
福井大学 工学部 研究報告 第 53 巻 第 1 号 2005 年 3 月 
Mem. Fac. Eng. Univ. Fukui, Vol. 53, No. 1 (March 2005) 

 
 

The GeometricAlgebra Java Package – Novel Structure Implementation of 5D Geometric 
Algebra R4,1 for Object Oriented Euclidean Geometry, Space-Time Physics and Object 

Oriented Computer Algebra 
 

Eckhard MS HITZER* and Ginanjar UTAMA**  

 
(Received February 18, 2005) 

 
This paper first briefly reviews the algebraic background of the conformal (homogeneous) 

model of Euclidean space in Clifford geometric algebra R4,1= Cl(4,1), concentrating on the 
subalgebra structure. The subalgebras include space-time algebra (STA), Dirac and Pauli algebras, 
as well as real and complex quaternion algebras, etc. The concept of the Horosphere is introduced 
along with the definition of subspaces that intuitively correspond to three dimensional Euclidean 
geometric objects. Algebraic expressions for the motions of these objects and their set theoretic 
operations are given. It is shown how 3D Euclidean information on positions, orientations and 
radii can be extracted.  

The second main part of the paper concentrates on the GeometricAlgebra Java package 
implementation of the Clifford geometric algebra R4,1 = Cl(4,1) and the homogeneous model of 
3D Euclidean space. Details are exemplified by looking at the structure and code of the basic 
MultiVector class and of the 3D Euclidean object model class Sphere. Finally code optimization 
issues and the ongoing open source project implementation are discussed.  
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1. Introduction 
 

The Clifford geometric algebra of three dimensional (3D) 
Euclidean space nicely encodes the algebra of 3D subspaces, 
providing geometric multivector product expressions of 
rotations and set theoretic operations [1]. But in this framework 
line and plane subspaces always contain the origin. 

The homogeneous (conformal) model of 3D Euclidean 
space in the Clifford geometric algebra R4,1 provides a way out. 
Here positions of points, lines and planes, etc. off the origin can 
be naturally encoded. Other advantages are the unified 
treatment of rotations and translations and ways to encode 
point pairs, circles and spheres. The creation of such 
elementary geometric objects simply occurs by algebraically 
joining a minimal number of points in the object subspace. The 
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resulting multivector expressions completely encode in their 
components positions, orientations and radii. The geometric 
algebra R4,1 can be intuitively pictured as the algebra of origin, 
Euclidean 3D space and infinity, where origin and infinity are 
represented by additional linearly independent null-vectors.  
This algebra seems most suitable for applications in computer 
graphics, robotics and other fields [2], [3]. 

This paper therefore first gives a brief review of the basic 
concepts of the geometric algebra R4,1, its subalgebra structure 
and the socalled Horosphere [7]. Explicit details for the 
construction of fundamental geometric objects in this model 
are given, detailing how the 3D geometric information can be 
extracted. We further explain how the simple multivector 
representations of these objects can be manipulated in order to 
move them in three dimensions and to express set theoretic 
operations of union (join), intersection (meet), projections and 
rejections. 

This algebraic encoding of geometric objects and their 
manipulations strongly suggests an object oriented software 
implementation. This would allow computers to calculate with 



this algebra and provide programmers with the means to most 
suitably represent fundamental geometric objects, their 3D 
properties and ways (methods) to manipulate these objects. 
This happens on a higher algebraic level, so that the 
programmer actually is freed of the need to first investigate 
suitable less intuitive matrix representations.  

The implementation chosen here is in the object oriented, 
platform independent programming language Java in the form 
of a Java package named GeometricAlgebra. This Java 
implementation of R4,1 automatically includes the 
implementations of a wide range of mathematically and 
physically important lower dimensional algebras and 
geometric algebras.  

Finally, the reasons for this choice of implementation are 
discussed along with details of the code and perspectives for 
further improvement and development. 
 
2. The Conformal Geometric Algebra Cl(4,1) of Origin, 

Euclidean Three Space and Infinity 
 
2.1 Geometric Algebra of 3D Euclidean Space 

By reverting back to Clifford's original expression geometric 
algebra we want to emphasize the geometric interpretation of 
this algebra. Let us assume an orthonormal vector basis for the 
real three dimensional Euclidean vector space R3 = R3,0 (NB: 
upper index.) 

{e1, e2, e3}                    (1) 
Clifford's bilinear and associative geometric product [4] - [6] of 
vectors 

ab = a ┙b + a∧b = a∟b + a∧b = a∗b + a∧b (2) 
generates the geometric algebra R3 = R3,0 (NB: lower index.) 
The first term in each of the three expressions for the geometric 
product given above is a symmetric grade zero scalar and fully 
corresponds to the familiar scalar product of vectors (of 
algebraic grade one). The second term is an antisymmetric 
bivector as known from Grassmann's 19th century multivector 
algebra (extension theory). It represents the oriented 
parallelogram area which is spanned by the two vector factors 
in the outer product (∧), algebraically it has grade two. The 
three different expressions for the first term indicate, that left 
contraction (┙) and right contraction (∟) and the scalar 
product (∗) of vectors all yield the same scalar.  

The left contraction of two simple multivectors (blades) Ak, 
Bl with grades k, l (0≦k,l≦max, max = dimension of the 
vector space, e.g. max = 3 for R3), respectively is defined as 

Ak┙Bl = <Ak Bl>l-k ,                   (2’) 

where the angular bracket < >l-k means to extract only the grade 

l-k part from the full geometric product AkBl . Similarly the 
right contraction of two simple multivectors Ak, Bl is defined as 

Ak ∟ Bl = <Ak Bl>k-l .                  (2’’) 
The scalar product of Ak and Bl is defined as  

Ak ∗ Bl = <Ak Bl> = <Ak Bl>0.        (2’’’) 
R3 is 23 = 8 dimensional with a basis of scalars, vectors, 

bivectors and trivectors 
{1, e1,e2,e3, i1 = e2e3, i2 = e3e1, i3 = e1e2, i = e1e2e3}.   (3) 

Scalars are dual (by multiplication with i) to the pseudoscalar 
trivectors (proportional to i) according to 

i2 = ii = - 1,                   (4) 
and vectors are dual to bivectors according to 

ie1 = i1,  ie2 = i2,  ie3 = i3.          (5) 
We can therefore rewrite the basis of Eq. (3) as a “complex” 
scalar and vector basis 

{1, e1,e2,e3, ie1 = i1, ie2 = i2, ie3 = i3, i = e1e2e3},   (3’) 
because of Eq. (4). Or we can rewrite it as a “complex” 
quaternion basis 

{1, e1= - ii1,e2= - ii2,e3= - ii3, i1, i2, i3, i = e1e2e3}.   (3’’) 
 
2.2 Basis and Subspaces of Conformal 5D Space of Origin, 
3D Euclidean Space and Infinity 

By introducing (similar to projective geometry) a linearly 
independent null-vector to represent the origin ň and a second 
linearly independent null vector n to represent infinity, we 
extend the basis of Eq. (1) to the five dimensional basis of the 
vector space R4,1 

{ň, e1, e2, e3, n}.                 (6) 
As we see from this basis, R4,1 has two important subspaces, 

the three dimensional Euclidean space and its orthogonal 
complement, the Minkowski plane R1,1 spanned by the two 
extra dimensions for origin and infinity 

R1,1 = span[ň, n].               (7)  
With the basis transformation  

e0 = (n +2ň)/2, e4 = (n -2ň)/2,          (8) 
and the inverse transformation 

n = e0 + e4,  ň = (e0 - e4)/2,          (9) 
we can introduce an orthonormal non-null basis for R1,1 with 
vectors of positive and negative square 

{e0, e4},  e0
2= -1, e4

2= +1.            (10) 
So we can either use for R4,1 the basis of Eq. (6) or  

{e0, e1, e2, e3, e4}.                 (11) 
These two basis are linked by the transformations of Eqs. (8) 
and (9). Usually it is convenient to work in the basis of Eq. (6), 
but sometimes the work with the non-null basis of Eq. (11) can 
be of advantage (e.g. for factorization).  
 
2.3 Important Subalgebras 

 



Apart from the Euclidean subalgebra R3 mentioned in 
subsection 2.1, the conformal geometric algebra R4,1 of the 5D 
vector space R4,1 has further three subalgebras, which are of 
particular importance for object oriented Euclidean geometry: 
one is isomorphic to the complex numbers, one to the 
quaternions and finally the subalgebra of the Minkowski plane. 
These three subalgebras also have major applications in 
physics and computer algebra. A more comprehensive survey 
of the rich subalgebra structure of the conformal geometric 
algebra R4,1 is given in section 4.1. 
2.3.1 Subalgebra of Scalars and Pseudoscalars 

Scalars (R) and 5D pseudoscalars, proportional to  
I = e0e1e2e3e4 = -i e0e4 = iN, I2 = - 1,      (12) 

with 
N = - iI = - e0e4 = n∧ň, N2 = + 1,      (13) 

form according to Eq. (12) under the geometric product a 
subalgebra of R4,1, which is isomorphic to complex numbers. 
Compare also the multiplication Table 1.  
 

Table 1 Multiplication table of scalar-pseudoscalar 
subalgebra. (Products of left factor from left column and 
right factor from top row.) 

 
2.3.2 Subalgebra Isomorphic to Quaternions 

The geometric algebra R3 of the Euclidean subspace R3 is 
also a subalgebra of R4,1 and so is its even subalgebra, which 
has a basis, that consists of real scalars and the three unit 
bivectors that represent the oriented unit side faces of a unit 
cube oriented with its edges along the three vectors of the 
Euclidean basis of Eq. (1): 

{1, i1, i2, i3}                (14) 
The multiplication table (Table 2)  clearly shows the 
isomorphism of this subalgebra with Hamilton's algebra of 
quaternions. 
 

Table 2 Multiplication table of subalgebra isomorphic to 
quaternions. (Products of left factor from left column and 
right factor from top row.) 

 1 i1 i2 i3 
1 1 i1 i2 i3 
i1 i1 -1 - i3 i2 
i2 i2 i3 -1 - i1 
i3 i3 - i2 i1 -1 

 

2.3.3 Subalgebra of the Minkowski Plane 
The subalgebra R1,1 of the Minkowski plane subspace R1,1 

has the following 22 = 4 dimensional basis 
{1, n, ň, N}                (15) 

of scalars, vectors and the bivector N (N fully characterizes the 
Minkowski plane subspace). Table 3 shows the corresponding 
multiplication table. 
 

Table 3 Multiplication table of the Minkowski plane 
subalgebra. (Products of left factor from left column and 
right factor from top row.) 

 1 N ň N 
1 1 N ň N 
n n 0 -1+N n 
ň ň -1-N 0 - ň 
N N - n ň 1 

  
2.4 Basis of the Conformal Geometric Algebra 

We are now in a position to write down the complete 25 = 32 
element basis of the conformal geometric algebra R4,1. It 
contains grade by grade scalars, vectors, bivectors and the dual 
elements of trivectors, quadrivectors and pseudoscalars. 

 1 I 
1 1 I 
I I -1 

grade 
(0)  1 
(1)  e1, e2, e3, n, ň 
(2) i1, i2, i3, e1n, e2n, e3n, e1ň, e2ň, e3ň, N 

___________________________________       (16) 
(3)  I i1, Ii2, Ii3, i1n, i2n, i3n, i1ň, i2ň, i3ň, i = IN 
(4)  i1N, i2N, i3N, I n, Iň 
(5)  I 

All elements of Eq. (16) below the horizontal line are dual (by 
multiplication with I) to elements above the line. This fact and 
the subalgebra structure of R4,1 explained in sections 2.3.1 to 
2.3.3 yield a very neat notation for general multivectors in the 
32 dimensional conformal geometric algebra. 
 
2.5 Three Level Approach 

The three levels which we use to categorize general 
multivectors in the conformal geometric algebra R4,1  
correspond to the subalgebras of complex numbers, 
quaternions and the Minkowski plane algebra R1,1. We can 
now write each general multivector as a linear combination of 
four complex quaternions 

m = q + qnn + qňň + qNN.          (17) 
Each of the four complex quaternions q, qn, qň, qN is in turn a 
complex linear combination of two real quaternions. For 
example the complex quaternion 

 



qn = qn,r + I qn,i               (18) 
where the indexes r and i signify the real and imaginary parts 
respectively. Every real quaternion can be written explicitly as 
a linear combination of the basis elements Eq. (14), e.g. 

qn,i = qn,i,0 + qn,i,1 i1 + qn,i,2 i2 + qn,i,3 i3      (19) 
where the word real of real quaternion means, that the four 
scalar coefficients are all real 

qn,i,0, qn,i,1, qn,i,2, qn,i,3 R           (20) 
This three level approach makes the programming indeed very 
modular and well structured. Eqs. (18) and (19) also show, that 
each complex quaternion q, qn, qň and qN is isomorphic to the 
geometric algebra of three-dimensional Euclidean space of Eq. 
(3), because of Eq. (12): I = iN. 
 
3 Conformal (Homogeneous) Model of Euclidean Space 
 
3.1 The Horosphere 

The notion of light cone in Minkowski space R3,1 as the set 
of all light rays emanating from one point is familiar from 
special relativity. All vectors on the light cone square to zero. 
The Horosphere is a 3D section of the 4D light cone of the 
space R4,1 keeping the component in the direction of ň equal to 
one. It was introduced by F.A. Wachter (1792-1817), an 
assistant of Gauss [7], [10]. 

A point x in Euclidean space can be specified in terms of 
three orthonormal basis vectors of Eq. (1) as 

x = x1e1 + x2e2 + x3e3            (21) 
Its one-to-one corresponding conformal point X on the 
Horosphere is defined by adding an infinity and an origin part 

X = x + 1/2 x2 n + ň            (22) 
with x2 = x2, with the result that X2 = 0. 
 
3.2 Geometric Product 

The geometric product of Eq. (2) of two conformal points  
P1= p1+1/2 p1

2 n +ň,   P2= p2+1/2 p2 2 n +ň    (23) 
yields 

P1P2 = P1∗P2 + P1∧P2,            (24) 
with the scalar contraction part 

P1∗P2 = -1/2 (p1 - p2)2 .           (25) 
The contraction part therefore directly corresponds to the 
squared Euclidean distance. The second term on the right hand 
side of Eq. (24) fully corresponds to the pair of conformal 
points P1, P2 (or of Euclidean points p1, p2), which can be fully 
extracted from P1∧P2, as explained in section 3.6.1. 

 
3.3 Subspaces, Joining 

Similar to the projective definition of lines with the help of 
the outer product by Grassmann, we have the following two 

useful propositions in geometric algebra of a real 
n-dimensional linear vector space [6]. For vectors x, p1, p2, … pr  
in that vector space 

{p1, p2,…pr} (r ≤ n) linearly independent 
⇔  p1∧p2∧…∧pr  ≠ 0            (26) 

and 
x ∈ span[p1, p2,…pr]  (r ≤ n)  
⇔  x ∧p1∧p2∧…∧pr  = 0          (27) 

We get the following subspaces of the Horosphere by joining 
general conformal points P1, P2, P3, P4 and infinity n with the 
outer product of geometric algebra. We list the subspaces in 
terms of their Euclidean equivalents.[10], [12] 
z Pairs of points P1, P2 form P1∧P2 
z Circles through P1, P2, P3 corresponding to P1∧P2∧P3 
z Straight lines through P1, P2 and infinity corresponding to 

P1∧P2∧n 
z Spheres through P1, P2, P3, P4 corresponding to   

P1∧P2∧P3∧P4 
z Planes through P1, P2, P3 and infinity corresponding to 

P1∧P2∧P3∧n 
 
3.4 Translators and Rotors 

It is a major benefit of introducing the extra dimensions of 
origin ň and infinity n, that translations can be implemented 
like rotations by monomial multivector products. The general 
form[10] of both transformations for conformal points X is 

X → X’ = UXŨ, UŨ = 1.          (28) 
For rotations by an angle ϑ in the Euclidean bivector plane i 
about the origin, U becomes a rotor 
  R(iϑ) = ± exp( - iϑ/2), R̃(iϑ) = ± exp( + iϑ/2).  (29) 
For translations by a 3D Euclidean translation vector t the 
multivector U becomes a translator 

T(t) = ± exp(nt/2) = ± (1 + nt/2),            
T̃(t) = ± (1 - nt/2),               (30) 

The two terms expansion formula holds because of the null 
property Eq. (6) of n. A rotation by an angle ϑ in the plane i 
about any Euclidean center of rotation a is obtained by shifting 
the center of rotation to and from the origin, before and after the 
rotation, respectively. For this combined transformation U has 
simply to be replaced by 

R’(iϑ,a) = T(a) R(iϑ) T̃(a)          (31) 
The reverse order [6] translator T̃(a) first translates the center of 
rotation a by -a to the origin. A general combination of a 
rotation by an angle ϑ in the plane i about any Euclidean center 
of rotation a combined with a subsequent translation by a 3D 
Euclidean vector t is finally described by inserting for U in Eq. 
(28) the motor (motion operator) 

M(iϑ, a, t) = T(t) R’(iϑ, a) .          (32) 

 



 
3.5 Join, Meet and Projection 

The join[6] is the set theoretic union of subspaces. (NB: Some 
mistakes in [12] are put right here.) From Eq. (27) we see that in 
geometric algebra (and Grassmann algebra) the basic operation 
of join is the elementary operation of the outer product. This 
fully applies for joining linearly independent vectors (each 
representing a one dimensional subspace [11]). Compare the 
examples of joining two, three and four conformal point 
(vectors) in section 3.3. In general one can simply take the 
outer product of the basis vectors of a (sub)space to get a 
simple join multivector that fully represents that (sub)space 
according to Eqs. (26) and (27). If follows that for two simple 
multivectors K, L that represent two disjoint subspaces, the set 
theoretic union (join J) is also given by the outer product 

J = K∧L .                 (33) 
A different formula applies for J in case that the two subspaces 
K and L are not disjoint, i.e. that they have a common simple 
(blade) multivector factor M, that characterizes the set theoretic 
intersection, called meet according to 

K = K’∧M,  L = M∧L’.          (34) 
Because M is a simple multivector it has with respect to the 
geometric product the inverse 

M-1 = M/M2                (35) 
where we also need to assume that M is not a null-multivector, 
i.e. M2 ≠ 0.             
Notice that the use of null-vectors in section 3.3 for modeling 
Euclidean objects does not necessarily mean that the resulting 
multivectors square to zero. In Table 3 we see that e.g. N = 
n∧ň has the square N2 = 1. Another example are the radii of 
the circles and spheres, which are given by the properly 
normed squares of the multivectors P1∧P2∧P3 and 
P1∧P2∧P3∧P4 [37]. The meet M of two intersecting spheres is a 
circle and will therefore not square to zero, if the radius is not 
zero.  

For non-disjoint subspaces, the simple join multivector 
(blade) can be calculated [8] by 

J = K∧L’ = K∧(M -1 ┙L) .         (36) 
Knowing the join, we can in turn use it to calculate[8] the meet 
M by 

M = (K ┙J -1) ┙L .            (37) 
In general the sign of the square of the meet M2 is of great 
importance [2],[9]. For example the meet of a line and a sphere is 
a bivector [38]. For M2 > 0 it represents a pair of intersection 
points, but M2 < 0 means that the line and the sphere are 
disjoint. Similarly the meet M of two spheres is a trivector.  
For M2 < 0 it represents the circle of intersection, but M2 > 0 
means that the spheres are disjoint. (NB: The signs of M2 are 

different for the cases of bivectors and trivectors.) In both cases 
M2 = 0 encodes a single point of tangential intersection.  

Finally the projection [8] of the subspace represented by K 
onto the subspace represented by L (think e.g. of the projection 
of a line onto a plane) is given by 

PL(K) = (K ┙L-1) ┙L .          (38) 
Because of the linearity of the projection formula, the simple 
multivector K can even be replaced by a general 
inhomogeneous multivector (which can be understood as 
representing a collection of subspaces).  

Complimentary to the projection is the rejection[8] of the 
subspace represented by K off the subspace represented by L. It 
defines the subspace of K perpendicular to L. It is given by 

(K ∧L-1) ┙L .               (39) 
 
3.6 3D Information in Homogeneous Objects 

The homogenous multivectors of section 3.3 completely 
encode positions, directions, moments and radii of the 
corresponding three dimensional (3D) objects in Euclidean 
space. An overview of this is given in Table 4. Here we only 
give a brief summary of important formulas, for more details 
consult [37].  

 
Table 4 3D information in homogeneous objects. The left 
column lists the homogeneous multivectors of section 3.3, 
that represent the geometric objects. 

homogeneous object 3D information 
point P position p 

point pair P1∧P2 positions p1, p2 

line direction vector,  
moment bivector 

circle plane bivector, center, radius 
plane plane bivector,  

location vector 
sphere center, radius 

 
3.6.1 Point and Pair of Points 

The (additive) conformal split returns the Euclidean position 
p of a conformal point P 

p = (P∧N)N .                (40) 
Definition (22) shows how to get P in terms of p. 

The Euclidean positions p1, p2 (without loss of generality: p1 
= √p1

2 ≤ p2 = √p2
2) of a pair of points represented by the 

conformal bivector 
V2 = P1∧P2 = b + 1/2 vn – uň – 1/2 gN    (41) 

can be fully reconstructed from the various components of V2. 
These are the Euclidean bivector b, two Euclidean vectors u, v 

 



(lengths u = √u2, v = √v2) and the real scalar g.   
s =1/2 g2 - u∗v,  t = (s2 - u2v2)1/2, 

p1=(s+t)1/2/u,   p2= (s-t)1/2/u,          (42) 
p1 = p1 (p1

2u +v) / | p1
2u +v| ,   

p2 = p2 (p2
2u +v) / | p2

2u +v| 
3.6.2 Lines 

Given two conformal points P1 and P2 the conformal 
trivector 

Vline = P1∧P2∧n = mn + d N        (43) 
consists of the Euclidean bivector momentum m and the 
Euclidean direction vector d of the line. A Euclidean 
parametric equation for the line is then 

x = (m + a) d-1 , a ∈ R .        (44) 
3.6.3 Cirlces 

General conformal trivectors of the form 
V3 = P1∧P2 ∧P3 

= c∧Ic +[1/2 (r2+c2) Ic - c(c ┙Ic)]n + Icň - (c ┙Ic) N,  (45) 
with Euclidean circle plane bivector 

Ic = -{[V3+(V3∗i) i] ∧n}N ,        (46) 
circle radius 

r2 = -V3
2/Ic

2                 (47) 
and Euclidean circle center 

c = c∥ + c⊥, 
c∥ = -[(V3∟n)∟ň]Ic

-1 , c⊥ = - (V3∗i) i Ic
-1.   (48) 

For the special case that the circle plane includes the origin (c⊥
= 0), we get a much simpler expression 

V3 = - [C - 1/2 r2n] Ic N .           (49) 
The conformal center 

C = c + 1/2 c2 n + ň              (50) 
can then be extracted as 

C = -V3/IcN + 1/2 r2n .            (51) 
3.6.4 Planes 

Given three conformal points P1, P2 and P3, the conformal 
4-vector  

Vplane = P1∧P2∧P3∧n = d Ipn - Ip N,      (52) 
represents the plane through the Euclidean points p1, p2 and p3. 
The orientation of the plane is given by the Euclidean bivector 

Ip = - (Vplane n) ∟ň .            (53) 
The Euclidean origin to plane distance vector d can be 
extracted by 

d = (Vplane∧ň) Ip
-1 N .           (54) 

3.6.5 Spheres 
General conformal 4-vectors of the form 

V4 = P1∧P2∧P3∧P4 = (C-1/2 r2 n) is N     (55) 
represent spheres through the conformal points P1, P2, P3 and 
P4. The sphere radius is obtained from 

r2 = V4
2 / (V4∧n)2 .             (56) 

The conformal sphere center is then given by 

C = - V4/(V4∧n) + 1/2 r2n .           (57) 
The Euclidean pseudoscalar (proportional to i) of Eq. (55) is  

is = - (V4∧n) N .               (58) 
 
4. Java Implementation of R4,1, the Homogeneous Model of 
Euclidean Space and the Subalgebras of R4,1 
 
4.1 Software Implementation 

We have seen that the (conformal) geometric algebra allows 
to work with an algebra of subspaces. Within this algebra, the 
homogeneous model of Euclidean space allows 
straight-forward definitions of elementary geometric objects 
(points, pairs of points, lines, circles, spheres, planes) from a 
minimum of points on these objects. The Euclidean geometric 
characteristics of these objects, like position orientation, radius, 
etc. appear as easy-to-identify component parts of the object 
multivectors. Rotations and translations, join, intersection, 
projection and rejection can all be realized as simple monomial 
geometric products of multivectors within the algebra.  

These properties very much suggest an object oriented 
programming implementation of conformal geometric algebra. 
Because of the subalgebras of the conformal geometric algebra, 
this includes automatically a wealth of implementations of 
further important geometric algebras (GA): 
z algebra of scalar real numbers 
z algebra of complex numbers  
z algebra of quaternions. Quaternions are isomorphic to 

the even subalgebra of the GA of 3D Euclidean space. 
z algebra of complex quaternions 
z GAs of Euclidean lines, planes and 3D and 4D spaces. 

Especially the GA of 3D Euclidean space is 
isomorphic to the Pauli matrix algebra of quantum 
mechanics. 

z GAs of the non-Euclidean (Minkowski) vector spaces 
R1,1, R2,1, R3,1, R4,1, including all their subalgebras. 
Especially  R3,1 is the algebra of spacetime (STA) 
important for physical applications and isomorphic to 
the algebra of Dirac matrices. The even subalgebra of 
the STA is in turn isomorphic to the GA of 3D 
Euclidean space [40].  

Because geometric algebra presents a unified approach to 
mathematics, physics and whatever applications are needed in 
engineering sciences, especially including computer science, 
the unified software implementations of all the algebras listed 
above will be of great benefit.  

There are several design choices available for implementing 
the conformal model in an object oriented manner. One 
approach is grade-by-grade classes so that we have (scalar,) 

 



vector, bivector, trivector, quadrivector and pseudoscalar 
classes. Higher grade (grade > 1) objects would be generated 
by the geometric product of lower grade objects. For example a 
bivector is the grade two part result of the geometric product of 
two vectors. In this way vectors become primary class objects 
and the MultiVector class is composed of graded objects. One 
of the authors has tried this approach [39] for three dimensional 
geometric algebra and found on one hand that grade selection 
then simply returns the specific grade object, but on the other 
hand the full multivector multiplication is harder to implement, 
because we have to perform multiplications between different 
grade objects.  

Another approach is to declare MultiVector the primary 
class object. This way we have to manage the 32 elements 
internally, either using selective matrix multiplication or by 
taking advantage of the subspace structure of the conformal 
model mentioned in section 2.5. 

By now various implementations of the conformal algebra 
and the homogeneous model in C/C++ are available [13],[14]. 
Calculations can also be done with geometric algebra packages 
added to major computer algebra softwares. This is part of 
widely available (much of it freeware for download) geometric 
algebra software [15]. But it seems that so far no Java 
implementation of conformal geometric algebra exists.  
 
4.2 Why Java? 

Java is a free object oriented programming language 
introduced and maintained by Sun Microsystems [16]. It is 
platform independent, simple and provides many good libraries 
and tools. It has support from both commercial vendors and the 
open source community, and has become a major language in 
enterprise application development. Special characteristics are 
Java applets operating in web browsers, interactivity and 
facilities for networking. Java allows to process text, graphics 
and sounds, including animations. It is nowadays available on 
more than half a billion desktop computers, and used for over 
300 million smart cards. 74 % of professional software 
developers make use of Java and it has become an international 
university standard for teaching and research.  

Therefore the Java package GeometricAlgebra development 
began at the University of Fukui [17]. It is open source software 
freely available under the GNU Lesser General Public License 
[18]. 
 
4.3 The GeometricAlgebra Java Package 

The GeometricAlgebra Java package so far consists of ten 
objects (classes) and associated methods. For an overview of 
these classes compare Table 5.  

 
Table 5 Ten basic implemented classes of the 
GeometricAlgebra Java package. 

ComplexNumber 
ComplexQuat 
MultiVector 

BasicMultiVectors 
PointC 
Line 

Circle 
Sphere 

GeometricObject 
SwingDrawable 

 
The main class is called MultiVector. It is constructed in a 
modular way with the help of the auxiliary classes 
ComplexNumber and ComplexQuat(ernion). These are all 
immutable classes, because they act as data types, so they can 
not be changed once created. A collection of frequently used 
basic multivectors is the BasicMultiVectors class. PointC, 
Circle and Sphere [12] are special kinds of the GeometricObject 
class. The GeometricObject class has reference to the 
MultiVector class. It has command methods that every of its 
child classes needs [such as .meet(MultiVector mv2)] that 
return another MultiVector. The GeometricObject class 
implements SwingDrawable which has drawing methods used 
e.g. in the visual application KamiWaAi [12]. In this respect the 
GeometricAlgebra package still shows dependence to Swing.  

The methods allow the implementation of the geometric 
product and derived products, component and grade 
manipulations and other important geometric algebra 
operations. Further algebraically not essential methods are for 
visual application development. In the following we will 
concentrate on describing the MultiVector class and its 
methods. We will further choose the class Sphere in order to 
give an example for how a special geometric object is defined 
as a multivector and can be used by way of its associated 
methods. 
4.3.1 The Java Class MultiVector 

The most important class MultiVector is based on the class 
ComplexQuat, encoding complex quaternions. ComplexQuat 
in turn is based on the class ComplexNumber. A 
ComplexNumber simply is a pair of double floating point type 
numbers for real and imaginary parts with methods for 
returning their values. Further methods allow addition, 
subtraction and multiplication .mult(ComplexNumber cn) of 
ComplexNumber(s). In the GeometricAlgebra package the 

 



class ComplexNumber implements the subalgebra of real 
scalars and 5D pseudoscalars I of section 2.3.1.  

A ComplexQuat consists of a linear array of four 
ComplexNumber(s). The first encodes the complex scalar 
component and the other three the three basic Euclidean 
bivectors i1, i2, i3 and their duals (multiplied by I). The methods 
for ComplexQuat are largely similar to the ones of 
ComplexNumbers. The multiplication 
method .mult(ComplexQuat cq2) implements the quaternion 
multiplication table using the .add(ComplexNumber 
cn), .sub(ComplexNumber cn) and .mult(ComplexNumber cn)  
methods of the class ComlexNumber.  

A MultiVector consists of a linear array of four 
ComplexQuat objects in one to one correspondence with the 
four complex quaternions of equation Eq. (17). The methods 
for returning them are therefore simply 
called .getScPart(), .getnPart(), .getnbarPart(), 
and .getnhnbPart(). MultiVector has methods for addition and 
subtraction and most important for forming the full geometric 
product of two instances of MultiVector. The multiplication 
method .mult(MultiVector mv2) implements the geometric 
product making use of the lower level ComplexQuat 
multiplication method, adding and substracting the four 
ComplexQuat component objects according to Table 3. 
Because of the central importance of the geometric product, we 
include its Java source code:  

 
public MultiVector mult(MultiVector mv2) 
  { 
  ComplexQuat M1, Mn, Mnb, Mnnb; 
  ComplexQuat N1, Nn, Nnb, Nnnb; 
  ComplexQuat[] MVprod = new ComplexQuat[4]; 
  // defining the two sets  
// of complex quaternions 

  M1   = MV[0]; 
  Mn   = MV[1]; 
  Mnb  = MV[2]; 
  Mnnb = MV[3]; 
  N1   = mv2.getScPart(); 
  Nn   = mv2.getnPart(); 
  Nnb  = mv2.getnbarPart(); 
  Nnnb = mv2.getnhnbPart(); 
    // scalar part 
    MVprod[0]   =  (M1.mult(N1)) 

.add(Mnnb.mult(Nnnb)) 
                    .sub(Mn.mult(Nnb)) 

.sub(Mnb.mult(Nn)); 
    // n vector part 

    MVprod[1]   =   (M1.mult(Nn)) 
.add(Mn.mult(N1)) 

                    .add(Mn.mult(Nnnb)) 
.sub(Mnnb.mult(Nn)); 

    // nbar vector part 
    MVprod[2]   =   (M1.mult(Nnb)) 

.add(Mnb.mult(N1)) 
                    .sub(Mnb.mult(Nnnb)) 

.add(Mnnb.mult(Nnb)); 
    // n hat nbar part 
    MVprod[3]   =   (M1.mult(Nnnb)) 

.add(Mnnb.mult(N1)) 
                    .sub(Mnb.mult(Nn)) 

.add(Mn.mult(Nnb)); 
  return new MultiVector(MVprod); 
  } 
 
The modular three level approach of complex numbers, 
complex quaternions and finally multivectors thus reduces the 
programming work to very well structured small pieces of code 
on each level.  

A direct application of the geometric product 
implementation is the method .Powerof(int power) that returns 
the geometric product of a multivector with itself via a loop the 
number of times specified by the integer parameter "power".  

The next rather fundamental method is the .getGrade(int g) 
method for grade selection. It will return the homogeneous 
multivector part of the specified grade. The integer g ranges 
between 0 and 5. For any other value of g, a zero MultiVector 
(all components set to zero) will be returned. With the help of 
the geometric product and grade selection, we can now define 
important derived products of multivectors like the scalar 
product, the outer product, left and right contractions.  

The scalar product only has one line of code, taking the real 
scalar part of the full geometric product of two multivectors:  
 
return new 
MultiVector(MV).mult(mv2).getScPart() 

                    .getScPart().RealPart(); 
 
The outer product uses a simple double for loop over the grade 
part indexes of the two multivector factors, summing up the 
maximum grade results of products of grade part components. 
Left and right contraction work very similar. The selected 
grades in the result of products of grade part components 
correspond e.g. for the left contraction to differences of grades 
s-r, where r is the grade of the left factor and s the grade of the 
right factor [8].  

 



 
Lcontr = Lcontr.add((Mg[r].mult(Ng[s])) 

.getGrade(s-r)); 
 
The reverse of a multivector is implemented simply by 
summing over its grade parts and changing the signs of the 
grade 2 and 3 parts:  
 
rev = (mv1.getGrade0()) 

.add(mv1.getGrade1()) 

.sub(mv1.getGrade2()) 
  .sub(mv1.getGrade3()) 
.add(mv1.getGrade4()) 
.add(mv1.getGrade5()); 

 
The method .magnitude() returns the magnitude of a 
multivector as a floating point number. It takes the square root 
of the real scalar part of the product of a multivector with its 
own reverse: 
 
mag = Math.sqrt( (mv1.mult(mv1.reverse())) 
                    .getScPart() 

.getScPart() 

.RealPart() ); 
 
Care should be taken, because the magnitude makes only sense 
for multivectors from positive definite subspace algebras. This 
also applies to the method .normalize(), which returns a 
multivector divided by its scalar magnitude.  

The remaining methods are .multSc(double factor) for 
multiplying a multivector with a real floating point scalar factor, 
and .get3DMVector(). The last method returns the Euclidean 
vector part of the multivector it is applied to, and zero for all 
other components.  
4.3.2 The Java Class Sphere 

As an example for the definition of a geometric object, we 
explain the class Sphere. Its main variable is a MultiVector, 
representing the sphere in the homogeneous model according 
to section 3.6.5. Therefore, we have the constructor 
Sphere(PointC p1, PointC p2, PointC p3, PointC p4) for 
creating an object Sphere based on Eq. (55). Further obvious 
methods are for the calculation of the radius, with the main line  
 
double r2 = 
(L.ScProd(L))*(1.0/(n.OutProd(L) 

                  .ScProd(n.OutProd(L)))); 
 
and .Center() for the conformal center vector. We further have 

a method for changing the center of a sphere, which uses 
translators of Eq. (30) to move the sphere multivector L to its 
new center. The method .meet(MultiVector mv) is now 
uniquely implemented in the GeometricObject class and used 
by both Line and Sphere. The method .MeetNo(Line line) 
returns an integer by analyzing the square of the meet, with 
values 0,1 or 2, depending on how many points of intersection 
there are between the sphere and the Line line. Finally the 
method .MeetLineMVs(Line line) returns a Java Vector (a 
linear list) of conformal point multivectors representing the 
point or pair of points of intersection. The formulas 
implemented in this method are that of Eq. (42).  

The class Sphere also contains methods specific for drawing 
spheres on screens by nets of meridians. One such 
method .generator(int inc, MultiVector plane) allows the user 
to specify a plane bivector and an angle increment 2π/inc. The 
result will be a rotor MultiVector according to Eq. (31), that 
specifies rotations in the specified plane about the center of the 
sphere. 

The interested reader is invited to inspect the freely available 
source code himself. A brief list of all GeometricAlgebra 
package classes and their methods including the variables they 
accept and types of returned data can be found in [12]. 

In the next two sections we will discuss how to optimize the 
code, and the necessity and the benefits of turning the 
GeometricAlgebra Java package (and an associated interactive 
3D sketching application KamiWaAi) into an open 
Sourceforge.net community project.  
 
5. Optimization and Open Source Strategy 
 
5.1 Refactoring the GeometricAlgebra Java Package 

The advantages of geometric algebra will make it possible to 
provide a new software basis for many scientific and 
engineering applications in the future. To make this happen, the 
developer must first understand the fundamentals of geometric 
algebra. But most application developers or programmers may 
not have sufficient knowledge of geometric algebra, so we 
need to provide a simplified computational layer (or 
framework) to them.  

Developing a good framework is expensive. One way to 
develop it is to design it carefully from scratch, which requires 
much expertise. Another way is to extract it from existing 
applications [20]. We will follow the last route, as it is easier and 
we have first applications for interactive 3D sketching[12] and 
geometric calculations[19]. They use the GeometricAlgebra 
package, and we aim to extract the desired framework from 
them.  

 



Thus, we want to increase the reusability of the code and 
give it the needed flexibility, so that it becomes easier to change 
and cheaper to maintain. In software engineering, a way to 
improve the design of existing code is called refactoring [21]. 
Refactoring consists of a series of small steps to transform the 
code while preserving its behavioral appearance. 
 

Presentation Layer 
Application Layer 

 
Fig. 1 Separating presentation and application layer. 

 
Here are four refactoring steps and targets to be pursued: 

First we have to separate the presentation and the application 
logic into different layers like in Fig. 1. The presentation part 
will handle the user interface (UI) part and the application 
classes the business logic, which are simple and separate 
responsibilities. By introducing this layered architecture we can 
e.g. add Japplet as a web client to applications. If we want a fast 
GUI component for rendering and visualizing complex 
geometrical objects, we may need to add another client that 
uses native components like the Standard Widget Toolkit 
(SWT [22]).  
 

Presentation Layer 
Application Layer 

Computational Layer 
 

Fig. 2 Extracting computational layer from application 
layer. 

 
Second, while still working on the architecture, we aim to 

further separate the application logic and the geometric algebra 
framework like in Fig. 2. Software like KamiWaAi will be 
sample applications that use the framework, but the framework 
is not limited to visual applications and can e.g. be used for 
algebraic computations, physical simulations or robotics 
applications. One possibly promising pattern is the 
Model-View-Controller (MVC) architecture, which originated 
in the late 1970s from the SmallTalk world, and is today 
widely used even in enterprise applications [23].  

As we can see in Fig. 3, the MVC model for applications has 
no dependency on other package parts, neither on UI classes 
nor on controller classes. We can use Observer patterns [24] to 
decouple the model from the view. The controller takes user 
input, manipulates the model and causes the view to update 
appropriately. Because of its architectural nature this step also 

leads to important refactoring. If this step should run into 
problems, we can gain leverage from existing frameworks like 
JhotDraw [25] or the Graphical Editing Framework (GEF [26]) if 
we are using SWT. 
 

View  Controller 
 

Model 
 

Fig. 3 Separating the presentation from the model and 
separating the controller from the view. 
 

Yet total reliance on software tools will not suffice for 
achieving these first two steps.  

Third, for other refactoring steps, we can largely depend on 
tools like Simian [27] or the Programming Mistake Detector 
(PMD [28]) to detect code duplication and other potential 
problems. 

Fourth, if we apply automatic refactoring tools or Integrated 
Development Environments (IDE) like Eclipse [29], we don't 
really need to conduct unit testing. But if we do refactoring 
manually we will need to perform a series of tests by using e.g. 
the JUnit testing framework [30]. Tests do also increase the 
reliability of the software. 

 
5.2 The GeometricAlgebra Java Package as Open Source 
Project at SourceForge.net 

To achieve our goals we need outside help and to use the 
best available resources. Human ideas in a sense are the raw 
material of the software and humans are also its main 
producers. This makes humans a first order factor in software 
development. While we humans are creative and intelligent we 
to some degree are also unpredictable, irregular and 
inconsistent at the same time.  

Big companies can hire professional software engineers and 
architects to get the best possible software. Well sponsored 
research enjoys similar advantages. But even then the 
maintainabilty problem remains, because no one lives forever. 

Building software is hard, especially good one, and it is even 
harder to maintain it. Contrary to what most people believe, the 
cost of maintaining software is much higher than developing it. 
Software is principally maintained by testing and debugging, 
and this becomes a lot easier with user feedback. Users engage 
in this if they believe that developers are going to respond by 
improving the product and if they develop some sort of 
relationship with the community of developers and other users. 
We can build such a relationship by being transparent and by 

 



opening our code, because the code cannot lie. Opening the 
source code has the further advantage, that other knowledgable 
individuals and groups can suggest improvements and use it to 
fully understand the inner workings of the GeometricAlgebra 
package. Open source code also strongly serves to encourage 
the use of the GeometricAlgebra package for building new 
applications. That is why we need to open the source code. 

The GeometricAlgebra package is released under the GNU 
Lesser General Public License (LGPL [18]), so it gives 
opportunity to application and tool vendors to build 
commercial products on top of it [31],[32]. This may also attract 
them to join in the development. Because open source is 
guided by user needs and not by a business roadmap [33], it will 
result in "cleaner" code with less bugs.  

There are other advantages of open source, with a devoted 
project community. Because of the nature of the internet and of 
geometric algebra, the collaboration scope becomes 
international and multi-disciplinary. This could attract experts 
from around the world to join the project and help solving 
problems. Of course, to be successful such a collaboration 
needs skilled leadership and effective management.  

Building infrastructure to effectively manage such 
collaboration is not an easy task. SourceForge [35] already 
provides infrastructure and sufficient tools for hosting projects 
that conform to open source definitions according to the Open 
Source Initiative (OSI [34]). We will have a Concurrent Version 
System (CVS [46]) for repository and source code control. 
Further included are an online forum and a mailing list for 
discussions, and we also have a website to maintain and 
document an open source project. The GeometricAlgebra Java 
package along with the associated visual application 
KamiWaAi are now hosted at http://kamiwaai.sourceforge.net 
The authors really look forward that those interested in 
geometric algebra will join the future development of the 
package and increase the quality and variety of associated 
applications.  
 
6. Conclusion 
 
  We have briefly reviewed the algebraic background of the 
conformal model of Euclidean space. We found the subalgebra 
structure of the geometric algebra R4,1 of special interest for 
designing an object oriented implementation of the geometric 
product of multivectors in a well structured three level 
approach. We further explained how to algebraically construct 
conformal (homogeneous) subspaces with very intuitive 
Euclidean interpretations. We introduced the algebraic 
expressions for arbitrary translations and rotations, and for the 

subspace operations of union (join), intersection (meet), 
projection and rejection. All these are implemented as methods 
in the GeometricAlgebra Java package. 

We reviewed how the joining of conformal points yields 
explicit expressions for points, pairs of points, lines, circles, 
planes and spheres. After that we stated how in each case the 
Euclidean 3D information of positions, orientations and radii, 
etc. can be extracted. These formulas form the mathematical 
structure of the related Java methods each geometric object has 
in the GeometricAlgebra Java package implementation. 

We found an object oriented software implementation to be 
most suitable. Wide spread use and platform independence 
motivated our adoption of Java. 

Going into the details of the implementation of multivectors 
as MultiVector Java classes, we demonstrated the direct and 
intuitive correspondence between algebraic expressions and 
Java source code. As for the homogeneous model multivectors 
with Euclidean interpretation, we concentrated on the class 
Sphere, to elucidate construction and use (the methods) of these 
simple R4,1 multivectors. 

Because the GeometricAlgebra Java package and related 
applications are still under development we identified the 
necessary steps for its optimization (refactoring). Further 
expansions of the package are likely to include the class Plane, 
and an implementation of the .plunge(…) product method for 
multivectors. To take the plunge product (for the co-incidence) 
[41] of multivectors A, B ∈ R4,1, means to calculate the outer 
product of the duals of A and B: 

 (AI-1) ∧ (BI-1)               (59) 
It may also be worthwhile to develop a range of browser 
integrated online Java applet calculators for important algebras 
like quaternions and the space-time (Dirac) algebra, etc. 

Being concerned about the best possible match between 
geometric algebra and object oriented software language apart 
from Java other more radically object oriented software 
languages like Ruby [42] may bring about an even better 
correspondence between mathematical formulation and 
programming code. 

Apart from the mathematical and logical beauty of a 
software implementation, optimization also means 
performance tuning. The geometric algebra software 
community is taking this aspect very serious [14]. As for the 
GeometricAlgebra Java package it may help to not always use 
the full Multivector class. For frequent computations, which 
involve only subalgebra objects like real scalars, “complex” 
scalars (scalar and pseudoscalar), vectors or quaternions 
(scalars and bivectors), etc. it may increase the efficiency to 
specifically use the corresponding lower level objects like real 

 



numbers, ComplexNumber and ComplexQuat.  
Apart from this first principles approach there is the future 

option to profile GeometricAlgebra Java package applications 
and libraries and change the code for reducing time expensive 
bottle necks. With such an approach care may have to be taken 
about code readability and sufficient documentation.  

We finally argued why we think it is highly beneficial to 
convert all this into an open SourceForge project [17]. 
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