), .getnPart(), .getnbarPart(),
and .getnhnbPart(). MultiVector has methods for addition and
subtraction and most important for forming the full geometric
product of two instances of MultiVector. The multiplication
method .mult(MultiVector mv2) implements the geometric
product making use of the lower level ComplexQuat
multiplication method, adding and substracting the four
ComplexQuat component objects according to Table 3.
Because of the central importance of the geometric product, we
include its Java source code:

public MultiVector mult(MultiVector mv2)
 {
 ComplexQuat M1, Mn, Mnb, Mnnb;
 ComplexQuat N1, Nn, Nnb, Nnnb;
 ComplexQuat[] MVprod = new ComplexQuat[4];
 // defining the two sets
// of complex quaternions

 M1 = MV[0];
 Mn = MV[1];
 Mnb = MV[2];
 Mnnb = MV[3];
 N1 = mv2.getScPart();
 Nn = mv2.getnPart();
 Nnb = mv2.getnbarPart();
 Nnnb = mv2.getnhnbPart();
 // scalar part
 MVprod[0] = (M1.mult(N1))

.add(Mnnb.mult(Nnnb))
 .sub(Mn.mult(Nnb))

.sub(Mnb.mult(Nn));
 // n vector part

 MVprod[1] = (M1.mult(Nn))
.add(Mn.mult(N1))

 .add(Mn.mult(Nnnb))
.sub(Mnnb.mult(Nn));

 // nbar vector part
 MVprod[2] = (M1.mult(Nnb))

.add(Mnb.mult(N1))
 .sub(Mnb.mult(Nnnb))

.add(Mnnb.mult(Nnb));
 // n hat nbar part
 MVprod[3] = (M1.mult(Nnnb))

.add(Mnnb.mult(N1))
 .sub(Mnb.mult(Nn))

.add(Mn.mult(Nnb));
 return new MultiVector(MVprod);
 }

The modular three level approach of complex numbers,
complex quaternions and finally multivectors thus reduces the
programming work to very well structured small pieces of code
on each level.

A direct application of the geometric product
implementation is the method .Powerof(int power) that returns
the geometric product of a multivector with itself via a loop the
number of times specified by the integer parameter "power".

The next rather fundamental method is the .getGrade(int g)
method for grade selection. It will return the homogeneous
multivector part of the specified grade. The integer g ranges
between 0 and 5. For any other value of g, a zero MultiVector
(all components set to zero) will be returned. With the help of
the geometric product and grade selection, we can now define
important derived products of multivectors like the scalar
product, the outer product, left and right contractions.

The scalar product only has one line of code, taking the real
scalar part of the full geometric product of two multivectors:

return new
MultiVector(MV).mult(mv2).getScPart()

 .getScPart().RealPart();

The outer product uses a simple double for loop over the grade
part indexes of the two multivector factors, summing up the
maximum grade results of products of grade part components.
Left and right contraction work very similar. The selected
grades in the result of products of grade part components
correspond e.g. for the left contraction to differences of grades
s-r, where r is the grade of the left factor and s the grade of the
right factor [8].

Lcontr = Lcontr.add((Mg[r].mult(Ng[s]))

.getGrade(s-r));

The reverse of a multivector is implemented simply by
summing over its grade parts and changing the signs of the
grade 2 and 3 parts:

rev = (mv1.getGrade0())

.add(mv1.getGrade1())

.sub(mv1.getGrade2())
 .sub(mv1.getGrade3())
.add(mv1.getGrade4())
.add(mv1.getGrade5());

The method .magnitude() returns the magnitude of a
multivector as a floating point number. It takes the square root
of the real scalar part of the product of a multivector with its
own reverse:

mag = Math.sqrt((mv1.mult(mv1.reverse()))
 .getScPart()

.getScPart()

.RealPart());

Care should be taken, because the magnitude makes only sense
for multivectors from positive definite subspace algebras. This
also applies to the method .normalize(), which returns a
multivector divided by its scalar magnitude.

The remaining methods are .multSc(double factor) for
multiplying a multivector with a real floating point scalar factor,
and .get3DMVector(). The last method returns the Euclidean
vector part of the multivector it is applied to, and zero for all
other components.
4.3.2 The Java Class Sphere

As an example for the definition of a geometric object, we
explain the class Sphere. Its main variable is a MultiVector,
representing the sphere in the homogeneous model according
to section 3.6.5. Therefore, we have the constructor
Sphere(PointC p1, PointC p2, PointC p3, PointC p4) for
creating an object Sphere based on Eq. (55). Further obvious
methods are for the calculation of the radius, with the main line

double r2 =
(L.ScProd(L))*(1.0/(n.OutProd(L)

 .ScProd(n.OutProd(L))));

and .Center() for the conformal center vector. We further have

a method for changing the center of a sphere, which uses
translators of Eq. (30) to move the sphere multivector L to its
new center. The method .meet(MultiVector mv) is now
uniquely implemented in the GeometricObject class and used
by both Line and Sphere. The method .MeetNo(Line line)
returns an integer by analyzing the square of the meet, with
values 0,1 or 2, depending on how many points of intersection
there are between the sphere and the Line line. Finally the
method .MeetLineMVs(Line line) returns a Java Vector (a
linear list) of conformal point multivectors representing the
point or pair of points of intersection. The formulas
implemented in this method are that of Eq. (42).

The class Sphere also contains methods specific for drawing
spheres on screens by nets of meridians. One such
method .generator(int inc, MultiVector plane) allows the user
to specify a plane bivector and an angle increment 2π/inc. The
result will be a rotor MultiVector according to Eq. (31), that
specifies rotations in the specified plane about the center of the
sphere.

The interested reader is invited to inspect the freely available
source code himself. A brief list of all GeometricAlgebra
package classes and their methods including the variables they
accept and types of returned data can be found in [12].

In the next two sections we will discuss how to optimize the
code, and the necessity and the benefits of turning the
GeometricAlgebra Java package (and an associated interactive
3D sketching application KamiWaAi) into an open
Sourceforge.net community project.

5. Optimization and Open Source Strategy

5.1 Refactoring the GeometricAlgebra Java Package

The advantages of geometric algebra will make it possible to
provide a new software basis for many scientific and
engineering applications in the future. To make this happen, the
developer must first understand the fundamentals of geometric
algebra. But most application developers or programmers may
not have sufficient knowledge of geometric algebra, so we
need to provide a simplified computational layer (or
framework) to them.

Developing a good framework is expensive. One way to
develop it is to design it carefully from scratch, which requires
much expertise. Another way is to extract it from existing
applications [20]. We will follow the last route, as it is easier and
we have first applications for interactive 3D sketching[12] and
geometric calculations[19]. They use the GeometricAlgebra
package, and we aim to extract the desired framework from
them.

Thus, we want to increase the reusability of the code and
give it the needed flexibility, so that it becomes easier to change
and cheaper to maintain. In software engineering, a way to
improve the design of existing code is called refactoring [21].
Refactoring consists of a series of small steps to transform the
code while preserving its behavioral appearance.

Presentation Layer
Application Layer

Fig. 1 Separating presentation and application layer.

Here are four refactoring steps and targets to be pursued:

First we have to separate the presentation and the application
logic into different layers like in Fig. 1. The presentation part
will handle the user interface (UI) part and the application
classes the business logic, which are simple and separate
responsibilities. By introducing this layered architecture we can
e.g. add Japplet as a web client to applications. If we want a fast
GUI component for rendering and visualizing complex
geometrical objects, we may need to add another client that
uses native components like the Standard Widget Toolkit
(SWT [22]).

Presentation Layer
Application Layer

Computational Layer

Fig. 2 Extracting computational layer from application
layer.

Second, while still working on the architecture, we aim to

further separate the application logic and the geometric algebra
framework like in Fig. 2. Software like KamiWaAi will be
sample applications that use the framework, but the framework
is not limited to visual applications and can e.g. be used for
algebraic computations, physical simulations or robotics
applications. One possibly promising pattern is the
Model-View-Controller (MVC) architecture, which originated
in the late 1970s from the SmallTalk world, and is today
widely used even in enterprise applications [23].

As we can see in Fig. 3, the MVC model for applications has
no dependency on other package parts, neither on UI classes
nor on controller classes. We can use Observer patterns [24] to
decouple the model from the view. The controller takes user
input, manipulates the model and causes the view to update
appropriately. Because of its architectural nature this step also

leads to important refactoring. If this step should run into
problems, we can gain leverage from existing frameworks like
JhotDraw [25] or the Graphical Editing Framework (GEF [26]) if
we are using SWT.

View Controller

Model

Fig. 3 Separating the presentation from the model and
separating the controller from the view.

Yet total reliance on software tools will not suffice for
achieving these first two steps.

Third, for other refactoring steps, we can largely depend on
tools like Simian [27] or the Programming Mistake Detector
(PMD [28]) to detect code duplication and other potential
problems.

Fourth, if we apply automatic refactoring tools or Integrated
Development Environments (IDE) like Eclipse [29], we don't
really need to conduct unit testing. But if we do refactoring
manually we will need to perform a series of tests by using e.g.
the JUnit testing framework [30]. Tests do also increase the
reliability of the software.

5.2 The GeometricAlgebra Java Package as Open Source
Project at SourceForge.net

To achieve our goals we need outside help and to use the
best available resources. Human ideas in a sense are the raw
material of the software and humans are also its main
producers. This makes humans a first order factor in software
development. While we humans are creative and intelligent we
to some degree are also unpredictable, irregular and
inconsistent at the same time.

Big companies can hire professional software engineers and
architects to get the best possible software. Well sponsored
research enjoys similar advantages. But even then the
maintainabilty problem remains, because no one lives forever.

Building software is hard, especially good one, and it is even
harder to maintain it. Contrary to what most people believe, the
cost of maintaining software is much higher than developing it.
Software is principally maintained by testing and debugging,
and this becomes a lot easier with user feedback. Users engage
in this if they believe that developers are going to respond by
improving the product and if they develop some sort of
relationship with the community of developers and other users.
We can build such a relationship by being transparent and by

opening our code, because the code cannot lie. Opening the
source code has the further advantage, that other knowledgable
individuals and groups can suggest improvements and use it to
fully understand the inner workings of the GeometricAlgebra
package. Open source code also strongly serves to encourage
the use of the GeometricAlgebra package for building new
applications. That is why we need to open the source code.

The GeometricAlgebra package is released under the GNU
Lesser General Public License (LGPL [18]), so it gives
opportunity to application and tool vendors to build
commercial products on top of it [31],[32]. This may also attract
them to join in the development. Because open source is
guided by user needs and not by a business roadmap [33], it will
result in "cleaner" code with less bugs.

There are other advantages of open source, with a devoted
project community. Because of the nature of the internet and of
geometric algebra, the collaboration scope becomes
international and multi-disciplinary. This could attract experts
from around the world to join the project and help solving
problems. Of course, to be successful such a collaboration
needs skilled leadership and effective management.

Building infrastructure to effectively manage such
collaboration is not an easy task. SourceForge [35] already
provides infrastructure and sufficient tools for hosting projects
that conform to open source definitions according to the Open
Source Initiative (OSI [34]). We will have a Concurrent Version
System (CVS [46]) for repository and source code control.
Further included are an online forum and a mailing list for
discussions, and we also have a website to maintain and
document an open source project. The GeometricAlgebra Java
package along with the associated visual application
KamiWaAi are now hosted at http://kamiwaai.sourceforge.net
The authors really look forward that those interested in
geometric algebra will join the future development of the
package and increase the quality and variety of associated
applications.

6. Conclusion

 We have briefly reviewed the algebraic background of the
conformal model of Euclidean space. We found the subalgebra
structure of the geometric algebra R4,1 of special interest for
designing an object oriented implementation of the geometric
product of multivectors in a well structured three level
approach. We further explained how to algebraically construct
conformal (homogeneous) subspaces with very intuitive
Euclidean interpretations. We introduced the algebraic
expressions for arbitrary translations and rotations, and for the

subspace operations of union (join), intersection (meet),
projection and rejection. All these are implemented as methods
in the GeometricAlgebra Java package.

We reviewed how the joining of conformal points yields
explicit expressions for points, pairs of points, lines, circles,
planes and spheres. After that we stated how in each case the
Euclidean 3D information of positions, orientations and radii,
etc. can be extracted. These formulas form the mathematical
structure of the related Java methods each geometric object has
in the GeometricAlgebra Java package implementation.

We found an object oriented software implementation to be
most suitable. Wide spread use and platform independence
motivated our adoption of Java.

Going into the details of the implementation of multivectors
as MultiVector Java classes, we demonstrated the direct and
intuitive correspondence between algebraic expressions and
Java source code. As for the homogeneous model multivectors
with Euclidean interpretation, we concentrated on the class
Sphere, to elucidate construction and use (the methods) of these
simple R4,1 multivectors.

Because the GeometricAlgebra Java package and related
applications are still under development we identified the
necessary steps for its optimization (refactoring). Further
expansions of the package are likely to include the class Plane,
and an implementation of the .plunge(…) product method for
multivectors. To take the plunge product (for the co-incidence)
[41] of multivectors A, B ∈ R4,1, means to calculate the outer
product of the duals of A and B:

 (AI-1) ∧ (BI-1) (59)
It may also be worthwhile to develop a range of browser
integrated online Java applet calculators for important algebras
like quaternions and the space-time (Dirac) algebra, etc.

Being concerned about the best possible match between
geometric algebra and object oriented software language apart
from Java other more radically object oriented software
languages like Ruby [42] may bring about an even better
correspondence between mathematical formulation and
programming code.

Apart from the mathematical and logical beauty of a
software implementation, optimization also means
performance tuning. The geometric algebra software
community is taking this aspect very serious [14]. As for the
GeometricAlgebra Java package it may help to not always use
the full Multivector class. For frequent computations, which
involve only subalgebra objects like real scalars, “complex”
scalars (scalar and pseudoscalar), vectors or quaternions
(scalars and bivectors), etc. it may increase the efficiency to
specifically use the corresponding lower level objects like real

numbers, ComplexNumber and ComplexQuat.
Apart from this first principles approach there is the future

option to profile GeometricAlgebra Java package applications
and libraries and change the code for reducing time expensive
bottle necks. With such an approach care may have to be taken
about code readability and sufficient documentation.

We finally argued why we think it is highly beneficial to
convert all this into an open SourceForge project [17].

Acknowledgements

Soli Deo Gloria. E. Hitzer does want to thank his wife and
children. We also thank our colleague Y. Fujii and D. Fontijne
(Amsterdam) for checking the manuscript.

References

[1] D. Hestenes: New Foundations for Classical Mechanics

(2nd ed.), Kluwer, Dordrecht, 1999.
[2] C. Doran, A. Lasenby, J. Lasenby: Conformal Geometry,

Euclidean Space and Geometric Algebra, in J. Winkler
(ed.), Uncertainty in Geometric Computations, Kluwer,
2002.

[3] G. Sommer (ed.): Geometric Computing with Clifford
Algebras, Springer, Berlin, 2001.

[4] P. Lounesto: Clifford Algebras and Spinors, CUP,
Cambridge, 2001.

[5] C. Chevalley: The Algebraic Theory of Spinors and Clifford
Algebras, Springer, Berlin, 1997.

[6] D. Hestenes and G. Sobczyk: Clifford Algebra to
Geometric Calculus, Kluwer, Dordrecht, reprinted with
corrections 1992.

[7] G. Sobczyk: Clifford Geometric Algebras in Multilinear
Algebra and Non-Euclidean Geometries, Lecture at
Computational Noncommutative Algebra and Applications,
July 6-19, 2003,
http://www.prometheus-inc.com/asi/algebra2003/abstracts/
sobczyk.pdf

[8] L. Dorst: The Inner Products of Geometric Algebra, in L.
Dorst et. al. (eds.): Applications of Geometric Algebra in
Computer Science and Engineering, Birkhaeuser, Basel,
2002.

[9] L. Dorst: Interactively Exploring the Conformal Model,
Lecture at Innovative Teaching of Mathematics with
Geometric Algebra 2003, Nov. 20-22, Kyoto University,
Research Institute for Mathematical Sciences (RIMS),
Japan.

[10] D. Hestenes, H. Li, A. Rockwood: New Algebraic Tools

for Classical Geometry, in G. Sommer (ed.), Geometric
Computing with Clifford Algebras, Springer, Berlin,
2001.

[11] J. Suter: Geometric Algebra Primer,
http://www.jaapsuter.com/

[12] E.M.S. Hitzer: KamiWaAi - Interactive 3D Sketching with
Java based on Cl(4,1) Conformal Model of Euclidean
Space, Advances in Applied Clifford Algebras 13-1,
11-45 (2003).

[13] C. Perwass: CLUCalc website, http://www.clucalc.info/
[14] D. Fontijne, T. Bouma, L. Dorst: Gaigen: a Geometric

Algebra Implementation Generator, July 28, 2002,
preprint.
http://www.science.uva.nl/ga/gaigen/files/20020728
_gaigen.pdf

[15] E.M.S. Hitzer: Mem. Fac. Eng. Fukui Univ. 50-1, 109 –
125 (2002).

[16] Java homepage http://java.sun.com/
[17] GeometricAlgebra Java package homepage at Source-

Forge http://kamiwaai.sourceforge.net
and its original homepage at the University of Fukui
http://sinai.mech.fukui-u.ac.jp/gcj/software/KamiWaAi/in
dex.html

[18] GNU open software license
http://www.gnu.org/copyleft/lesser.html

[19] E.M.S. Hitzer: Dihedral angle online applet calculator
http://sinai.mech.fukui-u.ac.jp/gcj/software/Dihed/index.ht
ml

[20] D. Roberts and R. Johnson: Evolving Frameworks: A
Pattern Language for Developing Object-Oriented
Frameworks,
http://st-www.cs.uiuc.edu/users/droberts/evolve.html

[21] M. Fowler, Refactoring: Improving the design of existing
code, Addison Wesley, 1999.

[22] Standard Widget Toolkit (SWT) website,
http://www.eclipse.org/swt

[23] M. Fowler: Patterns of Enterprise Application
Architecture, Addison Wesley, 2003.

[24] Gamma, Helms, Johnson, Vlissides, Design Patterns:
Elements of Reusable Software, Addison Wesley, 1995.

[25] JHotDraw website, http://jhotdraw.sourceforge.net
[26] Graphical Editing Framework (GEF) website,

http://www.eclipse.org/gef
[27] Simian website,

http://www.redhillconsulting.com.au/products/simian/
[28] Programming Mistake Detector (PMD) website,

http://pmd.sourceforge.net/
[29] Integrated development environment Eclipse website

http://www.eclipse.org/
[30] Testing framework JUnit website,

http://www.junit.org
[31] GNU website, http://www.gnu.org
[32] N. A. Rupp: On Branding and Copyright - Open Source

For Entrepreneurs, http://weblogs.java.net/pub/wlg/586
[33] R. X. Cringely: Unplugged: How Microsoft's Misunder-

standing of Open Source Hurts Us All,
 http://www.pbs.org/cringely/pulpit/pulpit20031023.html

[34] Open source definition from Open Source Initiative (OSI),
http://opensource.org/docs/definition.php

[35] SourceForge website, http://sourceforge.net
[36] Concurrent Version System (CVS) website,

http://www.cvshome.org
[37] E. M. S. Hitzer: Euclidean Geometric Objects in the

Clifford Geometric Algebra of {Origin, 3-Space, Infinity},
to be printed in: Bulletin of the Belgian Mathematical
Society – Simon Stevin.

[38] E. M. S. Hitzer: to be printed in H. Li, P. Olver, G.
Sommer (eds.), GIAE Xian conference proceedings,
Lecture Notes in Computer Science, Springer, 2005.

[39] G. Utama: The Development of a Java Based API for
some Geometric Algebra Operations, Thesis, Institute of
Technology Bandung, (2001).

[40] D. Hestenes: Space-Time Algebra, Gordon and Breach,
New York, 1966.

[41] L. Dorst and D. Fontijne: An Algebraic Foundation for
Object-Oriented Euclidean Geometry, in E.M.S. Hitzer, R.
Nagaoka, H. Ishi (eds.): Proc. of Innovative Teaching of
Mathematics with Geometric Algebra Nov. 2003,
Research Institute for Mathematical Sciences (RIMS),
Kyoto, Japan, RIMS 1378, 138 – 153 (2004).

[42] Ruby website: http://www.ruby-lang.org/en/

