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Abstract

This paper first reviews how anti-symmetric matrices in two dimensions yield 

imaginary eigenvalues and complex eigenvectors. It is shown how this carries on to 

rotations by means of the Cayley transformation. Then the necessary tools from real 

geometric algebra are introduced and a real geometric interpretation is given to the 

eigenvalues and eigenvectors. The latter are seen to be two component eigenspinors 

which can be further reduced to underlying vector duplets. The eigenvalues are 

interpreted as rotors, which rotate the underlying vector duplets. The second part of 

this paper extends and generalizes the treatment to three dimensions. The final part 

shows how all entities and relations can be obtained in a constructive way, purely 

assuming the geometric algebras of 2-space and 3-space.  

I. Introduction 

… for geometry, you know, is the gate of science, and the gate 

is so low and small that one can only enter it as a little child. 

William K. Clifford[4] 

But the gate to life is narrow and the way that leads to it is hard, and there are few 

people who find it. …I assure you that unless you change and become like children, you 

will never enter the Kingdom of heaven. 

Jesus Christ[9] 

The motivation for this article appears somehow accidental. I had to make linear 

algebra problems for students about eigenvectors of matrices and their Cayley 

transformations. The textbook[1] already had the problem to show that the (real) 

eigenvector of a three-dimensional anti-symmetric matrix was also an eigenvector of its 

Cayley transformation. I thought somehow why restrict it to the one real eigenvector, 
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why not let the students work on a problem with the two complex eigenvectors as well?  

But somehow the question came back to me like a boomerang, and I asked myself, what 

does it really mean to have complex eigenvalues and complex eigenvectors. I thought 

there must somehow be some real geometric meaning to this and began to explore the 

simple two-dimensional case. I was already familiar with geometric algebra [3,4,5,7] 

and was somehow convinced to get an answer applying it. Geometric algebra in a way 

completes our knowledge about how to properly multiply vectors, by adding the inner 

product and a dimension independent outer product to one new invertible, associative 

and distributive geometric vector product. In two dimensions it contains an even 

sub-algebra isomorphic to complex numbers.  

This paper therefore follows a line of argument first presenting the usual problem that 

occurs in matrix algebra and then showing how to shift the interpretation to a 

completely real interpretation in terms of geometric algebra. For this purpose I briefly 

introduce the basics of geometric algebra and show how it helps to fill out the gaps of 

our understanding.  

Having achieved the task in two dimensions it is only natural to try it in three 

dimensions as well, learn thereby something about three-dimensional geometric algebra 

and with hindsight get even a better understanding of what happened in two 

dimensions. This will also show what is particular in two dimensions and needs to be 

refined for solving the three-dimensional problem.  

After I mastered all this in two and three dimensions, using geometric algebra to 

provide a real geometric understanding for what I did in complex matrix algebra, I 

desired to turn the strategy around: I wanted to know if it was feasible to pretend not to 

know about anti-symmetric matrices, their imaginary eigenvalues and complex 

eigenvectors in the first place, but arrive at all these entities and their relationships in a 

synthetic way. In the last section of this article I therefore start with pure geometric 

algebra in two and three dimensions and show how in a natural way relationships arise 

which can be put into a form completely resembling the relationships of complex matrix 

algebra, yet equipped with clear and well defined real-geometric meanings.  

The first quotation stems from Clifford himself, who initially was a theologian and then 

became an atheist. But somehow his view of science was strongly colored by what Jesus 

taught as the Gospel about the Kingdom of God. To agree or disagree on what Clifford 

believed is a matter of faith and not of science. But I think the point made by him, that 

geometry is like a gateway to a new understanding of science is quite worthwhile to 

reflect upon. I hope that the reading of this article may help the reader to appreciate 

Clifford’s opinion to some degree.  



II. Two real dimensions 

II.1 Complex treatment 

Any anti-symmetric matrix in two real dimensions is proportional to 
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U .

The characteristic polynomial equation of the matrix U is 
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The classical way to solve this equation is to postulate an imaginary entity j to be the

root of –1: 1j . This leads to many interesting consequences, yet any real 

geometric meaning of this imaginary quantity is left obscure. 

The two eigenvalues are therefore the imaginary unit j and – j .

j1 , j2

The corresponding complex eigenvectors xx1 and xx2 are 

j
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1
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The Cayley transformation[1] C(–kU), with 
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allows to describe two dimensional rotations. 

The third expression of equation (C) shows that U and C(–kU) must have the same

eigenvectors xx1 and xx2. The corresponding eigenvalues of C(–kU) can now easily be

calculated from (C) as 
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Inserting  and we obtain the complex eigenvalues of the 

two-dimensional rotation C(–kU) as 

j1 j2

sincos1 jc , sincos2 jc

We now face the question what the imaginary and complex eigenvalues and the complex

eigenvectors of U and the rotation C( kU) mean in terms of purely real geometry. In 

order to do this let us turn to the real geometric algebra of a real two-dimensional vector 

space.

II.2 Real two-dimensional geometric algebra 

The theory developed in this section is not limited to two dimensions. In the case of

higher dimensions we can always deal with the two-dimensional subspace spanned by 

two vectors involved, etc. 

II.2.1 The geometric product

Let us start with the real two-dimensional vector space R2. It is well known that vectors 

can be multiplied by the inner product which corresponds to a mutual projection of one

vector aa onto another vector bb and yields a scalar: the projected length a cos  times the

vector length b, i.e. 

coscos abbaba .

The projected vector aa itself can then be written as 

2/bbbaa|| ,                                (P1)

where I use the convention that inner and outer products have preference to geometric

products.

In 1844 the German mathematician H. Grassmann [2] introduced another general

(dimension independent) vector product: the anti-symmetric exterior product. This

product yields the size of the area of the parallelogram spanned by the two vectors

together with an orientation, depending on the sense of following the contour line (e.g.

clockwise and anticlockwise), 

abba .

Grassmann later on unified the inner product and the exterior product to yield the

extensive product, or how it was later called by W. Clifford, the geome ric product[7] of

vectors:

t

babaab .  (GP) 

We now demand (nontrivial!) this geometric product to be associative, i.e. (aab)cc =  a(bbc)

and distributive, i.e. .acabc)a(b

Let us now work out the consequences of these definitions in the two-dimensional real

vector space R2. We choose an orthonormal basis { }. This means that 

1 , ,  .   (Unit)1 0



Please note that e.g. in (Unit) we don’t simply multiply the coordinate representations

of the basis vectors, we multiply the vectors themselves. We are therefore still free to

make a certain choice of the basis vectors, i.e. we work coordinate free! The product of 

the two basis vectors gives 

i  (I) 

the real oriented area element, which I call ii. It is important that you beware of

confusing this real area element ii with the imaginary unit j mentioned in the last

section!

But what is then the square of ii?

))(())((iii2   (II) 

The square of the oriented real unit area element of ii is therefore ii2 = 1 ! This is the

same value as the square of the imaginary unit j. The big difference however is, that j is 

postulated just so that the equation (J) can be solved, whereas for ii we followed a

constructive approach: We just performed the geometric product repeatedly on the basis 

vectors of a real two-dimensional vector space!

So far we have geometrically multiplied vectors with vectors and area elements with 

area elements. But what happens when we multiply vectors and area elements 

geometrically?

II.2.2 Rotations, vector inverse and spinors 

We demonstrate this by calculating both i and i:

i = ( ) = ( )

i = ( ) = ( )

This is precisely a 90 degree anticlockwise (mathematically positive) rotation of the two

basis vectors and therefore of all vectors by linearity. From this we immediately 

conclude that multiplying a vector twice with the oriented unit area element ii

constitutes a rotation by 180 degree. Consequently, the square ii2 = 1 geometrically

means just to rotate vectors by 180 degree. I emphasize again that j and ii need to be

thoroughly kept apart. j also generates a rotation by 90 degree, but this is in the plane 

of complex numbers commonly referred to as the Gaussian plane. It is not to be confused

with the 90 degree real rotation ii of real vectors in the two-dimensional real vector

space.

i also generates all real rotations with arbitrary angles. To see this let aa and bb be unit 

vectors. Then I calculate: 

a(aab)= (aaa)bb = b  (r) 

Multiplying aa with the product aab therefore rotates aa into bb. Rab=aab is therefore the

“rotor” that rotates (even all!) vectors by the angle between aa and bb. What this has to do

with ii? Performing the geometric product aab explicitely yields:

ab = cos  +sin i

(Please keep in mind that here aa2 = bb2 =1 and that the area of the parallelogram

spanned by aa and bb is precisely sin ab, which explains the second term.) This can



formally be written by using the exponential function as: 

Rab= aab = exp(ii ab) = cos ab +sin ab i (R)

We can therefore conclude that the oriented unit area element ii generates indeed all

rotations of vectors in the real two-dimensional vector space.

Another important facet of the geometric product is that it allows to universally define 

the inverse of a vector with respect to (geometric) multiplication as: 

2
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That this is indeed the inverse can be seen by calculating 
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2
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Using the inverse bb-1 of the vector bb, we can rewrite the projection of aa unto bb simply as 

-1

|| bbaa .                                 (P2)

It proves sometimes useful to also define an inverse for area elements A = ±|A|ii:

A-1 = A/A2 = A/( |A|2) = A/|A|2,

where |A| is the scalar size of the area and one of the signs stands for the orientation of

A relative to ii. We can see that this is really the inverse by calculating 

AA-1 = A-1A = AA/A2 = A2/A2 = |A|2/( |A|2) = 1. 

By now we also know that performing the geometric product of vectors of a real

two-dimensional vector space will only lead to (real) scalar multiples and linear 

combinations of scalars (grade 0), vectors (grade 1) and oriented area elements (grade 2). 

In algebraic theory one assigns grades to each of these. All these entities which are

generated such form the real geometric algebra of a real two-dimensional vector space, 

designated with R2 (note that the index is now a lower index). R2 can be generated 

through (real scalar) linear combinations of the following list of 22=4 elements 

{1, i}.

This list is said to form the basis of R2. When analyzing any algebra it is always very

interesting to know if there are any subsets of an algebra which stay closed when 

performing both linear combinations and the geometric product. Indeed it is not difficult

to see that the subset {1, i} is closed, because 1i = i and ii = 1. This sub-algebra is in 

one-to-one correspondence with the complex numbers C. We thus see that we can

“transfer” all relationships of complex numbers, etc. to the real two-dimensional

geometric algebra R2. We suffer therefore no disadvantage by refraining from the use of 

complex numbers altogether. The important operation of complex conjugation (replacing

j by j in a complex number) corresponds to rever ion in geometric algebra, that is the 

order of all vectors in a product is reversed:

s

baab  and therefore i .i211221



In mathematics the geometric product of two vectors (compare e.g. (GP),(Unit),(II),(R))

is also termed a spinor. In physics use of spinors is frequently considered to be confined

to quantum mechanics, but as we have just seen in (R), spinors describe every

elementary rotation in two dimensions. (Spinors describe rotations in higher 

dimensions as well, since rotations are always performed in plane two-dimensional

subspaces, e.g. in three dimensions the planes perpendicular to the axis of rotation.) 

By now we have accumulated enough real geometric tools in order to work out the real

explanation for the imaginary and complex eigenvalues and –vectors of section 1. 

II.3 Real explanation 

Let us skip back to the characteristic polynomial equation of the matrix U in section 1: 

Instead of postulating the imaginary unit j we now turn to the real two-dimensional

algebra R2 and set the eigenvalues and to simply be: 

 i, i.

The corresponding “eigenvectors” xx1 and xx2 will then be: 

i
x

1
1 , .

i
x

1
2

As in section 1, the eigenvectors of the Cayley transformation C( kU) will be the same.

And the eigenvalues of C( kU) now become: 

, .         (LC)sincos1 ic sincos2 ic

We can now take the first step in our real explanation and identify and as the real 

oriented unit area element with both orientations ( ). We can further identify the two

“eigenvectors” xx1 and xx2 as two-component spinors with the entries: x11=1, x12= i and

x21=1, x22= ii. Finally the eigenvalues c and c  of the Cayley transformation C( kU)

are seen to simply be rotors (compare (R)), i.e. operators which rotate vectors by and

, respectively.

Now we want to better understand what the real-oriented-unit-area-element

eigenvalues  i, i as well as  and  do 

when multiplied with the two-component eigen-spinors (previously termed 

“eigenvectors”) xx

sincos1 ic sincos2 ic

1 and xx2 . In the last section on the real two-dimensional geometric

algebra, we already learnt that every spinor can be understood to be the geometric

product of two vectors. We therefore choose an arbitrary, but fixed reference vector zz

from the vector space R2. For simplicity let us take zz to be zz = . We can then factorize

the spinor components of the eigen-spinors xx1 and xx2 to:

x11=1= , x12= i

and x21=1= , x22= ii

The eigen-spinor xx1 is thus seen to correspond (modulus the geometric multiplication

from the right with zz = ) to the real vector pair ( ), whereas xx2 corresponds to the 



real vector pair ( ). Multiplication with from the left as in 
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results in 

12111211211111 )()())((1iixx .

That is the multiplication with  = ii from the left transforms the first entry in the

vector pair ( ), which corresponds to xx1, to . Performing the same calculation for

the second entry  in ( ) yields . So the whole vector pair ( ) is transformed to 

the new pair ( ). Which upon a close look is seen to be a simple rotation by –90 

degree. Here the mathematically speaking non-commutative nature of the geometric

product comes into play. That is the order of the factors in a geometric product does

really matter. The multiplication of a vector with ii from the right gives a rotation by +90

degree, whilst the multiplication with ii from the left yields a rotation by –90 degree. 

Analogous calculations for x2 = ix2 show that the pair ( ), which corresponds to

x2 is transformed to ( ), i.e. it is rotated by +90 degree. 

Let me summarize therefore that the multiplications x1 and x2 are thus understood

to rotate the underlying vector pairs (corresponding to xx1 and xx2, respectively) by –90

and +90 degrees, respectively! 

In analogy to the treatment of x1 and x2, I will now treat c1 x1 and c2 x2.

Comparing (LC) and (R) one may already suspect that c1 and c2 may simply rotate the

vector pairs corresponding to xx1 and x2 by  and + respectively. (As for the sign of ,

the non-commutative nature of the geometric product needs again to be taken into 

account.) But let us prove this now explicitly.

1111111111111 )sin(cos)sin(cos))(sin(cos iiixx c

111111 ))(())sin()(cos()sin(cos ii R .

After the third equation sign we have used the fact that the oriented unit area element

i anti-commutes with all vectors in the plane characterized by ii. I will show this

explicitly for :

ii 12111211211 )()()( . (ac) 

The multiplication c1 x1 is therefore shown to rotate the first vector , in the vector

pair that corresponds to the eigen-spinor xx1, into > R( ). According to (r) and (R)

this is a rotation of by . Performing the same calculation for c1 x12 we find that the

second vector in the vector pair that corresponds to xx1 is rotated likewise: > R( ).

In the very same way it can be proven explicitly that c2 x2 rotates the vector pair 

( ), which corresponds to xx2 into ( R( ), R( )).

We have therefore confirmed that the multiplications c1 x1 and c2 x2 geometrically



mean to rotate the vector pairs corresponding to xx1 and x2 by  and + respectively.

Summarizing we see that the complex eigenvectors x1 and x2 may rightfully be 

interpreted as two-component eigen-spinors with underlying vector pairs. The

multiplication of these eigen-spinors with the unit-oriented-area-element eigenvalues

and means a real rotation of the underlying vector pairs by –90 and +90 degrees, 

respectively. Whereas the multiplication with c1 and c2 means a real rotation of the 

underlying vector pairs by  and + respectively.

I concede that despite of the strong case for a real explanation of both imaginary (and 

complex) eigenvalues and complex eigenvectors, one may at first sight wonder 

(1) how to extend this explanation to higher dimensions and 

(2) whether the treatment of higher dimensions might not become too complicated. 

In order to show that the extension to higher dimensions is fairly easy,  straight

forward and not at all complicated, I will now discuss the same problem for the case of 

three dimensions. 

III. Three real dimensions 

III.1 Complex treatment of three dimensions 

Any anti-symmetric matrix in 3 dimensions is proportional to a matrix of the form 

U

0 -c b

c 0 -a

-b a 0

with a2+b2+c2=1. The characteristic polynomial equation of the matrix U is 

0)(det 2222 cba

ba

bc

ac

EU .

If we use the condition that a2+b2+c2=1, this simplifies and breaks up into the two 

equations

12

2,1               (J3)

and .03

That means we have one eigenvalue  equal to zero and for the other two eigenvalues

we have the same condition as in the two-dimensional case for the matrix

0 1

-1 0 .

It is therefore clear that in the conventional treatment one would again assign j and

j . The corresponding eigenvectors are: 



2

2

2

1

1

1

c

jabc

jbac

jabc

b

jcab

jbac

jcab

a

1x

2

2

2

1

1

1

c

jabc

jbac

jabc

b

jcab

jbac

jcab

a

2x . (CEV) 

The sign expresses that all three given forms are equivalent up to the multiplication

with a scalar (complex) constant. The eigenvector that corresponds to simply is: 

c

b

a

3x .

The fact that simply means that the matrix U projects out any component of a 

vector parallel to xx3 . U maps the three-dimensional vector space therefore to a plane

perpendicular to xx3 containing the origin. 

The Cayley transformation[1] C( kU) with 
sin

cos1
k now describes rotations in

three dimensions: 
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The vector xx3 plays here the role of the rotation axis. If e.g. we set a=b=0, c=1, we get the 

usual rotation around the z-axis: 

100

0cossin

0sincos

)]1,0,0()[( 3xkUC .

The expression for C( kU) after the second equal sign clearly shows that the 

eigenvectors of U and C( kU) agree in three dimensions as well. The general formula for 

calculating the eigenvalues c of C( kU) from the eigenvalues  of U reads as follows: 
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Inserting and in this formula yields: 

sincos1 jc , , .sincos2 jc 13c

We now already see that the most interesting differences to the two-dimensional case lie



in the (complex) eigenvectors, besides the fact that the expression for the rotation 

matrix C( kU) looks rather more complicated.

III.2 Real three-dimensional geometric algebra 

We begin with a real three-dimensional vector space R3. In R3 we introduce an

orthonormal set of basis vectors { }, that is m n for n=m and m n for n 

m, {n,m=1,2,3}. The basic 23 = 8 geometric entities we can form with these basis

vectors are: 

1,     { }, { i3= i1= i2= }, i=

scalar     vectors             oriented unit real area        oriented real volume

(grade 0)   (grade 1)              elements (grade 2)            element (grade 3)

We now have three real oriented unit area elements {  i1 i2 i3} corresponding to the three 

plane area elements of a cube oriented with its edges along and This set of 

eight elements {1, , ii1 i2 i3, i } forms the real geometric algebra R3 of the three

dimensional vector space R3. By looking at the subsets {1, i3}, {1, i1} and 

{1, i2} we see that R3 comprises three plane geometric sub-algebras, as we have

studied them in section I.2. In general, by taking any two unit vectors {uu, vv} which are

perpendicular to each other, we can generate new two-dimensional plane geometric

sub-algebras of R3 with the unit area element ii = uuv.

As in the two-dimensional case we have ii12 = i22 = i32 = ii2 = –1. And we have 

i 2 = i i =

Each permutation after the third, fourth and fifth equal sign introduced a factor of –1 as 

in (I). The square of the oriented three-dimensional volume element is therefore also

i 2=–1.

In three dimensions the vector aa unto bb projection formula (P2) does not change, since it

relates only entities in the aa,bb plane. But beyond that we can also project vectors aa onto

i planes, by characterizing a plane by its oriented unit area element ii. In this context it

proves useful to generalize the definition of scalar product to elements of higher grades

[3]:

aaa r

r

rr BBB 1)1(
2

1
,

where r denotes the grade of the algebraic element Br. For Br = bb (r=1) we have as usual 

baabba
2
1 , but for Br = ii (example with grade r=2) we have 

iaaiia
2

1
.

We can calculate for example 
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If we now rotate  (and ) with  i1-1 = i1 from the right by –90 degree in the 

plane, we obtain 

232332 1

-1

11 iii , ,332223 1

-1

11 iii

respectively.

The projection of any vector aa unto the  plane is therefore given by 

-1

11|| iiaa .

We say therefore instead of  plane also simply ii1-plane. And in general the

projection of a vector aa unto any ii-plane is then given by 

-1

|| iiaa ,

which is in perfect analogy to the vector unto vector projection in formula (P2). 

There is more[4,5] to be said about R3, but the above may suffice for our present

purposes.

III.3 Real explanations for three dimensions

If we follow the treatment of the two-dimensional case given in section II.3, then we

need to replace the imaginary unit j in the eigenvalues and in the eigenvectors xx1,

x2 by an element of the real three-dimensional geometric algebra R3. In principle there

are two different choices: The volume element i or any two-dimensional unit area

element like e.g. ii1 i2 i3.

Let me argue for the second possibility: We have seen in section III.1 that the

multiplication of U with a vector always projects out the component of this vector

parallel to xx3 so that the yy on the right hand side of equations like Uxx = yy is necessarily a

vector in the two-dimensional plane perpendicular to xx3 containing the origin. x1 and

x2 are precisely such vectors, since they arise from Uxx1 and Uxx2, respectively. x1 and

x2 are therefore recognized as vectors belonging to the two-dimensional plane

perpendicular to xx3 containing the origin. Thus it seems only natural to interpret the 

squareroot of –1 in the solution of equation (J3) to be the oriented unit area element  i 

characteristic for the plane perpendicular to xx3 containing the origin as opposed to the 

volume element element i or any other two-dimensional unit area element..



The oriented unit area elements ii1 of the plane, ii2 of the plane, and ii3 of the

plane, are perpendicular to the vectors and respectively. The unit area

element  i of the two-dimensional plane perpendicular to xx3 will therefore simply be: 

i = a i1 b i2 c i3 = a b c

I therefore consequently set  = ii  = --i and
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As in the two-dimensional case I interpret the three components of each “eigenvector” as 

spinorial components, i.e. elementary geometric products of two vectors. (In the

following we will therefore use the expression three component eigenspinor instead of 

“eigenvector”.) I again arbitrarily fix one vector from the ii plane (the plane

perpendicular to xx3) as a reference vector zz with respect to which I will factorize the

three component eigenspinors xx1 and xx2. With respect to the first representation of the

eigenspinors xx1 and xx2 we choose to set .acaba )1( 2-1iiz

The square of zz gives the first component spinor of xx1 and xx2:

222222 1)1( acabaazzzzz
2 ,

where we make use of the condition a2 +b2 +c2=1.

The inverse of zz will therefore be: 

z–1 = zz/zzz = ab/( a ) ac/( a ) .

In order to now solve the equations for the two other vectors underlying the eigenspinor

components –ab–iic and –ac–iib of xx1:

n2z = –ab–iic   and nn3z = –ac–iib,

we can simply multiply with zz–1 from the right: 

n2 = n2zz–1 = (–ab–iic)  z–1 = (–ab– c {a i1 b i2 c i3})( ab/( a ) ac/( a )

= (–ab + a2b2/( a ) a2bc/( a ) – ca i1 bc i2 c i3 +

a2bc/( a ) ii1 2  ab2c/( a ) ii2 2 abc2/( a ) i3 2 +

a2c2/( a ) ii1 3  abc2/( a ) ii2 3 ac3/( a ) i3 3)

In order to simplify the above equation we first calculate 

i1 1 = i

i2 1 =

i3 1

i1

i2 i

i3 =

i1 3 = 

i2 3 =



i3 3 i

After reordering everything we get: 

n2 = ( b2) 2 ab 1 bc 3 = .

In the very same way we can now calculate 

n3 = n3zz–1 = ( c2) 3 ac 1 bc 2 = .

Summarizing these calculations we have (setting nn1 = zz= ):
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So all we need to give a real geometric interpretation for the three-component

eigenspinor  are geometric products of the projections of the three basis vectors

and onto the  i plane. The other two equivalent representations of xx1 given in (EV3) 

can be written as: 

abc

b

cab

i

i
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21  and x .
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1

We see that this simply corresponds to a different choice of the reference vector zz, as 

z=  and as zz= , respectively. In general all possible ways to write xx1 correspond to 

different choices of zz from the ii plane. The geometric product Rzz’ = zzz’ of any two such

reference vectors zz and zz’ gives the rotation operation to rotate one xx1(zz) choice into the

other xx1(zz’)= xx1(zz) Rzz’.

Comparing the (complex) “eigenvectors” xx1 and xx2 in (CEV) we see that they are related

to each other by complex conjugation. Since the corresponding operation in geometric

algebra is the reversion of the order of vectors it is no wonder that the components of the

eigenspinor xx2 are formed by taking the reverse order of vector factors appearing in the 

factorization of xx1:

3

2

1

2

zn

zn

zn

i

ix

bac

cab

a 21

.

Naturally nothing can hinder us to factorize out the reference vector zz in for xx2 also to

the right, we just end up with somewhat less handy expressions. 

Let us now turn to the interpretation of the eigenvalues c1 and c2 of the Cayley

transformation C( kU). (We will see that the eigenvalues 1 and 2 may indeed be

understood as special cases of c1 and c2 by simply setting degree.) We now write

them – replacing j by  i – as: 

c1 = cos  i sin and c2= cos  i sin

The action of c1 on the three-component eigenspinor xx1 is: 
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As in the two-dimensional treatment of section II.2, the products c1n1, c1n2, c1n3 can

now be understood as a real two-dimensional rotation of the underlying vector triplet

{nn1, n2, n3} by the angle in the plane perpendicular to xx3 Since all triplet vectors are

elements of the plane perpendicular to xx3, and  i is the oriented unit area element of 

precisely this plane, the two-dimensional treatment fully applies.

In line with this, the action of c2 on the three-component eigenspinor xx2:
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may now be interpreted as the same two-dimensional rotation of the vector triplet

{nn1, n2, n3} by the angle ote that here we have c2 to the right of each triplet vector,

and not to the left as in (Lc3.1), which explains the same sign of the angle. For the third

equation sign we have used the fact that spinors commute, since 1 (one) and ii commute

with each other. Note also that the resulting spinor components continue to be different,

because the different order of vector factors in the spinorial components of xx1 and xx2.

As for 1 and 2 we now set degree and we conclude from the above discussion that

1 rotates the vector triplet {nn1, n2, n3} belonging to xx1 by –90 degree. If we look at the

last expression in (Lc3.2) 2 can be interpreted to also rotate the vector triplet {nn1, n2, n3}

by –90 degree. (Note again the order of vector factors in (Lc3.2)!) 

As already mentioned the fact that 3=0 means a projecting out of any component

parallel to xx3. The third eigenvalue of the Cayley transformation C( kU) is c3=1, which

means that any component parallel to xx3 will be invariant under multiplication with

C( kU).

Let me also remark that instead of interpreting the action of the eigenvalues 1, 2, c1

and c2 as triplet rotations, we may just as well interpret them as rotating the second 

factor in the vector factorization of the eigenspinor components, i.e. the reference vector

z itself. Yet this interpretation has the drawback that we would need to abandon the 

fact that zz did not change so far, which makes comparisons in the plane perpendicular to

x3 more straight forward. 

Summarizing the real situation in three dimensions, we see that the projecting out of

the components parallel to xx3 lead to the use of the oriented unit area element  i, which

characterizes the plane perpendicular to xx3. ii thus replaces the imaginary unit j, which 

lacked any real geometric interpretation. Subsequently 1 and 2 ( c1 and c2) were seen

to act as rotation operators on the vector triplet {nn1, n2, n3} underlying the

three-component eigenspinors xx1 and xx2. The underlying triplet vectors themselves (and 



the reference vector zz) are all elements of the plane perpendicular to xx3 and continue to 

be so, when being rotated. 

IV. Bottom up real explanation 

It is interesting to consider whether geometric algebra can only serve as a tool of real

analysis of the complex situation, or if we may even completely forget about matrices

and complex numbers and let geometric algebra generate expressions that are finally 

interpretable in terms of matrices and complex numbers. 

IV.1 Bottom up for two dimensions 
We therefore now only assume the real two-dimensional vector space R2 and its

geometric algebra R2 as described in section II.2. In section II.3 we learnt that the 

geometric multiplications of the two basis vectors and with the plane oriented unit

area element  i from the left yield:

i

i

If we simply write this in matrix form we obtain 

1

2

2

1

01

10
. (B2) 

And we therefore see that the matrix corresponding to the geometric multiplication

with  i from the left is exactly the two-dimensional anti-symmetric matrix U with which

we started off in section II.1. Multiplying both sides of (B2) with from the right, we 

obtain the two-component spinorial form of the equation: 

1

1
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11 i

i
. (B2s) 

Please note that, because of the existence of the vector inverse in section II.2.2, this is

an invertible operation! The second and fourth expressions in equation (B2s) correspond

exactly to the equation Uxx1= x1  ix1 of section II.3. By applying the reversion operation

of the order of vectors in all geometric products involved, as defined in section II.2.2, we 

get:

1

1

01
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10

11

21

21

11 i

i
 (B2r), 

which corresponds exactly to the equation Uxx2= x2 ix2 explained in section II.3. 

What we just did with the unit oriented area element ii, we will now do with the rotor 

R( )=cos  + ii sin . It transforms two basis vectors and  to: 

R( ) = (cos  + ii sin = cos + ii  sin cos sin

R( ) = (cos  + ii sin = cos + ii  sin sin  + cos

Rewriting this in Matrix form we obtain: 
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.  (BR2) 

The matrix that corresponds to the rotor R( ) operating on the basis vectors and  is

therefore exactly the Cayley transformation C( kU). Geometrically multiplying both

sides of equation (BR2) with from the right we obtain: 

i
i
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. (BR2s) 

We now see a complete correspondence of equation (BR2s) with the eigenspinor

equation C( kU)xx1= c x1=(cos  + iisin )  x1, with xx1=( )=(1, i), as explained in

section II.3. Reversing the order of all elementary geometric vector products in equation

(BR2s) yields: 
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This reversed form of (BR2s) is therefore seen to perfectly correspond to the second

eigenspinor equation of the Cayley transformation C( kU)xx2= c x2=(cos isin )  x2.

It is therefore demonstrated that by purely assuming the real two-dimensional

geometric algebra R2 all expressions which are known from complex matrix algebra are 

generated automatically. The invertible transformation of the vector equations into

spinor equations through the geometric multiplication with from the right makes the 

correspondence explicite.

IV.2 Bottom up for three dimensions 
That what we have shown in two dimensions is not only due to the simplicity of 

two-dimensional algebra, will now be explicitly demonstrated in three dimensions as

well.

Here we start in the real three-dimensional geometric algebra R3 by considering the

multiplication of the plane area element  i=a i1 +b i2 +c i3 with the components of the

three basis vectors and parallel to the plane characterized by ii, i.e. the plane

perpendicular to (a,b,c): 

i = c b

i = c a

i = b a iB3)

It is made use of the condition that a2+b2+c2=1. These calculations can either be

performed by hand as in the previous sections, or one may simply use geometric algebra



capable mathematical software, like as MAPLE V with the Cambridge GA package[6], 

etc. Rewriting the three equations in matrix form yields:
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ab

ac

bc

ab

ac

bc

.

We now recognize the three-dimensional anti-symmetric matrix U of section III.1. The 

third equation (B3) may simply be calculated from the second one, the fourth expression

is just rewriting the third in matrix form as well. The distinction between the basis

vectors and their ii-plane projections seems at first sight unnecessary, but the operation

of  i on the basis vectors themselves does not yield the equations (iB3). Geometrically

multiplying both sides of (B3) with  from the right we obtain the three-component 

spinorial form: 
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This exactly corresponds to the equation Uxx1= 1x1= iix1 of section III.3. Note that the 

multiplication with  is invertible. Multiplying with  or  instead yields the

equivalent forms of xx1 also mentioned in section III.3. Reversing all elementary 

geometric vector products involved in (B3s) yields:
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This is seen to be Uxx2= 2x2= ix2 of section III.3. 

As in the bottom up explanation for two dimensions, we will now look at the action of

the rotor R( )=cos  + ii sin , with  i=a i1 +b i2 +c i3. As before, we could look straight

away for what R( ) does with the three basis vectors projected onto the ii-plane, i.e. with

and . But a better way is to use the fact that ii anti-commutes with all vectors 

in its plane [see section II.3, equ. (ac)] and commutes with vectors perpendicular to its 

plane:

i( a +b +c )=( a +b +c )  i. (com) 

In three dimensions a +b +c  is the only vector perpendicular to the ii-plane. We

can therefore rewrite e.g. the rotation of  as: 

c1 =R( ) R( )R( ) R( ) R( )  (DSR) 

Moving a R( ) factor to the right causes the angle to change sign, because of the 

anti-commutativity of ii with If we apply the same formula to the vector a +b +c

 we obtain: 

R( )(a +b +c )R( ) R( )R( ) (a +b +c ) = a +b +c ,

because the vector a +b +c is perpendicular to the ii-plane, i.e. it doesn’t change



the sign of the angle in the factor R( ), if the factor is moved back to the left. That is 

to say the double sided description of the rotation as in (DSR) does exactly what a 

rotation around the axis a +b +c is expected to do, it leaves the axis invariant

and rotates only vectors in the ii-plane. The formula (DSR) automatically takes care of

the necessary projections. This corresponds well with the Cayley transformation C( kU),

which also leaves the vector a +b +c  invariant. Instead of looking at 

c1 =R( ) R( ) c1 =R( ) R( ) and c1 =R( ) R( ) (LRh)

we will look straight away at: 

R( ) R( )={1+( cos )( a )} + { c sin +ab( cos )}  + {b sin +ac( cos )}

R( ) R( )={c sin +ab( cos )}  + {1+( cos )( b )} + { a sin +bc( cos )}

R( ) R( )={ b sin +ac( cos )} + { a sin +bc( cos )} + {1+( cos )( c )} .

Rewriting these three equations in matrix form gives: 
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The matrix obtained is exactly C( kU), as in section III.1. Both sides of equation (BR3)

leave components parallel to a +b +c  invariant. They can therefore be subtracted

on both sides without changing the form of the equation: 

)(R
2

R
2

R kUC .

According to (DSR) I simplified the first expression, to have only R( )= c1 to the left.

Multiplying by from the right we obtain: 
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This is seen to exactly be the Cayley transformation eigenvector equation

C( kU)= c1x1=(cos  + ii sin ) xx1, i.e. equ. (Lc3.1) in section III.3. Using or  instead of 

 from the right, we obtain the other forms of xx1 mentioned in section III.3. Reversing

the order of all geometric products of vectors involved in (BR3s) yields equation (Lc3.2)

of section III.3. 

Using the laws governing the real geometric algebra R3, and properly rewriting the

action of the eigenvalues c1 and c2 as in equ. (DSR), we have therefore obtained all 

relationships for the three-dimensional anti-symmetric matrix U and its Cayley

transform C( kU) in a purely constructive manner.



V. Conclusion 

In this paper the eigenvalues and eigenvectors of anti-symmetric matrices in two and 

three dimensions and of their Cayley transformations were briefly reviewed as 

described by standard linear algebra. Traditionally the imaginary and complex 

eigenvalues and the complex eigenvectors have no direct real geometric interpretation. 

In an effort to unravel the real geometric interpretation I used the geometric algebras of 

the plane and Eulidean three-space respectively. All relationships involving imaginary 

and complex values or components found an explanation. The imaginary and complex 

eigenvalues were found to act like rotation operators on duplets and triplets of vectors. 

In three-space the triplets of vectors were found to be the projections of the coordinate 

vectors onto the plane of rotation, unique up to an arbitrary constant rotation in the 

plane. Geometric multiplication of this triplet of vectors with any other vector (termed 

reference vector) in the plane of rotation gives the three components equivalent to a 

complex three-component eigenvector in the standard treatment.  

The imaginary eigenvalues corresponded to real space +90 degree or –90 degree 

rotation operators and the complex eigenvalues of the Cayley transformations to 

arbitrary real space rotations in the plane of rotation, depending on the scalar 

parameter k of the Cayley transformation.  

Finally, for both two and three dimensions a bottom up explanation was found in a 

constructive way, only assuming the two- and three-dimensional geometric algebras. 

This explanation yielded expressions and equations that completely resemble the 

eigenvalue and eigenvector relationships for anti-symmetric matrices and their Cayley 

transformations.

The extension to Euclidean and Minkowskian four-space might be a natural next step. 

This way the interpretation could be further refined and new insights in areas of 

physics whose theories are based on such spaces might be gained. I especially think of 

the special theory of relativity, electrodynamics and relativistic quantum mechanics. 

Some preliminary calculations seem to indicate that the extension to four-spaces will 

not be trivial.  

Independent of the question for higher dimensions, the two and three dimensional 

treatment has already yielded a definitive and very satisfactory picture of how 

imaginary and complex eigenvalues and complex eigenvectors should truly be 

understood in terms of real geometry. Something undergraduate students, exposed to 

linear algebra for the first time, as well as scientists who teach and apply it will 

certainly appreciate.  
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