1. Why am I publishing this.
In my last paper on this website, I claimed to have proved the Goldbach conjecture, but I couldn’t prove that $p+x$ and $q+y$ where prime.
I searched for another way but at the same time I was interested by Lagrange’s four squares theorem. I found something, but I still can’t prove it. At the same time, I made discoveries on square numbers and so I am publishing this, especially for people like me, that like prime numbers and square numbers at the same time.

2. The eight squares theorem, the sixteen squares theorem …
Let’s take a natural (positif) number c, we know that $c=a+b$. We know that every number is sum of four square numbers, so:
$d^2+e^2+f^2+g^2=h^2+i^2+j^2+k^2+l^2+m^2+n^2+o^2$

So every number (that is sum of four square numbers, so every number) is sum of eight square numbers. But because all of those square numbers are sum of four square ($a^2=a^2+0^2+0^2+0^2$) numbers, it works for sixteen, too and so on…
This could help for the Goldbach conjecture, by decomposing each number into square numbers.

3. A conjecture on square numbers

I conjecture, that every even number, is sum of three squares.

This was it,

Julien Laurendeau