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This paper treats important questions at the interface of mathematics and the engineering 

sciences. It starts off with a quick quotation tour through 2300 years of mathematical history. At 
the beginning of the 21st century, technology has developed beyond every expectation. But do we 
also learn and practice an adequately modern form of mathematics? The paper argues that this 
role is very likely to be played by universal geometric calculus. The fundamental geometric 
product of vectors is introduced. This gives a quick-and-easy description of rotations as well as 
the ultimate geometric interpretation of the famous quaternions of Sir W.R. Hamilton. Then 
follows a one page review of the historical roots of geometric calculus. In order to exemplify the 
role of geometric calculus for the engineering sciences three representative examples are looked 
at in some detail: elasticity, image geometry and pose estimation. Next a current snapshot survey 
of geometric calculus software is provided. Finally the value of geometric calculus for teaching, 
research and development is commented.  
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Introduction 
 
1.1 Mathematicians 'life' 

1. A point is that which has no part.  
2. A line is breadthless length. …                              

    Euclid[1] 
 

…never to accept anything as true if I did not have evident knowledge of its truth; …We have an 
idea of that which has infinite perfection. …The origin of the idea could only be the real existence of 
the infinite being that we call God.  

                    Rene Descartes[2] 
  

But on the 16th day of the same month …an under-current of thought was going on in my mind, 
which gave at last a result, whereof it is not too much to say that I felt at once the importance. …Nor 
could I resist the impulse - unphilosophical as it may have been - to cut with a knife on a stone of 
Brougham Bridge, as we passed it, the fundamental formula with the symbols, i, j, k;             

William R. Hamilton[3] 
 

…extension theory, which extends and intellectualizes the sensual intuitions of geometry into 
general, logical concepts, and, with regard to abstract generality, is not simply one among other 
branches of mathematics, such as algebra, combination theory, but rather far surpasses them, in that 
all fundamental elements are unified under this branch, which thus as it were forms the keystone of 
the entire structure of mathematics.  

                        Hermann Grassmann[4] 
 
 

…for geometry, you know, is the gate of science, and the gate is so low and small that one can 
only enter it as a little child. 

                  William K. Clifford[5] 
 

The symbolical method, however, seems to go more deeply into the nature of things. It …will 
probably be increasingly used in the future as it becomes better understood and its own special 
mathematics gets developed.  

                 Paul A.M. Dirac [6] 
 

The geometric operations in question can in an efficient way be expressed in the language of 
Clifford algebra.  

                       Marcel Riesz[7] 
 

This was Grassmann's great goal, and he would surely be pleased to know that it has finally been 
achieved, although the path has not been straightforward.  

              David Hestenes[8] 
 
1.2 Design of Mathematics 

Over a span of more than 2300 years, Euclid, Descartes, 



Hamilton, Grassmann, Clifford, Dirac, Riesz, Hestenes and 
others all contributed significantly to the development of 
modern mathematics. Today we enjoy more than ever the 
fruits of their creative work. Nobody can think of science 
and technology, research and development, without 
acknowledging the great reliance on mathematics from 
beginning to end.  

Many forms of mathematics have been developed over 
thousands of years: geometry, algebra, calculus, matrices, 
vectors, determinants, etc. All of which find rich 
applications in the engineering sciences as well. But it takes 
many years in school and university to train students until 
they reach the level of mathematics needed for today’s 
advanced requirements.  

Yet very important questions seem to largely go 
unnoticed: Is the present way we learn, exercise, apply and 
research mathematics really the most efficient and 
satisfying way there is? In an age, where we can double the 
speed of computers every 3 years, is there no room for 
improvement for the teaching and application of one of our 
most fundamental tools mathematics? How should 
mathematics be designed, so that students, researchers and 
engineers alike will benefit most from it? 

I do think that at the beginning of the 21st century, we 
have strong reasons to believe, that all of mathematics can 
be formulated in a single unified universal[9] way, with 
concrete geometrical foundations. Why is geometry so 
important? Because it is that aspect of mathematics, which 
we can imagine and visualize. The branch of mathematics, 
which Grassmann said far surpasses all others [4] is now 
known under the name universal geometric calculus.  

Its formulation is at the same time surprisingly simply, 
clear and straightforward in teaching and applications. In 
my experience it is also of great appeal for students.  

The rest of this paper is divided into five major sections. 
In the next section we will see how geometric calculus 
defines a new way to multiply vectors. This immediately 
gives us a new method to do rotations and teaches us the 
nature of Hamilton’s famous quaternions.  

Section three briefly reviews the history of geometric 
calculus.  

Section four takes up three examples of geometric 
calculus applied to elasticity, image geometry and pose 
estimation. Many other applications more closely related to 
other fields of engineering exist as well.  

Section five surveys the currently available software 
implementations for geometric calculus computations. 

Section six outlines the general benefits for teaching, 

research and development.  
This paper is an updated and expanded version of a talk 

given in Nov. 2001 at the Pukyong National University in 
Korea [29]. 

 
1. New Vector Product Makes Rotations Easy 
 

At the (algebraic) foundations of Geometric Calculus [9] lies 
a new definition of vector multiplication, the geometric product. 
It was introduced by Grassmann [4] and Clifford [14] as a 
combination of inner product and outer product. The outer 
product was invented by Grassmann before that. The outer 

product  of two vectors is the (oriented) parallelogram 

area spanned by two vectors  and , illustrated in Fig. 1. 
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Fig. 1 Oriented parallelogram area  ba
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The oriented unit area is denoted by i. But a warning is in 
order: i is NOT to be confused with the imaginary unit of the 
complex numbers introduced by Gauss! In two dimensions 
the area unit i is of similar importance as the unit length 1 is for 
one dimension.  

The “new” geometric product then simply reads 

bababa
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∧+⋅= .           (2.1) 

Yes here we add scalar numbers (inner product) and areas 
(outer product), but nobody has a problem to put balls and 
discs in one box, without confusing them. The usual 
multiplication of real numbers is associative, i.e. 

24122)43(2464)32( =∗=∗∗=∗=∗∗ . (2.2) 

It simply doesn’t matter where you put the brackets, the result 
is the same. The same is true for the geometric product of 
vectors. 

Let us now again take two vectors, but of unit length: , 

. Multiplying their geometric product  once more with 

 we get  again:  
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What we have just done is to rotate the vector  into the 

vector  by multiplying it with . This is a rotation by 

the angle Φ as seen in Fig. 1. This is indeed a very general 
description of rotations in the plane of the rotation. It can be 

applied to any vector in order to rotate it in the plane of  

and  by the angle Φ. The product  deserves thus a 

separate name 
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Φ+Φ=≡ sincosˆˆ ibaRab .     (2.4) 

Remember that the inner product of two unit vectors is just 
cosΦ and the area of the parallelogram they span is 
base*height = 1*sinΦ = sinΦ.  i and Φ describe the rotation as 

good as  and b . A Φ=90° rotation with cos90°=0 and 

sin90°=1 is therefore given by 

â ˆ

i≡)90( oR .              (2.5) 

Rotating twice by 90° gives 180°, turning each vector into the 
opposite direction. We therefore have: 

1)90()90( −=== 2iiioo RR .     (2.6) 

Independent of this, the Irish mathematician Sir William R. 
Hamilton was thinking in 1843 about how to describe rotations 
in three dimensions in the most simple way. While making a 
walk he suddenly found the answer 

,1−=2i ,1−=2j       (2.7a) ,1−=2k

1=ijk .               (2.7b) 

Hamilton was so happy that he carved (2.7) immediately into a 
stone bridge. He called the four entities {1, i, j, k} quaternions 
(=fourfold). [3,10] 

For describing a rotation with a quaternion q, we just need to 

choose the angle of rotation  and the axis [unit vector 

 in the direction of the axis]: 
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The rotation of any vector  is then given as [11] xr

qxqx rr ~=′ ,             (2.9) 

which obviously is much more direct, simpler and 
computationally more efficient than the usual 3 by 3 matrix 
notation. [In (2.3) the rotation operation was one sided, here it 

is two sided, because the part of  not in the rotation plane 

must not change.] Instead of nine matrix elements, we need 

only four parameters ,u  in (2.9). 
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Sir Hamilton knew that his new description of rotations was 
revolutionary, but what he did not know and even many of 
today’s scientists do not yet know is the geometric meaning of 
{ i, j, k }. But given that i represents in two dimensions the 
(oriented) unit area element, it is natural to take { i, j, k } to 
represent the three mutually perpendicular (oriented) unit area 
elements of a cube, as in Fig. 2. 

 
Fig. 2 Oriented unit area elements i, j, k of a cube. 

This interpretation is indeed consistent and valid in the 
framework of Geometric Calculus.[12] In three dimensions, 
adding plane area elements, is quite similar to adding vectors. 
The result is a new area element. The sum  

)( 321 kjiu uuu ++≡           (2.10) 

in (2.8) is therefore just a new (oriented unit) area element 
perpendicular to the axis 
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Just like as in (2.4) each quaternion q (2.8) can therefore be 
written as a product of two unit vectors in the plane  
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2. Creation of Geometric Calculus 
 

2300 years ago the ancient Greek scholar Euclid described 
(synthetic) geometry in his famous 13 books of the elements. 
50 years later (syncopated) algebra entered the stage through 
the work of Diophantes. Euclid’s work [1] was first printed in 
1482. But it took yet another 150 years until the French Jesuit 

 



300 BC     Euclid Geometry 
250 AD     Diophantes Algebra 
1637    Descartes Coordinates 
1798    Gauss Complex Algebra 
1843 Hamilton Quaternions 
1844  Grassmann Extensive Algebra 
1854 Cayley  Matrix Algebra 

 Boole     
1878 Clifford Geometric Algebra 
  Sylvester Determinants 
1881 Gibbs Vector Calculus 
1890 Ricci Tensors 
1882 Cartan Differential Forms 
1928 Dirac Spin Algebra 
  Pauli 
1957 Riesz Clifford Numb., Spinors 
1966 Hestenes Space-Time Algebra 
now                  Geometric Calculus 

        
  

Fig. 3 History of Geometric Calculus [13] 
 

monk Rene Descartes [2] invented analytic geometry. Every 
student knows him through his introduction of rectangular 
Cartesian coordinates. After the French revolution, Gauss and 
Wessel introduced the algebra of complex numbers.  

The following 19th century proved very fruitful for the 
development of modern mathematics. The Irish mathematician 
Sir William R. Hamilton discovered the quaternions [3,10] in 
1843, providing a most elegant way to describe rotations. One 
year later published the German mathematician Herrmann 
Grassmann his now famous work on extensive algebra.[4] Yet 
at first only few mathematicians like Hamilton, later Clifford 
[14] and Klein and a growing number of others took notice. 10 
years later showed G. Boole how algebra can be used to study 
locigal operations. In the same year, Cayley continued the 
coordinate approach of Descartes by introducing matrix 
algebra. Something which Grassmann had no need of in the 
first place.  

Then came the year 1878, when Clifford [14] extensively 
applied the geometric product, which appeared in Grassmann’s 
previous work as central product. After Clifford’s early death 
(supposedly because he overworked himself repeatedly), the 
algebra based on the geometric product became to be known as 
Clifford algebra, yet following his original intent, it should 
better be named geometric algebra. Again in the same year, 
Sylvester continued to develop matrix algebra in the form of 
introducing determinants. In 1881 Gibbs’ vector calculus 
followed, which Ricci enhanced in 1890 to tensor calculus.  

In the first half of the 20th century, the names of Cartan 
(differential forms, 1908) and of Dirac and Pauli (Spin Algebra, 
1928) deserve to be mentioned. In the second half of the 20th 

century (1957), Marcel Riesz [7] gave some lectures on 
Clifford Numbers and Spinors. Early in his career (1966), a 
young American David Hestenes came across Riesz lecture 
notes and created the socalled Space-Time Algebra [15], 
integrating classical and quantum physics. This marked the 
beginning of renewed interest in geometric algebra, combined 
with calculus. Sobczyk and Hestenes published in the early 
1980ies a modern classic[9]: Clifford Algebra to Geometric 
Calculus – A Unified Language for Mathematics and Physics. 
By the beginning of the 21st century it has become a truly 
universal geometric calculus, incorporating more or less all 
areas of mathematics, and starting to be extensively applied in 
science and technology. [16,17]  

The proponents of geometric calculus have no doubt, that 
this new language for mathematics will make its way into 
undergraduate syllabi and even school education. Mathematics 
will thus become easier to understand, teach, learn and apply. 
As for the applications, the next section will show how 
geometric calculus is successfully used in engineering. 
 
3. Geometric Calculus for Engineers 
 
4.1 Overview 

In order to get an overview of how geometric calculus 
supports engineering applications, let me first list some relevant 
topics from a recent conference[18] on applied geometric 
algebras in computer science and engineering: 

z Computer vision, graphics and reconstruction  
z Robotics  
z Signal and image processing  
z Structural dynamics  
z Control theory  
z Quantum computing  
z Bioengineering and molecular design  
z Space dynamics  
z Elasticity and solid mechanics  
z Electromagnetism and wave propagation  
z Geometric and Grassmann algebras  
z Quaternions and screw theory  
z Automated theorem proving  
z Symbolic Algebra  
z Numerical Algorithms  

One should note that the organizers cautioned: “Topics 
covered will include (but are not limited to):” and that 
geometric algebra itself is only the algebraic fraction of the 
full-blown geometric calculus [9]. Limitations of space 
prohibit any complete listing here. 
 
4.2 Three Examples of Engineering Applications 

Trying to choose what to present from the recent engineering 
applications of geometric calculus is a very tough choice, 
because there are many good applications. 

 



I have chosen three dealing with elasticity, image geometry 
and pose estimation. 

 
4.2.1 Example 1: Elastically Coupled Rigid Bodies[19] 

Modelling elastically coupled rigid bodies is an important 
problem in multibody dynamics. A flexural joint has two rigid 
bodies coupled by a more elastic body. Such a system is shown 
in Fig. 4. 

 

 
Fig. 4 Elastically coupled rigid bodies. Source: [19]. 

 
 It is convenient to avoid specifying an origin, i.e. use a new 

homogeneous formulation.[8,19] Rotations R and translations 
T are fully integrated as twistors in screw theory. That is, any 
relative displacement D of two bodies can be written as 

TRD ≡ , .          (4.1) DxDx ~rr
=′

R is the rotation of section 2 and 
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nr is the translation vector and  represents an infinitely far 

away point in (conformal) geometric algebra [8,19]. Motion, 
momentum and kinetic energy are than given as 
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V is defined by  
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Finally the potential energy of the elasticity problem can be 
written as a sum of basically three kinds of terms,  

nKnnKKnK rrrr
tCCO

2 uuuu ⋅+⋅+⋅+⋅ ϑϑϑ  

depending on  and . The first term depends only on 

, the next two on  and , and the fourth only on . 

The three kinds of terms are therefore the potential energies of 

pure rotation, coupled rotation and translation, and pure 
translation. The K are the corresponding stiffnesses. 

uϑ nr

uuϑ ϑ nr nr

The method described here is invariant, unambiguous, has a 
clear geometric interpretation and is very efficient in symbolic 
computation. Two researchers have applied for a patent on the 
use of the method described here in software for modeling and 
simulation.  
 
4.2.2 Example 2: Image Geometry[20] 

Image processing commonly considers “Euclidean 
differential invariants” of the image space (picture plane ×  
intensity). But this makes not much sense, because one cannot 
rotate the image surface to see its “other side”, but invariants 
are supposed not to change under such unrealistic 
transformations. It also makes no sense to “mix” the physical 
dimensions of the picture plane with the intensity dimension by 
transforming one into the other.  

But these inconsistencies can be helped by first introducing a 
logarithmic (log) intensity domain and second making new 
definitions for the basic formulas of measuring angles and 
distances in the image space.  

The log intensity means to divide by a fiducial intensity  

and take the logarithm 

0I

      ))(log()(
0I

rIrz
rr

= .          (4.7) 

A definition very well adapted to the human eye functions.  
The definition of measurements is not changed, when 

considering only the picture plane. But if we look at a plane in 
the image space perpendicular to the picture plane, a rotation 
becomes a shear as shown in Fig. 5. In geometric algebra one 
continues to use a description of rotation as given by (2.9) and 
(2.10), but the square of u will be zero instead of -1.  

 
Fig. 5 An object is moved through image space by a 

parabolic rotation (left). Perpendicular view on the picture 
plane (right). Source: [20]. 

 
Analyzing the image surface curvature in the image space 

gives very natural descriptions of ruts and ridges. A ridge point, 
e.g. is “an extremum of (principle) curvature along the 
direction of the other (principle) curvature.” I should be clear 

 



that when a curve has one curvature, a surface (e.g. a saddle) 
must have two (principal) curvatures. Fig. 6 shows a variety of 
common image transformations easily implemented with our 
new definition of image space.  

 
 

 
Fig. 6 Common image transformations. Source: [20].  

Top: original, two gradients;  
middle: γ transformation, intensity scaling, edge burning;  

bottom: inversion, dodging and burning, flashing. 
 

Another promising new approach is the structure multivector 
which includes information about local amplitude, local phase, 
and local geometry of both intrinsically 1D and 2D signals, 
isotropous even in 2D. It gives the proper generalization to the 
analytic signal (amplitude+phase) of 1D.[21] 

 
4.2.3 Example 3: Monocular Pose Estimation[22] 

(Conformal) geometric algebra [8,19] can be successfully 
used to formalize algebraic embedding of monocular pose 
estimation of kinematic chains. This is helpful for e.g. tracking 
robot arms or human body movements. As shown in Fig. 7 one 
relates positions of a 3D object to a reference camera 
coordinate system. The resulting (constraint) equations are 
compact and clear, and easy to linearize and iterate.  

In a first step the purely kinematic problem of finding the 
rotation R and the translation T of the observed model in Fig. 7 
is solved by way of exploiting obvious point-on-line, 
point-on-plane, and line-on-plane constraints. Points, lines and 
planes are defined by the outer product in (conformal) 
geometric algeba as 
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Fig. 8 The pose of the doll and the angles of the arms are 

estimated. Source: [22].  
 
4. Geometric Calculus Software 
 

The following contains a current snapshot survey of 
geometric calculus implementing software. Two broad 
categories are free, standalone software and software 
packages written for the use together with large commercial 
mathematical software programs.  

The software is listed with its often acronymic name, 
name explanation, homepage, names of the chief inventors, 
and a short comment on its particular nature. The 
homepages are of great importance for downloads, manuals, 
tutorials, examples of applications, latest version updates, 
source codes, secondary literature, etc. The interested reader 
is therefore referred to the relevant homepage. 
 
5.1 Standalone Software 
5.1.1 CLICAL 

The name CLICAL stands for Complex Number, Vector 
Space and Clifford Algebra Calculator for MS-DOS Personal 
Computers. The homepage is: 

http://www.teli.stadia.fi/~lounesto/CLICAL.htm 
It was invented by P. Lounesto at the Helsinki University 

of Technology in Finland. CLICAL evaluates elementary 
functions with arguments in complex numbers, and their 
generalizations: quaternions, octonions and multivectors in 
Clifford algebras. 
 
5.1.2 CLU, CLUDraw, CLUCalc 
  CLU stands for Clifford algebra Library and Utilities. 
CLUDraw is a visualization library based on the CLU library. 
CLUCalc is a visual Clifford algebra calculator. The common 
homepage is: 

http://www.perwass.de/cbup/clu.html 

  All three programs were developed by C. Perwass, 
currently at the Univesity of Kiel, Germany. CLU is a C++ 
Library that implements geometric (or Clifford) algebra.  It 
has been compiled and tested under Windows 98/ME, Linux 
SUSE 7.0, and Solaris.  

CLUDraw allows to visualize points, lines, planes, circles, 
spheres, rotors, motors and translators, as represented by 
multivectors. It has been compiled and tested under Windows 
98/ME/2000/XP, Linux SUSE 7.0, and Solaris.  

With CLUCalc you can type your calculations using an 
intuitive script language. The results of the CLUCalc 
calculations and the visualization of multivectors, as in Fig. 9, 
is then done immediately without the need for an external 
compiler. CLUCalc has been tested under Windows 
98/ME/2000/XP. 
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Fig. 9 CLUCalc illustration. Source: 
p://www.perwass.de/cbup/clucalcdownload.html 
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. 10 Motion capture camera calibration with Gaigen. 
cameras (arrows) and 100 markers (points). Source: 
//carol.wins.uva.nl/~fontijne/gaigen/apps_mccc.html 

http://www.cs.berkeley.edu/~laura/cs184/quat/quaternion.html
http://www.physics.orst.edu/~tevian/octonions/


Its homepage is: 
http://carol.wins.uva.nl/~fontijne/gaigen/ 

Gaigen was written by Daniel Fontijne at the University of 
Amsterdam (Holland) in cooperation with Tim Bouma and 
Leo Dorst. Gaigen generates C++, C and assembly source 
code which implements a geometric algebra requested by the 
user. It is downloadable in the form of standalone 
executables for Win32, Sun/Solaris and Linux. E.g. the 
motion capture camera calibration computation of Fig. 10 can 
be done in a couple of seconds for 10 cameras looking at 
position 100 markers.  

 
5.1.4 C++ Template Classes for Geometric Algebra 
  Publically available C++ template classes to implement 
geometric algebras or Clifford algebras. The homepage is:  

http://www.nklein.com/products/geoma/ 
  These Template Classes were developed by Patrick 
Fleckenstein of ‘nklein software’ in Rochester, New York, US. 
The available template classes are: GeometricAlgebra, 
GeomMultTable, and GeomGradTable. 
 
5.1.5 Online Geometric Calculator 
  The online geometric calculator shown in Fig. 11 is just an 
ordinary desk type calculator that uses the Clifford numbers 
over a three dimensional Euclidean space. The homepage is: 

http://www.elf.org/calculator/ 
  It was programmed by R. E. Critchlow Jr of Santa Fe, New 
Mexico, US. In addition to real number computations, this 
calculator also computes on vectors in two and three space, on 
the bivectors over those vectors, on the trivector over three 
space, on complex numbers, and on quaternions. 

 

Fig. 11 Critchlow’s geometric calculator screenshot. Source: 
http://www.elf.org/calculator/ 

 
5.1.6 Vector Field Design 
  A computer program that allows a user to design, modify 
and visualize a 2D vector field in real time [27]. An example of 
such a vector field is shown in Fig. 12. The homepage is: 

http://sinai.mech.fukui-u.ac.jp/gcj/software/toyvfield.html 
  It was programmed by S. Bhinderwala (Arizona State 
Unversity, US) with credits to G. Scheuermann, H. Hagen, and 
H. Krueger (University of Kaiserslautern, Germany), Alyn 
Rockwood, and D. Hestenes (Arizona State Unversity, US). 
The Windows(TM) based program for the PC allows 
movement and redrawing of vector glyphs and integration 
curves in real time, even with a moderate number of critical 
points. 

 

 
 

 
 
 
 
 
 
 
 

Fig. 12 Vector Field Design 1.0 screenshot.  
 
5.1.7 Clifford Algebra with REDUCE 
  There have been publications about Clifford and 
Grassmann algebra computations with REDUCE: 
http://sinai.mech.fukui-u.ac.jp/gcj/software/gc_soft.html 
  The official homepage of REDUCE is: 
http://www.zib.de/Optimization/Software/Reduce/index.ht
ml 
  Spearheaded 25 years ago by A.C. Hearn (now Santa 
Monica, California, US), nowadays several groups in different 
countries take part in the REDUCE development. It is directed 
towards big formal computations in applied mathematics, 
physics and engineering with an even broader set of 
applications. This is the only (half) commercial software of 
section 5.1: A basic personal PC version is already available 
for a moderate 100 USD.  
 
5.2 Free Packages for Commercial Software  
  There are three major rather costly, fully commercial 
mathematical software packages:  
z MAPLE of Waterloo Maple Inc. in Waterloo, Canada 
    http://www.maplesoft.com/ 
z MATLAB of The MathWorks Inc. in Natick, MA, US 
    http://www.mathworks.com/ 
z Mathematica of Wolfram Research Inc. in Champaign, 

IL, US 
http://www.wolfram.com/ 

  Free of cost geometric calculus software add-on packages 



are nowadays available for all three of them.  
 
5.2.1 With MAPLE 
 
5.2.1.1 CLIFFORD 
  CLIFFORD is a Maple V (now: Rel. 5.1) package for 
Clifford algebra computations. Its homepage is: 

http://math.tntech.edu/rafal/cliff5/index.html 
  It was written by both Rafal Ablamowicz (Tennessee 
Technological University, Cookeville, TN, US) and Bertfried 
Fauser (University of Konstanz, Germany). It contains:  
z CLIFFORD for computations in Clifford algebras 
z Bigebra for computations with Hopf gebras and 

bi-gebras  
z Cli5plus extends CLIFFORD to other bases.  
z GTP extends CLIFFORD to graded tensor products of 

Clifford algebras.  
z Octonion for computations with octonions.  
 
5.2.1.2 Geometric Algebra Package 
  This package enables the user to perform calculations in a 
geometric/Clifford algebra of arbitrary dimensions and 
signature. Its homepage is: 

http://www.mrao.cam.ac.uk/~clifford/software/GA/ 
  This MAPLE add-on package was written by Mark 
Ashdown, Astrophysics Group, Cavendish Laboratory, 
University of Cambridge, UK. The package is available for 
Unix, Linux etc. and for DOS/Windows. Apart from the 
geometric algebra functions, there are two functions in this 
package which perform the geometric calculus operations of 
multivector derivative and multivector differential.  
 
5.2.1.3 LUCY 

LUCY: A (Lancaster University Clifford Yard) Clifford 
algebra approach to spinor calculus. Online information is 
available via: 
http://www.birkhauser.com/book/ISBN/0-8176-3907-1/wang/
wang.html 
  It was created by J. Schray, R. W. Tucker and C. Wang of 
Lancaster University, UK. LUCY exploits the general theory 
of Clifford algebras to effect calculations involving real or 
complex spinor algebras and spinor calculus on manifolds in 
any dimensions. 
 
5.2.1.4 Glyph 
  Glyph is a Maple V (release 5) package for performing 
symbolic computations in a Clifford algebra. Its homepage is: 

http://bargains.k-online.com/~joer/glyph/glyph.htm 
It was written by Joe Riel, an electrical engineer in San Diego, 
California. The Glyph package currently features: loadable 
spaces, a solver for systems of equations, evaluation Clifford 
polynomials, and conversions to and from matrix equivalents. 

In the near future differentiation and integration will be added 
along with routines for rotating and reflecting multivectors. 
 
5.2.2 With MATLAB: GABLE 
  GABLE is a MATLAB geometric algebra learning 
environment [26]. Its homepage is: 

http://carol.wins.uva.nl/~leo/clifford/gable.html 
  It was jointly developed by L. Dorst, Tim Bouma (both at 
the University of Amsterdam, Holland), and S. Mann 
(University of Waterloo, Canada). It graphically demonstrates 
in three dimensions the products of geometric algebra and a 
number of geometric operations. The example of a geometric 
algebra interpolation of a roation with GABLE is shown in Fig. 
13. 

 
Fig. 13 Rotation interpolation with GABLE.  

Output of DEMOinterpolation. 
 

5.2.3 With Mathematica 
 
5.2.3.1 Clifford 

Clifford is a Mathematica package for calculations with 
Clifford algebra. Its homepage is: 

http://iris.ifisicacu.unam.mx/software.html  
  It was developed by The Structure of Matter Group of J. L. 
Aragon, Institute of Physics, Universidad Nacional Autónoma 
de México.  
 
5.2.3.2 GrassmannAlgebra 
  The GrassmannAlgebra software is a Mathematica package, 
for doing a range of manipulations on numeric or symbolic 
Grassmann expressions in spaces of any dimension and metric. 
Its homepage is: 
http://www.ses.swin.edu.au/homes/browne/grassmannalgebra/
book/index.htm 
  It is currently programmed by J. Browne, Swinburne 
University of Technology, Australia. The first alpha testing 
release is scheduled around mid 2002. The author is in the 
process of writing a new book entitled: “Grassmann Algebra, 

 



Exploring applications of extended vector algebra with 
Mathematica.” It has the aim to provide a readable account in 
modern notation of Grassmann’s major algebraic contributions 
to mathematics and science. The package is intended to be used 
to extend the examples in the text, experiment with hypothesis, 
and for independent exploration of the algebra. 
 
5.3 The Benchmark Race 
  The geometric calculus software sector currently undergoes 
rapid development and expansion. Soon packages like Gaigen 
will draw equal with conventional linear algebra software 
computing benchmarks – but with the advantage for geometric 
calculus implementations to be both more efficient and 
functional. [25] 
 
1. Teaching, Research & Development 
 
6.1 Teaching of Engineering Sciences 

Already the teaching of engineering sciences will benefit 
greatly from making use of the general geometric language of 
geometric calculus. (Linear) algebra and calculus can be taught 
in a new unified, easy to understand way. Next all of physics is 
by now formulated in terms of geometric calculus. [9,12,15,24] 
The same applies to basic crystal structures, molecular 
interactions, signal theory, etc. Wherever an engineer employs 
mechanics, electromagnetism, thermodynamics, solid state 
matter theory, quantum theory, etc. it can be done in one and 
the same language of geometric calculus catering for diverse 
needs. The students will not have to learn new mathematics, 
whenever they encounter a different part of engineering 
science.  

 
6.2 Research and Development 

Research and development do already benefit a great deal 
from employing geometric calculus. Even the quaternions 
[3,10] of Hamilton by themselves are already of great 
advantage for aerospace engineering and virtual reality [11]. 
Modeling and simulation can now make use of powerful, new 
methods. Conference participation numbers show that 
computer vision and graphics people are particularly 
interested.[18] It also leads to the development of new and very 
fast computer algorithms both for symbolic and numeric 
calculations.[16,17] Higher dimensional image geometry may 
for the first time ever get a solid theoretical footing, enabling 
systematic study and exploration, not just guessing around. 
 
2. Conclusion 
 
  This work started from the historic roots of geometry, a field , 
which gradually expanded over many centuries to finally 
provide us with a mathematically universal form of geometric 
calculus. At the beginning of the 21st century, we find ourselves 

therefore at a historic crossroad of the traditionally fragmented 
patchwork of commonly practiced mathematics, and of 
geometric calculus with its universal unifying structures. 
  The fundamental geometric product and immediate 
consequences for the elegant description of rotations were 
introduced. Next the wide field of geometric calculus 
applications for engineers was outlined. Three concrete 
engineering problems were looked at in some detail. The 
following major section contained an up to date snapshot 
survey of various software implementations of geometric 
calculus. This is a vibrant field undergoing rapid development. 
Finally the future implications for teaching, research and 
development were discussed.  
  I finally conclude therefore that geometric calculus is a more 
than promising candidate to become the single major teaching, 
research and development tool for engineers of the 21st century.  
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