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Abstract Recently several generalizations to higher dimension of the classical
Fourier transform (FT) using Clifford geometric algebra have been introduced, in-
cluding the two-dimensional (2D) Clifford Fourier transform (CFT). Based on the
2D CFT, we establish the two-dimensional Clifford windowed Fourier transform
(CWFT). Using the spectral representation of the CFT, we derive several important
properties such as shift, modulation, a reproducing kernel, isometry and an orthog-
onality relation. Finally, we discuss examples of the CWFT and compare the CFT
and the CWFT.

1 Introduction

One of the basic problems encountered in signal representations using the conven-
tional Fourier transform (FT) is the ineffectiveness of the Fourier kernel to represent
and compute location information. One method to overcome such a problem is the
windowed Fourier transform (WFT). Recently, some authors [4,7] have extensively
studied the WFT and its properties from a mathematical point of view. In [6,8] they
applied the WFT as a tool of spatial-frequency analysis which is able to characterize
the local frequency at any location in a fringe pattern.

On the other hand, Clifford geometric algebra leads to the consequent generaliza-
tion of real and harmonic analysis to higher dimensions. Clifford algebra accurately
treats geometric entities depending on their dimension as scalars, vectors, bivec-
tors (oriented plane area elements), and tri-vectors (oriented volume elements), etc.
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Motivated by the above facts, we generalize the WFT in the framework of Clifford
geometric algebra.

In the present paper we study the two-dimensional Clifford windowed Fourier
transform (CWFT). A complementary motivation for studying this topic comes from
the understanding that the 2D CWFT is in fact intimately related with Clifford Gabor
filters [1] and quaternionic Gabor filters [2, 3]. This generalization also enables us
to establish the two-dimensional Clifford Gabor filters.

2 Real Clifford Algebra G2

Let us consider an orthonormal vector basis {e1,e2} of the real 2D Euclidean vector
space R2 =R2,0. The geometric algebra over R2 denoted by G2 then has the graded
4-dimensional basis

{1,e1,e2,e12}, (1)

where 1 is the real scalar identity element (grade 0), e1,e2 ∈ R2 are vectors (grade
1), and e12 = e1e2 = i2 defines the unit oriented pseudoscalar1 (grade 2), i.e. the
highest grade blade element in G2.

The associative geometric multiplication of the basis vectors obeys the following
basic rules:

e2
1 = e2

2 = 1, e1e2 =−e2e1. (2)

The general elements of a geometric algebra are called multivectors. Every mul-
tivector f ∈ G2 can be expressed as

f = α0︸︷︷︸
scalar part

+α1e1 +α2e2︸ ︷︷ ︸
vector part

+ α12e12︸ ︷︷ ︸
bivector part

,∀α0,α1,α2,α12 ∈ R. (3)

The grade selector is defined as 〈 f 〉k for the k-vector part of f . We often write
〈. . .〉= 〈. . .〉0. Then equation (3) can be expressed as2

f = 〈 f 〉+ 〈 f 〉1 + 〈 f 〉2. (4)

The multivector f is called a parabivector if the vector part of (4) is zero, i.e.

f = α0 +α12e12. (5)

The reverse f̃ of a multivector f ∈ G2 is an anti-automorphism given by

f̃ = 〈 f 〉+ 〈 f 〉1−〈 f 〉2, (6)

which fulfills f̃ g = g̃ f̃ for every f ,g ∈ G2. In particular ĩ2 =−i2.

1 Other names in use are bivector or oriented area element.
2 Note that (4) and (6) show grade selection and not component selection.
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The scalar product of two multivectors f , g̃ is defined as the scalar part of the
geometric product f g̃

f ∗ g̃ = 〈 f g̃〉= α0β0 +α1β1 +α2β2 +α12β12, (7)

which leads to a cyclic product symmetry

〈pqr〉= 〈qrp〉, ∀p,q,r ∈ G2. (8)

For f = g in (7) we obtain the modulus (or magnitude) | f | of a multivector f ∈ G2
defined as

| f |2 = f ∗ f̃ = α2
0 +α2

1 +α2
2 +α2

12. (9)

It is convenient to introduce an inner product for two multivector valued func-
tions f ,g : R2 → G2 as follows:

( f ,g)L2(R2;G2) =
∫

R2
f (x)g̃(x) d2x. (10)

One can check that this inner product satisfies the following rules:

( f ,g+h)L2(R2;G2) = ( f ,g)L2(R2;G2) +( f ,h)L2(R2;G2),

( f ,λg)L2(R2;G2) = ( f ,g)L2(R2;G2)λ̃ ,

( f λ ,g)L2(R2;G2) = ( f ,gλ̃ )L2(R2;G2),

( f ,g)L2(R2;G2) = (̃g, f )L2(R2;G2), (11)

where f ,g ∈ L2(R2;G2), and λ ∈ G2 is a multivector constant. The scalar part of the
inner product gives the L2-norm

‖ f‖2
L2(R2;G2) =

〈
( f , f )L2(R2;G2)

〉
. (12)

Definition 1 (Clifford module). Let G2 be the real Clifford algebra of 2D Euclidean
space R2. A Clifford algebra module L2(R2;G2) is defined by

L2(R2;G2) = { f : R2 −→ G2 | ‖ f‖L2(R2;G2) < ∞}. (13)

3 Clifford Fourier Transform (CFT)

It is natural to extend the FT to the Clifford algebra G2. This extension is often called
the Clifford Fourier transform (CFT). For detailed discussions of the properties of
the CFT and their proofs, see e.g. [1, 5]. In the following we briefly review the 2D
CFT.
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Definition 2. The CFT of f ∈ L2(R2;G2)
⋂

L1(R2;G2) is the function F{ f}: R2 →
G2 given by

F{ f}(ω) =
∫

R2
f (x)e−i2ω·xd2x, (14)

where we can write ω = ω1e1 +ω2e2 and x = x1e1 + x2e2. Note that

d2x =
dx1∧dx2

i2
(15)

is scalar valued (dxk = dxkek, k = 1,2, no summation). Notice that the Clifford
Fourier kernel e−i2ω·x does not commute with every element of the Clifford algebra
G2. Furthermore, the product has to be performed in a fixed order.

Theorem 1. Suppose that f ∈ L2(R2;G2) and F{ f} ∈ L1(R2;G2). Then the CFT is
an invertible transform and its inverse is calculated by

F−1[F{ f}(ω)](x) = f (x) =
1

(2π)2

∫

R2
F{ f}(ω)ei2ω·xd2ω . (16)

4 2D Clifford Windowed Fourier Transform

In [1,5] the 2D CFT has been introduced. This enables us to establish the 2D CWFT.
We will see that several properties of the WFT can be established in the new con-
struction with some modifications. We begin with the definition of the 2D CWFT.

4.1 Definition of the CWFT

Definition 3. A Clifford window function is a function φ ∈ L2(R2;G2)\{0} so that
|x|1/2φ(x) ∈ L2(R2;G2).

φω,b(x) =
ei2ω·xφ(x−b)

(2π)2 , (17)

denote the so-called Clifford window daughter functions.

Definition 4 (Clifford windowed Fourier transform). The Clifford windowed
Fourier transform (CWFT) Gφ f of f ∈ L2(R2;G2) is defined by

f (x) −→ Gφ f (ω,b) = ( f ,φω,b)L2(R2;G2)

=
1

(2π)2

∫

R2
f (x) {ei2ω·xφ(x−b)}∼ d2x

=
1

(2π)2

∫

R2
f (x) ˜φ(x−b)e−i2ω ·xd2x. (18)
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This shows that the CWFT can be regarded as the CFT of the product of a
Clifford-valued function f and a shifted and reversed Clifford window function φ ,
or as an inner product (10) of a Clifford-valued function f and the Clifford window
daughter functions φω ,b.

Taking the Gaussian function as the window function of (17), with ω = ω0 =
ω0,1e1 +ω0,2e2 fixed we obtain Clifford Gabor filters, i.e.

gc(x,σ1,σ2) =
1

(2π)2 ei2ω0·xe−[(x1/σ1)2+(x2/σ2)2]/2, (19)

where σ1 and σ2 are standard deviations of the Gaussian functions and the transla-
tion parameters are b1 = b2 = 0.

In terms of the G2 Clifford Fourier transform equation (19) can be expressed as

F{gc}(ω) =
1

πσ1σ2
e−

1
2 [(σ2

1 (ω1−ω0,1)2+σ2
2 (ω2−ω0,2)2]. (20)

From equations (19) and (20) we see that Clifford Gabor filters are well localized in
the spatial and Clifford Fourier domains.

The energy density is defined as the square modulus of the CWFT (18) given by

|Gφ f (ω,b)|2 =
1

(2π)4

∣∣∣∣
∫

R2
f (x) ˜φ(x−b)e−i2ω·x d2x

∣∣∣∣
2

. (21)

Equation (21) is often called a spectrogram which measures the energy of a Clifford-
valued function f in the position-frequency neighborhood of (b, ω).

In particular, when the Gaussian function (19) is chosen as the Clifford window
function, the CWFT (18) is called the Clifford Gabor transform.

4.2 Properties of the CWFT

We will discuss the properties of the CWFT. We find that many of the properties of
the WFT are still valid for the CWFT, however with certain modifications.

Theorem 2 (Left linearity). Let φ ∈ L2(R2;G2) be a Clifford window function. The
CWFT of f ,g ∈ L2(R2;G2) is a left linear operator3, which means

[Gφ (λ f + µg)](ω,b) = λGφ f (ω,b)+ µGφ g(ω,b), (22)

with Clifford constants λ ,µ ∈ G2.

Proof. Using definition of the CWFT, the proof is obvious. ut
Remark 1. Since the geometric multiplication is non-commutative, the right linear-
ity property of the CWFT does not hold in general.

3 The CWFT of f is a linear operator for real constants µ,λ ∈ R.
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Theorem 3 (Reversion). Let f ∈ L2(R2;G +
2 ) be a parabivector-valued function.

For a parabivector-valued window function φ we have

Gφ̃ f̃ (ω,b) = {Gφ f (−ω,b)}∼. (23)

Proof. Application of Definition 4 to the left-hand side of (23) gives

Gφ̃ f̃ (ω,b) =
1

(2π)2

∫

R2
f̃ (x)φ(x−b)e−i2ω·x d2x

=
1

(2π)2 {
∫

R2
ei2ω·x ˜φ(x−b) f (x) d2x}∼

=
1

(2π)2 {
∫

R2
f (x) ˜φ(x−b)ei2ω ·x d2x}∼. (24)

This finishes the proof of the theorem. ut
Theorem 4 (Switching). If |x|1/2 f (x)∈ L2(R2;G2) and |x|1/2φ(x)∈ L2(R2;G2) are
parabivector-valued functions, then we obtain

Gφ f (ω,b) = e−i2ω·b {G f φ(−ω,−b)}∼. (25)

Proof. We have, by the CWFT definition,

Gφ f (ω,b) =
1

(2π)2

∫

R2
f (x) ˜φ(x−b)e−i2ω ·x d2x

=
1

(2π)2 {
∫

R2
φ(x−b) f̃ (x)ei2ω ·x d2x}∼. (26)

The substitution y = x−b in the above expression gives

Gφ f (ω,b) =
1

(2π)2 {
∫

R2
φ(y) ˜f (y+b)ei2ω·(y+b) d2y}∼

=
1

(2π)2 e−i2ω ·b{
∫

R2
φ(y) ˜f (y+b)ei2ω·y d2y}∼

=
1

(2π)2 e−i2ω·b{
∫

R2
φ(y) ˜f (y− (−b))e−i2(−ω)·y d2y}∼, (27)

which proves the theorem. ut
Theorem 5 (Parity). Let φ ∈ L2(R2;G2) be a Clifford window function. If P is the
parity operator defined as Pφ(x) = φ(−x), then we have

GPφ{P f}(ω,b) = Gφ f (−ω,−b). (28)

Proof. Direct calculations give for every f ∈ L2(R2;G2)
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GPφ{P f}(ω,b) =
1

(2π)2

∫

R2
f (−x){φ(−x+b)}∼ e−i2(−ω)·(−x) d2x

=
1

(2π)2

∫

R2
f (−x){φ(−x− (−b))}∼ e−i2(−ω)·(−x) d2x

=
1

(2π)2

∫

R2
f (x){φ(x− (−b))}∼ e−i2(−ω)·x d2x, (29)

which completes the proof. ut
Theorem 6 (Shift in space domain, delay). Let φ be a Clifford window function.
Introducing the translation operator Tx0 f (x) = f (x−x0), we obtain

Gφ{Tx0 f}(ω,b) =
(
Gφ f (ω,b−x0)

)
e−i2ω·x0 . (30)

Proof. We have by using (18)

Gφ{Tx0 f}(ω,b) =
1

(2π)2

∫

R2
f (x−x0) ˜φ(x−b)e−i2ω ·x d2x. (31)

We substitute t = x−x0 in the above expression and get, with d2x = d2t,

Gφ{Tx0 f}(ω,b) =
1

(2π)2

∫

R2
f (t){φ(t− (b−x0))}∼ e−i2ω·(t+x0) d2t (32)

=
1

(2π)2

∫

R2

[
f (t){φ(t− (b−x0))}∼e−i2ω ·t]d2te−i2ω·x0 .

This ends the proof of (30). ut
Theorem 7 (Shift in frequency domain, modulation). Let φ be a parabivector
valued Clifford window function. If ω0 ∈ R2 and f0(x) = f (x)ei2ω0·x, then

Gφ f0(ω,b) = Gφ f (ω−ω0,b). (33)

Proof. Using Definition 4 and simplifying it we get

Gφ f0(ω,b) =
1

(2π)2

∫

R2
f (x)ei2ω0·x ˜φ(x−b)e−i2ω·x d2x

=
1

(2π)2

∫

R2
f (x) ˜φ(x−b)e−i2(ω−ω0)·x d2x, (34)

which proves the theorem. ut
Theorem 8 (Reconstruction formula). Let φ be a Clifford window function. Then
every 2D Clifford signal f ∈ L2(R2;G2) can be fully reconstructed by

f (x) = (2π)2
∫

R2

∫

R2
Gφ f (ω,b)φω,b(x) (φ̃ , φ̃)−1

L2(R2;G2)d
2b d2ω. (35)
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Proof. It follows from the CWFT defined by (18) that

Gφ f (ω,b) =
1

(2π)2 F{ f (x) ˜φ(x−b)}(ω). (36)

Taking the inverse CFT of both sides of (36) we obtain

f (x) ˜φ(x−b) = (2π)2F−1{Gφ f (ω,b)}(x)

=
(2π)2

(2π)2

∫

R2
Gφ f (ω,b)ei2ω·x d2ω. (37)

Multiplying both sides of (37) by φ(x−b) and then integrating with respect to d2b
we get

f (x)
∫

R2
˜φ(x−b)φ(x−b)d2b =

∫

R2

∫

R2
Gφ f (ω,b)ei2ω·xφ(x−b)d2ω d2b. (38)

Or, equivalently,

f (x)(φ̃ , φ̃)L2(R2;G2) = (2π)2
∫

R2

∫

R2
Gφ f (ω,b)φω,b(x)d2ω d2b, (39)

which gives (35). ut
It is worth noting here that if the Clifford window function is a parabivector-

valued function, then the reconstruction formula (35) can be written in the following
form

f (x) =
(2π)2

‖φ‖2
L2(R2;G2)

∫

R2

∫

R2
Gφ f (ω,b)φω,b(x) d2bd2ω. (40)

Theorem 9 (Orthogonality relation). Assume that the Clifford window function φ
is a parabivector-valued function. If two Clifford functions f ,g ∈ L2(R2;G2), then
we have

∫

R2

∫

R2
( f ,φω,b)L2(R2;G2)

˜(g,φω ,b)L2(R2;G2)d
2ω d2b =

‖φ‖2
L2(R2;G2)

(2π)2 ( f ,g)L2(R2;G2).

(41)

Proof. By inserting (18) into the left side of (41), we obtain
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∫

R2

∫

R2
( f ,φω,b)L2(R2;G2)

˜(g,φω,b)L2(R2;G2)d
2ω d2b

=
∫

R2

∫

R2
( f ,φω ,b)L2(R2;G2)

(∫

R2

1
(2π)2 ei2ω·xφ(x−b)g̃(x)d2x

)
d2ω d2b

=
∫

R2

∫

R2

(∫

R2

∫

R2

1
(2π)4 f (x′) ˜φ(x′−b)ei2ω ·(x−x′)d2ω d2x′

)

φ(x−b)g̃(x)d2xd2b

=
1

(2π)2

∫

R2

∫

R2

(∫

R2
f (x′) ˜φ(x′−b)δ (x−x′)φ(x−b)d2x′

)
g̃(x) d2bd2x

=
1

(2π)2

∫

R2
f (x)

∫

R2
˜φ(x−b)φ(x−b)︸ ︷︷ ︸
φ parabiv. funct.

d2b g̃(x)d2x

=
1

(2π)2 ‖φ‖2
L2(R2;G2)

∫

R2
f (x)g̃(x)d2x, (42)

which completes the proof of (41). ut
Theorem 10 (Reproducing kernel). For a parabivector valued Clifford window
function |x|1/2φ ∈ L2(R2;G2) if

Kφ (ω,b;ω ′,b′) =
(2π)2

‖φ‖2
L2(R2;G2)

(φω,b,φω ′,b′)L2(R2;G2), (43)

then Kφ (ω,b;ω ′,b′) is a reproducing kernel, i.e.

Gφ f (ω ′,b′) =
∫

R2

∫

R2
Gφ f (ω,b)Kφ (ω,b;ω ′,b′)d2ω d2b. (44)

Proof. By inserting the inverse CWFT (40) into the definition of the CWFT (18) we
easily obtain

Gφ f (ω ′,b′)

=
∫

R2
f (x) ˜φω ′,b′(x)d2x

=
∫

R2

(
(2π)2

‖φ‖2
L2(R2;G2)

∫

R2

∫

R2
Gφ f (ω,b)φω,b(x)d2bd2ω

)
˜φω ′,b′(x)d2x

=
∫

R2

∫

R2
Gφ f (ω,b)

(2π)2

‖φ‖2
L2(R2;G2)

(∫

R2
φω ,b(x) ˜φω ′,b′(x)d2x

)
d2bd2ω

=
∫

R2

∫

R2
Gφ f (ω,b)Kφ (ω,b;ω ′,b′) d2bd2ω, (45)

which finishes the proof. ut
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Remark 2. Formulas (40), (41) and (43) also hold if the Clifford window function is
a vector-valued function, i.e. φ(x) = φ1(x)e1 +φ2(x)e2.

The above properties of the CWFT are summarized in Table 1.

Table 1 Properties of the CWFT of f ,g ∈ L2(R2;G2), L2 = L2(R2;G2), where λ ,µ ∈ G2 are con-
stants, ω0 = ω0,1e1 +ω0,2e2 ∈ R2 and x0 = x0e1 + y0e2 ∈ R2.

Property Clifford Valued Function 2D CWFT

Left linearity λ f (x) +µg(x) λGφ f (ω,b)+ µGφ g(ω,b)

Delay f (x−x0)
(
Gφ f (ω,b−x0)

)
e−i2ω ·x0

Modulation f (x)ei2ω0·x Gφ f (ω−ω0,b), if φ parabivector valued

Formulas

Reversion Gφ̃ f̃ (ω,b) = {Gφ f (−ω,b)}∼,
if f and φ are parabivector-valued functions

Switching Gφ f (ω,b) = e−i2ω ·b {G f φ(−ω,−b)}∼,
if f and φ are parabivector-valued functions

Parity GPφ{P f}(ω ,b) = Gφ f (−ω,−b)

Orthogonality 1
(2π)2 ‖φ‖2

L2 ( f ,g)L2 =
∫
R2

∫
R2 ( f ,φω ,b)L2(R2;G2)

˜(g,φω ,b)L2(R2;G2)d
2ω d2b,

if φ parabivector valued

Reconstruction f (x) = (2π)2 ∫
R2

∫
R2 Gφ f (ω,b)φω ,b(x)

× (φ̃ , φ̃)−1
L2(R2;G2)d

2bd2ω,

(2π)2

‖φ‖2
L2(R2;G2)

∫
R2

∫
R2 Gφ f (ω,b)φω ,b(x) d2bd2ω ,

if φ parabivector valued

Reproducing
kernel

Gφ f (ω ′,b′) =
∫
R2

∫
R2 Gφ f (ω ,b)Kφ (ω,b;ω ′,b′)d2ω d2b,

Kφ (ω,b;ω ′,b′) = (2π)2

‖φ‖2
L2(R2;G2)

(φω,b,φω ′,b′ )L2(R2;G2),

if φ parabivector valued

4.3 Examples of the CWFT

For illustrative purposes, we shall discuss examples of the CWFT. We then compute
their energy densities.

Example 1. Consider Clifford Gabor filters (see Figure 1) defined by (σ1 = σ2 =
1/
√

2)
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f (x) =
1

(2π)2 e−x2+i2ω0·x, (46)

Obtain the CWFT of f with respect to the Gaussian window function φ(x) = e−x2
.

By definition of the CWFT (18), we have

Gφ f (ω,b) =
1

(2π)4

∫

R2
e−x2+i2ω0·xe−(x−b)2

e−i2ω·xd2x. (47)

Substituting x = y+b/2 we can rewrite (47) as

Gφ f (ω,b) =
1

(2π)4

∫

R2
e−(y+b/2)2+i2ω0·(y+b/2)e−(y−b/2)2

e−i2ω ·(y+b/2) d2y

=
e−b2/2

(2π)4

∫

R2
e−2y2

e−i2ω·y ei2ω0·yd2ye−i2(ω−ω0)·b/2

=
e−b2/2

(2π)4

∫

R2
e−2y2

e−i2(ω−ω0)·yd2ye−i2(ω−ω0)·b/2

=
e−b2/2

(2π)4
π
2

e−(ω−ω0)2/8 e−i2(ω−ω0)·b/2

=
e−b2/2

32π3 e−(ω−ω0)2/8 e−i2(ω−ω0)·b/2. (48)

The energy density is given by

|Gφ f (ω,b)|2 =
e−b2

(32π3)2 e−(ω−ω0)2/4. (49)

Example 2. Consider the first order two-dimensional B-spline window function de-
fined by

φ(x) =

{
1, if 0≤ x1 ≤ 1 and 0≤ x2 ≤ 1,

0, otherwise.
(50)

Obtain the CWFT of the function defined as follows:

f (x) =

{
x, if 0≤ x1 ≤ 1 and 0≤ x2 ≤ 1,

0, otherwise.
(51)

Applying Definition 4 and simplifying it we obtain
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Fig. 1 The real part (left) and bivector part(right) of Clifford Gabor filter for the parameters ω0,1 =
ω0,2 = 1,b1 = b2 = 0,σ1 = σ2 = 1/

√
2 in the spatial domain using Mathematica 6.0.
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Fig. 2 Plot of the CWFT of Clifford Gabor filter of Example 1 using Mathematica 6.0. Note that
it is real valued for the parameters b1 = b2 = 0.

Gφ f (ω,b)

=
1

(2π)2

∫ 1+b1

b1

∫ 1+b2

b2

xe−i2ω·xdx1dx2

=
1

(2π)2

∫ 1+b1

b1

∫ 1+b2

b2

(x1e1 + x2e2)(e−i2ω1x1e−i2ω2x2)dx1dx2

=
1

(2π)2 e1

∫ 1+b1

b1

x1e−i2ω1x1 dx1

∫ 1+b2

b2

e−i2ω2x2 dx2

+
1

(2π)2 e2

∫ 1+b1

b1

e−i2ω1x1dx1

∫ 1+b2

b2

x2e−i2ω2x2 dx2

=
{

e2ω2[(1+ i2ω1b1)(e−i2ω1 −1)+ i2ω1e−i2ω1 ](e−i2ω2 −1)

− e1ω1[(1+ i2ω2b2)(e−i2ω2 −1)+ i2ω2e−i2ω2 ](e−i2ω1 −1)
} e−i2ω·b

(2πω1ω2)2 , (52)
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with
b = b1e1 +b2e2.

5 Comparison of CFT and CWFT

Since the Clifford Fourier kernel e−i2ω ·x is a global function, the CFT basis has an
infinite spatial extension as shown in Figure 3. In contrast the CWFT basis φ(x−
b)e−i2ω ·x has a limited spatial extension due to the local Clifford window function
φ(x−b) (see Figure 4). It means that the CFT analysis can not provide information
about the signal with respect to position and frequency so that we need the CWFT
to fully describe the characteristics of the signal simultaneously in both spatial and
frequency domains.
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-4 -2 0 2 4

-1.0
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0.0
0.5
1.0

-4
-2

0
2

4

-4
-2 0 2 4

-1.0
-0.5

0.0
0.5
1.0

Fig. 3 Representation of the CFT basis for ω1 = ω2 = 1 with scalar part (left) and bivector part
(right) using Mathematica 6.0.

6 Conclusion

Using the basic concepts of Clifford geometric algebra and the CFT, we introduced
the CWFT. Important properties of the CWFT were demonstrated. This general-
ization enables us to work with 2D Clifford Gabor filters, which can extend the
applications of the 2D complex Gabor filters.

Because the CWFT represents a signal in a joint space-frequency domain, it can
be applied in many fields of science and engineering, such as image analysis and im-
age compression, object and pattern recognition, computer vision, optics and filter
banks.
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Fig. 4 Representation of the CWFT basis of a Gaussian window function for the parameters ω0,1 =
ω0,2 = 1,b1 = b2 = 0.2 with scalar part (left) and bivector part (right) using Mathematica 6.0.
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