Some results on Smarandache groupoids

H. J. Siamwalla† and A. S. Muktibodh‡

† Abeda Inamdar Senior College, Azam Campus,
Pune, India
‡ Shri M. Mohota College of Science, Umred Road
Nagpur, India
E-mail: siamwalla.maths@gmail.com amukti2000@yahoo.com

Abstract In this paper we prove some results towards classifying Smarandache groupoids
which are in $\mathbb{Z}^*(n)$ and not in $\mathbb{Z}(n)$ when n is even and n is odd.

Keywords Groupoids, Smarandache groupoids.

§1. Introduction and preliminaries

In [3] and [4], W. B. Kandasamy defined new classes of Smarandache groupoids using \mathbb{Z}_n.
In this paper we prove some theorems for construction of Smarandache groupoids according as
n is even or odd.

Definition 1.1. A non-empty set of elements G is said to form a groupoid if in G is
defined a binary operation called the product denoted by $*$ such that $a * b \in G$, $\forall a, b \in G$.

Definition 1.2. Let S be a non-empty set. S is said to be a semigroup if on S is defined
a binary operation $*$ such that

(i) for all $a, b \in S$ we have $a * b \in S$ (closure).
(ii) for all $a, b, c \in S$ we have $a * (b * c) = (a * b) * c$ (associative law).

$(S, *)$ is a semi-group.

Definition 1.3. A Smarandache groupoid G is a groupoid which has a proper subset
$S \subset G$ which is a semi-group under the operation of G.

Example 1.1. Let $(G, *)$ be a groupoid on the set of integer modulo 6, given by the
following table.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>
Here, \{0, 5\}, \{1, 3\}, \{2, 4\} are proper subsets of \(G\) which are semigroups under \(*\).

Definition 1.4. Let \(Z_n = \{0, 1, 2, \cdots, n - 1\}, n \geq 3\). For \(a, b \in Z_n\{0\}\) define a binary operation \(*\) on \(Z_n\) as: \(a * b = ta + ub \pmod{n}\) where \(t, u\) are 2 distinct elements in \(Z_n\{0\}\) and \((t, u) = 1\). Here \(\“+\”\) is the usual addition of two integers and \(\“ta\”\) mean the product of the two integers \(t\) and \(a\).

Elements of \(Z_n\) form a groupoid with respect to the binary operation. We denote these groupoids by \(\{Z_n(t, u) *\}\) or \(Z_n(t, u)\) for fixed integer \(n\) and varying \(t, u \in Z_n\{0\}\) such that \((t, u) = 1\). Thus we define a collection of groupoids \(Z(n)\) as follows

\[Z(n) = \{Z_n(t, u) *\} \text{ for integers } t, u \in Z_n\{0\} \text{ such that } (t, u) = 1\].

Definition 1.5. Let \(Z_n = \{0, 1, 2, \cdots, n - 1\}, n \geq 3\). For \(a, b \in Z_n\{0\}\), define a binary operation \(*\) on \(Z_n\) as: \(a * b = ta + ub \pmod{n}\) where \(t, u\) are two distinct elements in \(Z_n\{0\}\) and \(t\) and \(u\) need not always be relatively prime but \(t \neq u\). Here \(\“+\”\) is usual addition of two integers and \(\“ta\”\) means the product of two integers \(t\) and \(a\).

For fixed integer \(n\) and varying \(t, u \in Z_n\{0\}\) s.t \(t \neq u\) we get a collection of groupoids \(Z^*(n)\) as: \(Z^*(n) = \{Z_n(t, u) *\} \text{ for integers } t, u \in Z_n\{0\} \text{ such that } t \neq u\).

Remarks 1.1. (i) Clearly, \(Z(n) \subset Z^*(n)\).

(ii) \(Z^*(n) \setminus Z(n) = \Phi\) for \(n = p + 1\) for prime \(p = 2, 3, \cdots\).

(iii) \(Z^*(n) \setminus Z(n) \neq \Phi\) for \(n \neq p + 1\) for prime \(p\).

We are interested in Smarandache Groupoids which are in \(Z^*(n)\) and not in \(Z(n)\) i.e., \(Z^*(n) \setminus Z(n)\).

§2. Smarandache groupoids when \(n\) is even

Theorem 2.1. Let \(Z_n(t, lt) \in Z^*(n) \setminus Z(n)\). If \(n\) is even, \(n > 4\) and for each \(t = 2, 3, \cdots, \frac{n}{2} - 1\) and \(l = 2, 3, 4, \cdots\) such that \(lt < n\), then \(Z_n(t, lt)\) is Smarandache groupoid.

Proof. Let \(x = \frac{n}{2}\).

Case 1. \(t\) is even.

\(x = x = xt + lt x = (l + 1)tx \equiv 0 \pmod{n}\).
\(x * 0 = xt \equiv 0 \pmod{n}\).
\(0 * x = t x \equiv 0 \pmod{n}\).
\(0 * 0 = 0 \pmod{n}\).

\[\{0, x\}\] is semigroup in \(Z_n(t, lt)\).

\[\{0, x\}\] is Smarandache groupoid when \(t\) is even.

Case 2. \(t\) is odd.

(a) If \(l\) is even.

\(x = x = x t + l t x = (l + 1)tx \equiv x \pmod{n}\).
\(\{x\}\) is semigroup in \(Z_n(t, lt)\).

\(\{x\}\) is Smarandache groupoid when \(t\) is odd and \(l\) is even.
If \(l \) is odd then \((l + 1)\) is even.
\[
x \ast x = xt + lx = (l + 1)x \equiv 0 \text{ mod } n.
\]
\[
x \ast 0 = xt \equiv x \text{ mod } n.
\]
\[
0 \ast x = lx \equiv x \text{ mod } n.
\]
\[
0 \ast 0 \equiv 0 \text{ mod } n.
\]
\[
\Rightarrow \{0, x\} \text{ is semigroup in } Z_n(t, l).
\]
\[
\therefore Z_n(t, l) \text{ is Smarandache groupoid when } t \text{ is odd and } l \text{ is odd.}
\]

Theorem 2.2. Let \(Z_n(t, u) \in Z^*(n) \setminus Z(n) \), \(n \) is even \(n > 4 \) where \((t, u) = r \) and \(r \neq t, u \) then \(Z_n(t, u) \) is Smarandache groupoid.

Proof. Let \(x = \frac{n}{2} \).

Case 1. Let \(r \) be even i.e \(t \) and \(u \) are even.
\[
x \ast x = tx + ux = (t + u)x \equiv 0 \text{ mod } n.
\]
\[
x \ast 0 = tx \equiv x \text{ mod } n.
\]
\[
0 \ast 0 \equiv 0 \text{ mod } n.
\]
\[
\Rightarrow \{0, x\} \text{ is semigroup in } Z_n(t, l).
\]
\[
\therefore Z_n(t, l) \text{ is Smarandache groupoid when } t \text{ is even and } u \text{ is even.}
\]

Case 2. Let \(r \) be odd.

(a) when \(t \) is odd and \(u \) is odd,
\[
\Rightarrow t + u \text{ is even.}
\]
\[
x \ast x = tx + ux = (t + u)x \equiv 0 \text{ mod } n.
\]
\[
x \ast 0 = tx \equiv x \text{ mod } n.
\]
\[
0 \ast x \equiv ux \equiv x \text{ mod } n.
\]
\[
0 \ast 0 \equiv 0 \text{ mod } n.
\]
\[
\therefore \{0, x\} \text{ is a semigroup in } Z_n(t, l).
\]
\[
\therefore Z_n(t, l) \text{ is Smarandache groupoid when } t \text{ is odd and } u \text{ is odd.}
\]

(b) when \(t \) is odd and \(u \) is even,
\[
\Rightarrow t + u \text{ is odd.}
\]
\[
x \ast x = tx + ux = (t + u)x \equiv x \text{ mod } n.
\]
\[
\{x\} \text{ is a semigroup in } Z_n(t, l).
\]
\[
\therefore Z_n(t, l) \text{ is Smarandache groupoid when } t \text{ is odd and } u \text{ is even.}
\]

(c) when \(t \) is even and \(u \) is odd,
\[
\Rightarrow t + u \text{ is odd.}
\]
\[
x \ast x = tx + ux = (t + u)x \equiv x \text{ mod } n.
\]
\[
\{x\} \text{ is a semigroup in } Z_n(t, l).
\]
\[
\therefore Z_n(t, u) \text{ is Smarandache groupoid when } t \text{ is even and } u \text{ is odd.}
\]

By the above two theorems we can determine Smarandache groupoids in \(Z^*(n) \setminus Z(n) \) when \(n \) is even and \(n > 4 \).

We find Smarandache groupoids in \(Z^*(n) \setminus Z(n) \) for \(n = 22 \) by Theorem 2.1.
Next, we find Smarandache groupoids in $\mathbb{Z}^*(n) \setminus \mathbb{Z}(n)$ for $n = 22$ by Theorem 2.2.
<table>
<thead>
<tr>
<th>(t)</th>
<th>(u)</th>
<th>((t, u) = r)</th>
<th>(Z_n(t, u))</th>
<th>Proper subset which is semigroup</th>
<th>Smarandache groupoid (\text{in} Z^*(n) \backslash Z(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>((4, 6) = 2)</td>
<td>(Z_{22}(4, 6))</td>
<td>({0, 11})</td>
<td>(Z_{22}(4, 6))</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>((4, 10) = 2)</td>
<td>(Z_{22}(4, 10))</td>
<td>({0, 11})</td>
<td>(Z_{22}(4, 10))</td>
</tr>
<tr>
<td>14</td>
<td>6.14 = 2</td>
<td>(Z_{22}(4, 14))</td>
<td>({0, 11})</td>
<td>(Z_{22}(4, 14))</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>((4, 18) = 2)</td>
<td>(Z_{22}(4, 18))</td>
<td>({0, 11})</td>
<td>(Z_{22}(4, 18))</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>((6, 8) = 2)</td>
<td>(Z_{22}(6, 8))</td>
<td>({0, 11})</td>
<td>(Z_{22}(6, 8))</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>((6, 9) = 3)</td>
<td>(Z_{22}(6, 9))</td>
<td>({11})</td>
<td>(Z_{22}(6, 9))</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>((6, 10) = 2)</td>
<td>(Z_{22}(6, 10))</td>
<td>({0, 11})</td>
<td>(Z_{22}(6, 10))</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>((6, 14) = 2)</td>
<td>(Z_{22}(6, 14))</td>
<td>({0, 11})</td>
<td>(Z_{22}(6, 14))</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>((6, 16) = 2)</td>
<td>(Z_{22}(6, 16))</td>
<td>({0, 11})</td>
<td>(Z_{22}(6, 16))</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>((6, 20) = 2)</td>
<td>(Z_{22}(6, 20))</td>
<td>({0, 11})</td>
<td>(Z_{22}(6, 20))</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>((6, 21) = 3)</td>
<td>(Z_{22}(6, 21))</td>
<td>({11})</td>
<td>(Z_{22}(6, 21))</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>((8, 10) = 2)</td>
<td>(Z_{22}(8, 10))</td>
<td>({0, 11})</td>
<td>(Z_{22}(8, 10))</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>((8, 12) = 4)</td>
<td>(Z_{22}(8, 12))</td>
<td>({0, 11})</td>
<td>(Z_{22}(8, 12))</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>((8, 14) = 2)</td>
<td>(Z_{22}(8, 14))</td>
<td>({0, 11})</td>
<td>(Z_{22}(8, 14))</td>
</tr>
<tr>
<td>18</td>
<td>8</td>
<td>((8, 18) = 2)</td>
<td>(Z_{22}(8, 18))</td>
<td>({0, 11})</td>
<td>(Z_{22}(8, 18))</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>((8, 20) = 4)</td>
<td>(Z_{22}(8, 20))</td>
<td>({0, 11})</td>
<td>(Z_{22}(8, 20))</td>
</tr>
<tr>
<td>9</td>
<td>21</td>
<td>((9, 21) = 3)</td>
<td>(Z_{22}(9, 21))</td>
<td>({0, 11})</td>
<td>(Z_{22}(9, 21))</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>((10, 12) = 2)</td>
<td>(Z_{22}(10, 12))</td>
<td>({0, 11})</td>
<td>(Z_{22}(10, 12))</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>((10, 14) = 2)</td>
<td>(Z_{22}(10, 14))</td>
<td>({0, 11})</td>
<td>(Z_{22}(10, 14))</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>((10, 16) = 2)</td>
<td>(Z_{22}(10, 16))</td>
<td>({0, 11})</td>
<td>(Z_{22}(10, 16))</td>
</tr>
<tr>
<td>18</td>
<td>10</td>
<td>((10, 18) = 2)</td>
<td>(Z_{22}(10, 18))</td>
<td>({0, 11})</td>
<td>(Z_{22}(10, 19))</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>((12, 14) = 2)</td>
<td>(Z_{22}(12, 14))</td>
<td>({0, 11})</td>
<td>(Z_{22}(12, 14))</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>((12, 15) = 3)</td>
<td>(Z_{22}(12, 15))</td>
<td>({11})</td>
<td>(Z_{22}(12, 15))</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>((12, 16) = 4)</td>
<td>(Z_{22}(12, 16))</td>
<td>({0, 11})</td>
<td>(Z_{22}(12, 16))</td>
</tr>
<tr>
<td>18</td>
<td>12</td>
<td>((12, 18) = 6)</td>
<td>(Z_{22}(12, 18))</td>
<td>({0, 11})</td>
<td>(Z_{22}(12, 18))</td>
</tr>
<tr>
<td>20</td>
<td>12</td>
<td>((12, 20) = 4)</td>
<td>(Z_{22}(12, 20))</td>
<td>({0, 11})</td>
<td>(Z_{22}(12, 20))</td>
</tr>
<tr>
<td>21</td>
<td>12</td>
<td>((12, 21) = 3)</td>
<td>(Z_{22}(12, 21))</td>
<td>({11})</td>
<td>(Z_{22}(12, 21))</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>((14, 16) = 2)</td>
<td>(Z_{22}(14, 16))</td>
<td>({0, 11})</td>
<td>(Z_{22}(14, 16))</td>
</tr>
<tr>
<td>18</td>
<td>14</td>
<td>((14, 18) = 2)</td>
<td>(Z_{22}(14, 18))</td>
<td>({0, 11})</td>
<td>(Z_{22}(14, 18))</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>((14, 20) = 2)</td>
<td>(Z_{22}(14, 20))</td>
<td>({0, 11})</td>
<td>(Z_{22}(14, 20))</td>
</tr>
<tr>
<td>21</td>
<td>14</td>
<td>((14, 21) = 7)</td>
<td>(Z_{22}(14, 21))</td>
<td>({11})</td>
<td>(Z_{22}(14, 21))</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>((15, 20) = 5)</td>
<td>(Z_{22}(15, 20))</td>
<td>({11})</td>
<td>(Z_{22}(15, 20))</td>
</tr>
<tr>
<td>18</td>
<td>16</td>
<td>((16, 18) = 2)</td>
<td>(Z_{22}(16, 18))</td>
<td>({0, 11})</td>
<td>(Z_{22}(16, 18))</td>
</tr>
<tr>
<td>20</td>
<td>16</td>
<td>((16, 20) = 4)</td>
<td>(Z_{22}(16, 20))</td>
<td>({0, 11})</td>
<td>(Z_{22}(16, 20))</td>
</tr>
<tr>
<td>18</td>
<td>20</td>
<td>((18, 20) = 2)</td>
<td>(Z_{22}(18, 20))</td>
<td>({0, 11})</td>
<td>(Z_{22}(18, 20))</td>
</tr>
</tbody>
</table>
§3. Smarandache groupoids when \(n \) is odd

Theorem 3.1. Let \(Z_n(t, u) \in Z^*(n) \setminus Z(n) \). If \(n \) is odd, \(n > 4 \) and for each \(t = 2, \cdots, \frac{n-1}{2} \), and \(u = n - (t - 1) \) such that \((t, u) = r \) then \(Z_n(t, u) \) is Smarandache groupoid.

Proof. Let \(x \in \{0, \cdots, n - 1\} \).

\[x * x = xt + xu = (n + 1)x \equiv x \mod n. \]

\(\therefore \{x\} \) is semigroup in \(Z_n \).

\(\therefore Z_n(t, u) \) is Smarandache groupoid.

By the above theorem we can determine the Smarandache groupoids in \(Z^*(n) \setminus Z(n) \) when \(n \) is odd and \(n > 4 \).

Also we note that all \(\{x\} \) where \(x \in \{0, \cdots, n - 1\} \) are proper subsets which are semigroups in \(Z_n(t, u) \).

Let us consider the examples when \(n \) is odd. We will find the Smarandache groupoids in \(Z^*(n) \setminus Z(n) \) by Theorem 3.1.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(t)</th>
<th>(\frac{n - (t - 1)}{2})</th>
<th>((t, u) = r)</th>
<th>(Z_n(t, u)) Smarandache groupoid (S.G.) in (Z^*(n) \setminus Z(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>4</td>
<td>((2, 4) = 2)</td>
<td>(Z_5(2, 4)) is S.G. in (Z^*(5) \setminus Z(5))</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>6</td>
<td>((2, 6) = 3)</td>
<td>(Z_7(2, 6)) is S.G. in (Z^*(7) \setminus Z(7))</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>8</td>
<td>((2, 8) = 2)</td>
<td>(Z_9(2, 8)) is S.G. in (Z^*(9) \setminus Z(9))</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>3</td>
<td>((4, 6) = 2)</td>
<td>(Z_4(4, 6)) is S.G. in (Z^*(9) \setminus Z(9))</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>10</td>
<td>((2, 10) = 2)</td>
<td>(Z_{11}(2, 10)) is S.G. in (Z^*(11) \setminus Z(11))</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>3</td>
<td>((3, 9) = 3)</td>
<td>(Z_{11}(3, 9)) is S.G. in (Z^*(11) \setminus Z(11))</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>4</td>
<td>((4, 8) = 4)</td>
<td>(Z_{11}(4, 8)) is S.G. in (Z^*(11) \setminus Z(11))</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>12</td>
<td>((2, 12) = 2)</td>
<td>(Z_{13}(2, 12)) is S.G. in (Z^*(13) \setminus Z(13))</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>5</td>
<td>((4, 10) = 2)</td>
<td>(Z_{13}(4, 10)) is S.G. in (Z^*(13) \setminus Z(13))</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>4</td>
<td>((6, 8) = 2)</td>
<td>(Z_{13}(6, 8)) is S.G. in (Z^*(13) \setminus Z(13))</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>14</td>
<td>((2, 14) = 2)</td>
<td>(Z_{15}(2, 14)) is S.G. in (Z^*(15) \setminus Z(15))</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>4</td>
<td>((4, 12) = 4)</td>
<td>(Z_{15}(4, 12)) is S.G. in (Z^*(15) \setminus Z(15))</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>5</td>
<td>((6, 10) = 2)</td>
<td>(Z_{15}(6, 10)) is S.G. in (Z^*(15) \setminus Z(15))</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>16</td>
<td>((2, 16) = 2)</td>
<td>(Z_{17}(2, 16)) is S.G. in (Z^*(17) \setminus Z(17))</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>3</td>
<td>((3, 15) = 3)</td>
<td>(Z_{17}(3, 15)) is S.G. in (Z^*(17) \setminus Z(17))</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>2</td>
<td>((4, 14) = 2)</td>
<td>(Z_{17}(4, 14)) is S.G. in (Z^*(17) \setminus Z(17))</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>6</td>
<td>((6, 12) = 6)</td>
<td>(Z_{17}(6, 12)) is S.G. in (Z^*(17) \setminus Z(17))</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>2</td>
<td>((8, 10) = 2)</td>
<td>(Z_{17}(8, 10)) is S.G. in (Z^*(17) \setminus Z(17))</td>
</tr>
</tbody>
</table>
\[
\begin{array}{|c|c|c|c|}
\hline
n & t & u = n - (t - 1) & (t, u) = r \\
\hline
19 & 2 & 18 & (2, 18) = 2 \\
 & 4 & 16 & (4, 16) = 4 \\
 & 5 & 15 & (5, 15) = 5 \\
 & 6 & 14 & (6, 14) = 2 \\
 & 8 & 12 & (8, 12) = 4 \\
21 & 2 & 20 & (2, 20) = 2 \\
 & 4 & 18 & (4, 18) = 2 \\
 & 6 & 16 & (6, 16) = 2 \\
 & 8 & 14 & (8, 14) = 2 \\
 & 10 & 12 & (10, 12) = 2 \\
\hline
\end{array}
\]

\(Z_n(t, u) \) Smarandache groupoid \\
\(\text{(S.G.) in } Z^*(n) \setminus Z(n) \)

Open Problems:

1. Let \(n \) be a composite number. Are all groupoids in \(Z^*(n) \setminus Z(n) \) Smarandache groupoids?

2. Which class will have more number of Smarandache groupoids in \(Z^*(n) \setminus Z(n) \)?

 (a) When \(n + 1 \) is prime.

 (b) When \(n \) is prime.

References