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Abstract

We propose a preliminary algorithm which is designed to reduce aspects of the n-
body problem to a 2-body problem for holographic principle compliance. The objective
is to share an alternative view-point on the n-body problem to try and generate a simple
solution in the near future. The algorithm operates complex and triplex data structures
to encode the chaotic dynamical system equipped with order parameter fields in both
3D and 4D versions of the Riemannian dual (fractional quantum Hall superfluidic)
space-time topology. For the algorithm, we arbitrarily select one point-mass to be the
origin and, from that reference frame, we subsequently engage a series of instructions
to consolidate the residual (n−1)-bodies to a time-effective spherical surface. Through
a step-by-step example, we demonstrate that the algorithm yields time-effective net-
quantities that authorize us to define a time-effective potential, kinetic, and Lagrangian.

Keywords: Newtonian mechanics; Relativistic mechanics; Gravitation; Holographic
principle; Holographic ring; Riemannian circle; Riemann surface; Space-time duality; Topol-
ogy; Generalized coordinates; Complex numbers; Triplex numbers; Chaos; Spontaneous sym-
metry breaking; Order parameters.



1 Introduction
The n-body problem is the problem of predicting the motion of a group of celestial objects

that gravitationally interact with each other [1, 2]. Solving this problem has been motivated
by the need to understand the motion of, for example, planets, stars, and black holes. Its
first complete mathematical formulation appeared in Isaac Newton’s Principia [1, 2]. Since
gravity is responsible for the motion of planets and stars, Newton had to express gravitational
interactions in terms of differential equations [1, 2]. In the Principia [1, 2], Newton proved
that a spherically-symmetric body can be modeled as a point-mass. Interestingly, quantized
particles may also modeled as point-masses [3, 4, 5, 6], which seems to indicate that a solution
to the n-body problem may be applied to a future unified theory of quantum gravity. To
date, the 2-body problem has been completely solved, but only certain solutions exist for
the 3-body problem [7].

Over a century ago, Poincaré’s work on the restricted version of the 3-body problem
formed the foundation of deterministic chaos theory [7]. Chaos theory studies the behavior of
dynamical systems that are highly sensitive to initial conditions [8, 9]. In a chaotic dynamical
system, miniscule differences in initial conditions yield widely diverging outcomes, thereby
generally rendering long-term predictions impossible [8, 9]. Chaos is abundant in nature [9,
10, 11], and such complex systems are widely studied in computation, mathematics, science,
and engineering. In addition to quantum and astro physics, examples of chaos are also
observed in weather patterns [12], aquatic ecosystems [13], population biology [14], cancers
and genetics [15, 16], viruses and pathogens [17], earthquakes [18, 19], volcanoes [20], and the
global stock market [21]. Moreover, we note that fractals are the language of chaos theory
[22], where fractals are clearly everywhere in nature [23] including, for example, the allometric
scaling laws in biology [24, 25, 26, 27, 28]. The plethora of well-documented scientific evidence
for naturally-recurring n-body problems fundamentally conveys the significance pertaining
to this mode of research. Thus, it is imperative to investigate such phenomenon from diverse
perspectives and attack these problems from multiple directions.

In this introductory paper, we propose the Newtonian Gravitational n-Body Spherical
Simplification Algorithm (NGNBSSA), which aims to simplify the apparent complexity of
the unrestricted version of the (n > 2)-body problem to that of a 2-body problem, for which
the n = 2 solution does exist ; the objective is to share an alternative view-point on the
n-body problem to try and generate a solution in the near future. The NGNBSSA is a
well-defined procedure of instructions that engages the complex and triplex data structure
framework of [29] to encode 3D and 4D versions of the Riemannian dual (fractional quantum
Hall superfluidic) space-time topology [30] equipped with order parameter fields.

In Section 2, we prepare for our systematic n-body attack by assembling the requisite
data structures for characterizing the chaotic gravitational system state space. First, in
Section 2.1, we devise the complex data structures for encoding 2D locations and 2D features
in the Riemannian dual 3D space-time topology of [29, 30]. Subsequently, in Section 2.2,
we contrive the triplex data structures for encoding 3D locations and 3D features in the
Riemannian dual 4D space-time topology of [29].

In Section 3, we present the NGNBSSA via a step-by-step example of instructions and
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illustrations. Section 3.1 demonstrates how the NGNBSSA systematically operates in the
Riemannian dual 3D space-time topology with the complex encoding framework [29, 30],
while Section 3.2 explains how to adjust the NGNBSSA so it can also function in the Rie-
mannian dual 4D space-time topology with the triplex encoding framework [29]. In both
scenarios, we use the results to define a time-effective potential, kinetic, and Lagrangian that
intertwine mechanics from Newton and Einstein.

The paper terminates with the conclusive discussion and future outlook of Section 4,
followed by the brief concessions of Section 5.

2 Data structures
In this section, we prepare for the NGNBSSA by assembling the chaotic gravitational

system state space for encoding locations and features in the Riemannian dual 3D and 4D
space-time topologies [29, 30].

2.1 Complex structures in dual 3D space-time
To encode complex locations, we identify the Riemann surfaceX as the 2D Position-Point

State Space (2D-PPSS) [29, 30]. Thus, we let

PX ⊂ X = {~x1, ~x2, ..., ~xn} (1)

be the ordered set of spherically-symmetric point-particles of cardinality n = |PX | with the
corresponding 2D Riemannian-coordinates [29, 30]

1 : ~x1 = (~x1) = (|~x1|, 〈~x1〉) = (~x1R , ~x1I)
2 : ~x2 = (~x2) = (|~x2|, 〈~x2〉) = (~x2R , ~x2I)

...
n : ~xn = (~xn) = (|~xn|, 〈~xn〉) = (~xnR , ~xnI).

(2)

Each point-particle in PX has a location that is a 2D Position-Point State (2D-PPS) from
[29, 30]. For PX in eq. (1), we let

MX = {m1,m2, ...,mn} (3)

be the corresponding ordered set of non-zero 2D Position-Point-Masses (2D-PPM) of car-
dinality n = |MX |. Moreover, each point-particle in PX also has a velocity that is a 2D
Velocity Field Order Parameter State (2D-VFOPS) defined using the 2D-OPS notation of
[29]. Hence, we let

VX = {~v1, ~v2, ..., ~vn} = {~ψv(~x1), ~ψv(~x2), ..., ~ψv(~xn)} (4)

be the ordered 2D-VFOPS set of cardinality n = |VX | with the corresponding definitions

1 : ~v1 ≡ ~v1R + ~v1I ≡ (~v1) ≡ ~ψv(~x1) ≡ (|~v1|, 〈~v1〉) ≡ (~v1R , ~v1I)

2 : ~v2 ≡ ~v2R + ~v2I ≡ (~v2) ≡ ~ψv(~x2) ≡ (|~v2|, 〈~v2〉) ≡ (~v2R , ~v2I)
...

n : ~vn ≡ ~vnR + ~vnI ≡ (~vn) ≡ ~ψv(~xn) ≡ (|~vn|, 〈~vn〉) ≡ (~vnR , ~vnI).

(5)
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Next, we apply Newton’s law of universal gravitation to MX for PX across X, where
the force between between any two 2D-PPM is directly proportional to their product and
inversely proportional to the square of the distance between them [1, 2]. To encode the
gravitational force between two such bodies in 3D space-time, say mi,mj ∈ MX for i 6= j
and 1 ≤ i, j ≤ n, we adopt and adjust the 2D-OPS notation of eq. (23) in [29] and add a
second 2D-PPS argument to define the 2D Newtonian Force Field Order Parameter State
(2D-NFFOPS)

~Fij ≡ ~FijR + ~FijI ≡
(
~Fij

)
≡
(
~FijR ,

~FijI

)
≡
(
|~Fij|, 〈~Fij〉

)
≡ ~ψF (~xi, ~xj) ≡ ~ψF (~xi, ~xj)R + ~ψF (~xi, ~xj)I ≡

(
~ψF (~xi, ~xj)

)
≡
(
~ψF (~xi, ~xj)R, ~ψF (~xi, ~xj)I

)
≡
(
|~ψF (~xi, ~xj)|, 〈~ψF (~xi, ~xj)〉

)
(6)

from the perspective of ~xi to ~xj, which applies to all such pairs in PX . Hence, the 2D-
OPS component constraints and notations of eqs. (18–25) in [29] apply to the 2D-NFFOPS
definition of eq. (6). Therefore, ∀~xi, ~xj ∈ PX the gravitational 2D-NFFOPS-amplitude
between mi,mj ∈MX is

|~Fij| ≡
√
~F 2
ijR

+ ~F 2
ijI
≡ G

mimj

d2ij

≡ |~ψF (~xi, ~xj)| ≡
√
~ψ2
F (~xi, ~xj)R + ~ψ2

F (~xi, ~xj)I,

(7)

where G is the gravitational constant and dij is defined as the Euclidean distance

dij = d(~xi, ~xj) =
√

(~xjR − ~xiR)2 + (~xjI − ~xiI)2 (8)

between ~xi and ~xj using the 2D-PPS Cartesian-coordinate properties for the geometrical line
segment ~xi~xj.

Now, we can simplify the notation of eqs. (6–8) even further if we let ~xi = O be the
origin-point of eq. (10) in [29] with the 2D-PPM re-labeling mO = mi. Thus, ∀~xj ∈ PX , eq.
(6) is re-written as

~Fj ≡ ~ψF (O, ~xj) ≡ ~FjR + ~FjI ≡
(
~Fj

)
≡
(
~FjR ,

~FjI

)
≡
(
|~Fj|, 〈~Fj〉

)
, (9)

with respect to O, which clearly satisfies the 2D-OPS component constraints and notations
of eqs. (18–25) in [29]. Therefore, eq. (7) is re-written as

|~Fj| ≡ |~ψF (O, ~xj)| ≡
√
~F 2
jR

+ ~F 2
jI
≡ G

mOmj

d2j
, (10)

where dj is defined as the Euclidean distance by re-writing eq. (8) as

dj = d(O, ~xj) =
√

(~xjR −OR)2 + (~xjI −OI)2 = |~xj| (11)
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between O and ~xj, which is the 2D-PPS-amplitude that corresponds to the geometrical line
segment O~xj.

At this point, we have both the ~Fj of eq. (9) and the mj ∈ MX of eq. (3), so Newton’s
second law [1, 2] comes to mind. Thus, using the same notation of eq. (9), we define the 2D
Newtonian Acceleration Field Order Parameter State (2D-NAFOPS)

~aj ≡ ~ψa(O, ~xj) ≡ ~ajR + ~ajI ≡ (~aj) ≡ (~ajR ,~ajI) ≡ (|~aj|, 〈~aj〉) , (12)

with respect to O, where the 2D-NAFOPS-amplitude is defined as

|~aj| ≡ |~ψa(O, ~xj)| ≡
√
~a2jR + ~a2jI ≡

|~Fj|
mj

. (13)

Hence, the 2D-NFFOPS-phase, 2D-NAFOPS-phase, and 2D-PPS-phase bestow the equiva-
lence

〈~Fj〉 ≡ 〈~aj〉 ≡ 〈~xj〉. (14)

The next step is to define, relative to mO with vO, the 2D Relative Velocity Field Order
Parameter State (2D-RVFOPS) for some mj with vj as

~ϑj ≡ ~ψϑ(O, ~xj) ≡ ~ϑjR + ~ϑjI ≡
(
~ϑj

)
≡
(
~ϑjR ,

~ϑjI

)
≡
(
|~ϑj|, 〈~ϑj〉

)
, (15)

such that
~ϑjR ≡ ~vjR − ~vOR

~ϑjI ≡ ~vjI − ~vOI ,

(16)

where from eq. (22) in [29] we establish

|~ϑj| ≡
√
~ϑ2
jR

+ ~ϑ2
jI

~ϑjR ≡ |~ϑj| cos〈~ϑj〉

~ϑjI ≡ |~ϑj| sin〈~ϑj〉,

(17)

which is clearly similar to the constraints of eqs. (9) and (12) that follow [29].
We note that the circular time-dimension T ⊂ X in eq. (13) of [29] with amplitude-radius

ε does apply to this scenario, but we must wait to establish T in Section 3.1 because the value
of ε depends on the NGNBSSA’s intermediate results. A 2D-PPS that exists in T is defined
as a time-effective 2D-PPS (TE-2D-PPS); the 2D-PPM, 2D-NFFOPS, 2D-NAFOPS, 2D-
VFOPS, and 2D-RVFOPS for a TE-2D-PPS are defined as the time-effective 2D-PPM (TE-
2D-PPM), time-effective 2D-NFFOPS (TE-2D-NFFOPS), time-effective 2D-NAFOPS (TE-
2D-NAFOPS), time-effective 2D-VFOPS (TE-2D-VFOPS), and time-effective 2D-RVFOPS
(TE-2D-RVFOPS), respectively. Thus, at this point, we can encode the relevant chaotic
dynamical system states in the Riemannian dual 3D space-time of [29, 30] for the upcoming
NGNBSSA in Section 3.1.
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2.2 Triplex structures in dual 4D space-time
Here, we project the complex structures of Section 2.1 to a higher dimensional structure

with an additional degree of freedom.
First, we project the complex locations of eqs. (1–2) in accordance to [29]. Thus, to

encode triplex locations, we identify the 3D real manifold Y as the 3D Position-Point State
Space (3D-PPSS), such that X ⊂ Y [29]. Thus, we let

PY ⊂ Y = {~y1, ~y2, ..., ~yn} (18)

be the ordered set of spherically-symmetric point-particles of cardinality n = |PY | with the
corresponding 3D Riemannian-coordinates [29]

1 : ~y1 = (~y1) = (|~y1|, 〈~y1〉, [~y1]) = (~y1R , ~y1I , ~y1Z )
2 : ~y2 = (~y2) = (|~y2|, 〈~y2〉, [~y2]) = (~y2R , ~y2I , ~y2Z )

...
n : ~yn = (~yn) = (|~yn|, 〈~yn〉, [~yn]) = (~ynR , ~ynI , ~ynZ

).

(19)

Each point-particle in PY has a location that is a 3D Position-Point State (3D-PPS) from
[29]. For PY in eq. (18), we let

MY = {m1,m2, ...,mn} (20)

be the corresponding ordered set of non-zero 3D Position-Point-Masses (3D-PPM) of car-
dinality n = |MY |. Moreover, each point-particle in PY also has a velocity that is a 3D
Velocity Field Order Parameter State (3D-VFOPS) defined using the 3D-OPS notation of
[29]. Hence, we let

VY = {~v1, ~v2, ..., ~vn} = {~ψv(~y1), ~ψv(~y2), ..., ~ψv(~yn)} (21)

be the ordered 3D-VFOPSs set of cardinality n = |VY | with the corresponding definitions

1 : ~v1 ≡ ~v1R + ~v1I + ~v1Z ≡ (~v1) ≡ ~ψv(~y1) ≡ (|~v1|, 〈~v1〉, [~v1]) ≡ (~v1R , ~v1I , ~v1Z )

2 : ~v2 ≡ ~v2R + ~v2I + ~v2Z ≡ (~v2) ≡ ~ψv(~y2) ≡ (|~v2|, 〈~v2〉, [~v2]) ≡ (~v2R , ~v2I , ~v2Z )
...

n : ~vn ≡ ~vnR + ~vnI + ~vnZ
≡ (~vn) ≡ ~ψv(~yn) ≡ (|~vn|, 〈~vn〉, [~vn]) ≡ (~vnR , ~vnI , ~vnZ

).

(22)

Next, we apply Newton’s law of universal gravitation [1, 2] to MY for PY across Y . To
encode the gravitational force between two such 3D-PPMs in 3D space-time, say mi,mj ∈
MY for i 6= j and 1 ≤ i, j ≤ n, we adopt and adjust the 3D-OPS notation of eq. (50)
in [29] and add a second 3D-PPS argument to define the 3D Newtonian Force Field Order
Parameter State (3D-NFFOPS)

~Fij ≡ ~FijR + ~FijI + ~FijZ ≡
(
~Fij

)
≡
(
~FijR ,

~FijI ,
~FijZ

)
≡
(
|~Fij|, 〈~Fij〉, [~Fij]

)
≡ ~ψF (~yi, ~yj) ≡ ~ψF (~yi, ~yj)R + ~ψF (~yi, ~yj)I + ~ψF (~yi, ~yj)Z ≡

(
~ψF (~yi, ~yj)

)
≡
(
~ψF (~yi, ~yj)R, ~ψF (~yi, ~yj)I, ~ψF (~yi, ~yj)Z

)
≡
(
|~ψF (~yi, ~yj)|, 〈~ψF (~yi, ~yj)〉, [~ψF (~yi, ~yj)]

)
(23)
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from the perspective of ~yi to ~yj, which applies to all such pairs in PY . Hence, the 3D-
OPS component constraints and notations of eqs. (45–52) in [29] apply to the 3D-NFFOPS
definition of eq. (23). Therefore, ∀~yi, ~yj ∈ PY the gravitational 3D-NFFOPS-amplitude
between mi,mj ∈MY is

|~Fij| ≡
√
~F 2
ijR

+ ~F 2
ijI

+ ~F 2
ijZ
≡ G

mimj

d2ij

≡ |~ψF (~yi, ~yj)| ≡
√
~ψ2
F (~yi, ~yj)R + ~ψ2

F (~yi, ~yj)I + ~ψ2
F (~yi, ~yj)Z ,

(24)

where dij is defined as the Euclidean distance

dij = d(~yi, ~yj) =
√

(~yjR − ~yiR)2 + (~yjI − ~yiI)2 + (~yjZ − ~yiZ )2 (25)

between ~yi and ~yj using the 3D-PPS Cartesian-coordinate properties for the geometrical line
segment ~yi~yj.

Now, we can simplify the notation of eqs. (23–25) even further if we let ~yi = O be the 3D
version of the origin-point in [29] with the 3D-PPM re-labeling mO = mi. Thus, ∀~yj ∈ PY ,
eq. (23) is re-written as

~Fj ≡ ~ψF (O, ~yj) ≡ ~FjR + ~FjI + ~FjZ ≡
(
~Fj

)
≡
(
~FjR ,

~FjI ,
~FjZ

)
≡
(
|~Fj|, 〈~Fj〉, [~Fj]

)
, (26)

with respect to O, which clearly satisfies the 3D-OPS component constraints and notations
of eqs. (45–52) in [29]. Therefore, eq. (24) is re-written as

|~Fj| ≡ |~ψF (O, ~yj)| ≡
√
~F 2
jR

+ ~F 2
jI

+ ~F 2
jZ
≡ G

mOmj

d2j
, (27)

where dj is defined as the Euclidean distance by re-writing eq. (25) as

dj = d(O, ~yj) =
√

(~yjR −OR)2 + (~yjI −OI)2 + (~yjZ −OZ)2 = |~yj| (28)

between O and ~yj, which is the 3D-PPS-amplitude that corresponds to the geometrical line
segment O~yj.

At this point, we have both the ~Fj of eq. (26) and the mj ∈MY of eq. (20), so again we
recall Newton’s second law [1, 2]. Thus, using the same notation of eq. (26), we define the
3D Newtonian Acceleration Field Order Parameter State (3D-NAFOPS)

~aj ≡ ~ψa(O, ~xj) ≡ ~ajR + ~ajI + ~ajZ ≡ (~aj) ≡ (~ajR ,~ajI ,~ajZ ) ≡ (|~aj|, 〈~aj〉, [~aj]) , (29)

with respect to O, where the 3D-NAFOPS-amplitude is defined as

|~aj| ≡ |~ψa(O, ~xj)| ≡
√
~a2jR + ~a2jI + ~a2jZ ≡

|~Fj|
mj

. (30)
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Hence, the 3D-NFFOPS-phase, 3D-NAFOPS-phase, and 3D-PPS-phase bestow the equiva-
lence

〈~Fj〉 ≡ 〈~aj〉 ≡ 〈~yj〉, (31)

while the 3D-NFFOPS-inclination, 3D-NAFOPS-inclination, and 3D-PPS-inclination simi-
larly yield

[~Fj] ≡ [~aj] ≡ [~yj]. (32)

The next step is to define, relative to mO with vO, the 3D Relative Velocity Field Order
Parameter State (3D-RVFOPS) for some mj with vj as

~ϑj ≡ ~ψϑ(O, ~yj) ≡ ~ϑjR + ~ϑjI + ~ϑjZ ≡
(
~ϑj

)
≡
(
~ϑjR ,

~ϑjI ,
~ϑjZ

)
≡
(
|~ϑj|, 〈~ϑj〉, [~ϑj]

)
, (33)

such that
~ϑjR ≡ ~vjR − ~vOR

~ϑjI ≡ ~vjI − ~vOI

~ϑjZ ≡ ~vjZ − ~vOZ
,

(34)

where from eq. (49) in [29] we establish

|~ϑj| ≡
√
~ϑ2
jR

+ ~ϑ2
jI

+ ~ϑ2
jZ

〈~ϑj〉 ≡ arctan
(
~ϑjI
~ϑjR

)
[~ϑj] ≡ arccos

(
~ϑjZ
|~ϑj |

)
,

(35)

which is clearly similar to the constraints of eqs. (26) and (29) that follow [29].
We note that the spherical time-dimension T ⊂ Y in eq. (40) of [29] with amplitude-

radius ε does apply to this scenario, but we must wait to establish T in Section 3.2 because
the value of ε depends on the NGNBSSA’s intermediate results. A 3D-PPS that exists
in T is defined as a time-effective 3D-PPS (TE-3D-PPS); the 3D-PPM, 3D-NFFOPS, 3D-
NAFOPS, 3D-VFOPS, and 3D-RVFOPS for a TE-3D-PPS are defined as the time-effective
3D-PPM (TE-3D-PPM), time-effective 3D-NFFOPS (TE-3D-NFFOPS), time-effective 3D-
NAFOPS (TE-3D-NAFOPS), time-effective 3D-VFOPS (TE-3D-VFOPS), and time-effective
3D-RVFOPS (TE-3D-RVFOPS), respectively. Thus, at this point, we can encode the rele-
vant chaotic dynamical system states in the Riemannian dual 4D space-time of [29] for the
upcoming NGNBSSA in Section 3.2.

3 Algorithm
In this section, we explain how certain aspects of Newton’s n PPM problem can be

reduced to a two PPM problem in the holographic principle context; for this, the com-
plete NGNBSSA is communicated via an example. The NGNBSSA’s ultimate objective is
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to partition the n PPMs into two PPMs for a time-effective framework. To summarize,
we arbitrarily select one PPM, namely the Origin Position-Point-Mass (O-PPM), and sub-
sequently engage a series of Time-Effective Spherical Normalization Adjustment (TESNA)
instructions to consolidate the residual (n−1) PPMs to a single Holographic Position-Point-
Mass (H-PPM), where the location and feature vectors of the (n− 1) PPMs are summed to
produce net vectors for the H-PPM. The H-PPM represents the mass of the time-effective
spherical surface T with amplitude-radius ε from [29, 30] for which the gravitational force
and relative effects are preserved under the TESNAs. From there, we demonstrate that it
is possible calculate the net time-effective quantities between the O-PPM and the H-PPM
so we may exercise the effective potential, kinetic, and Lagrangian definitions in the quark
confinement proof of [30].

In this systematic illustration, we choose to solve the n = 3 base case in dual 3D space-
time due to its visualization simplicity—it is easier to draw Figures 1–6 on X and reduce
three PPMs to two PPMs. But as we shall see, the guidelines of the NGNBSSA are kept
generalized and can be directly applied to (n > 3) PPMs. Moreover, the NGNBSSA is almost
identical for both 3D and 4D space-time scenarios. Thus, in Section 3.1, we introduce and
define the NGNBSSA with step-by-step depictions for dual 3D space-time. Then in Section
3.2, we explain precisely how to apply it to dual 4D space-time by simply “swapping out”
the data structures and making a couple of slight algorithmic adjustments.

3.1 Complex algorithm for dual 3D space-time
The three 2D-PPM illustration for the NGNBSSA in dual 3D space-time is defined by

the following sequence:

• Routine 1: Particle Initialization

1. Randomly generate or experimentally identify n = 3 distinct 2D-PPSs on X to
create the ordered 2D-PPS set PX in the form of eq. (1) with the 2D Riemannian-
coordinates of eq. (2); we let these 2D-PPSs be

PX ⊂ X = {~xA, ~xB, ~xC}

(for this example, we assert that ~xB and ~xC are different distances from ~xA for
illustration purposes, but certainly this is not a necessary requirement).

2. Randomly assign or experimentally measure the three 2D-PPMs to create the
ordered 2D-PPM set MX in the form of eq. (3) that correspond to the established
2D-PPSs of PX ; let

MX = {mA,mB,mC}

be the ordered 2D-PPM set of three 2D-PPM elements that respectively correspond
to PX , such that mA,mB,mC > 0.

3. Randomly assign or experimentally measure the three 2D-VFOPSs to create the
ordered 2D-VFOPS set VX of eq. (4) in the form of eq. (5) that correspond to
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the established 2D-PPSs of PX ; let

VX = {~vA, ~vB, ~vC}

be the ordered 2D-VFOPS set of three 2D-VFOPS elements that respectively cor-
respond to PX .

4. See Figure 1.

• Routine 2: Dual Space-Time Topology Initialization

1. Arbitrarily select a 2D-PPS from PX ; let us choose ~xA ∈ PX .

2. Determine the closest 2D-PPS to the selected ~xA using the 2D Euclidean distance
from eq. (8); we determine that ~xB ∈ PX is the closest to the selected ~xA, where
the distance between them is dAB.

3. Draw the topological circle T ⊂ X to represent the time zone from eq. (13) in
[29], where the selected ~xA is T ’s center, such that ~xB lies precisely on T ; we
construct the circle T ⊂ X with center ~xA, where T ’s amplitude-radius ε from eq.
(15) in [29] is equal to the Euclidean distance dAB between ~xA and ~xB, so dAB = ε
for the geometrical line segment ~xA~xB, such that ~xB ∈ T .

4. Label the spatial sub-surfaces that are simultaneously dual to T ; T topologically
delineates the “micro space zone” X− ⊂ X and “macro space zone” X+ ⊂ X for
the “space-time duality” in [29, 30].

5. See Figure 2.

• Routine 3: Reference Frame, O-PPM, and OPS Assignment

1. Designate the selected ~xA as the origin-point O of X to establish the reference
frame; we re-name ~xA as O to thereby assign O = ~xA as the point-of-reference,
and additionally re-name the 2D-PPM mA as the 2D-O-PPM of X to thereby
assign mO = mA.

2. Use eqs. (9–10) to assign 2D-NFFOPSs to the 2D-PPM that is the closest to mO,
namely mB at ~xB, and all remaining 2D-PPMs in MX (which is just mC at ~xC);
for O and ~xB, the 2D-NFFOPS between the corresponding mO and mB is

~FB = ~FBR + ~FBI = (~FB) = (|~FB|, 〈~FB〉) = (~FBR ,
~FBI),

such that

|~FB| = G
mOmB

|~xB|2
= G

mOmB

|dB|2
= G

mOmB

ε2

〈~FB〉 = 〈~xB〉,

and for O and ~xC, the 2D-NFFOPS between the corresponding mO and mC is

~FC = ~FCR + ~FCI = (~FC) = (|~FC |, 〈~FC〉) = (~FCR ,
~FCI),
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such that

|~FC | = G
mOmC

|~xC |2
= G

mOmB

|dC |2

〈~FC〉 = 〈~xC〉.

3. Use eqs. (12–13) to assign 2D-NAFOPSs to mB,mC ∈ MX , with respect to mO;
for O and ~xB, the 2D-NAFOPS between the corresponding mO and mB is

~aB = ~aBR + ~aBI = (~aB) = (|~aB|, 〈~aB〉) = (~aBR ,~aBI),

such that

|~aB| =
|~FB|
mB

〈~aB〉 = 〈~FB〉 = 〈~xB〉,

and for O and ~xC, the 2D-NAFOPS between the corresponding mO and mC is

~aC = ~aCR + ~aCI = (~aC) = (|~aC |, 〈~aC〉) = (~aCR ,~aCI),

such that

|~aC | =
|~FC |
mB

〈~aC〉 = 〈~FC〉 = 〈~xC〉.

4. Relative tomO with ~vO, use eqs. (15–17) to assign 2D-RVFOPSs tomB,mC ∈MX

with ~vB, ~vC ∈ VX ; for O and ~xB, the 2D-RVFOPS for the corresponding ~vO and
~vB is

~ϑB = ~ϑBR + ~ϑBI = (~ϑB) = (|~ϑB|, 〈~ϑB〉) = (~ϑBR ,
~ϑBI),

such that

~ϑBR = ~vBR − ~vOR = |~ϑB| cos〈~ϑB〉
~ϑBI = ~vBI − ~vOI = |~ϑB| sin〈~ϑB〉

|~ϑB| =
√
~ϑ2
BR

+ ~ϑ2
BI
,

and for O and ~xC, the 2D-RVFOPS for the corresponding ~vO and ~vC is

~ϑC = ~ϑCR + ~ϑCI = (~ϑC) = (|~ϑC |, 〈~ϑC〉) = (~ϑCR ,
~ϑCI),

such that

~ϑCR = ~vCR − ~vOR = |~ϑC | cos〈~ϑC〉
~ϑCI = ~vCI − ~vOI = |~ϑC | sin〈~ϑC〉

|~ϑC | =
√
~ϑ2
CR

+ ~ϑ2
CI
.
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5. See Figure 3.

• Routine 4: TESNA Application to Non-Temporal 2D-PPMs

1. Use X’s built-in space-time duality of eq. (17) in [29] to map all the 2D-PPMs
that are currently in X+ to T to acquire the TE-2D-PPSs that share the uni-
form amplitude-radii ε (for spherical normalization), where these mappings are
TESNAs that satisfy the the TESNA Constraints (TESNAC)

– Phase-TESNAC: the 2D-PPMs in X+ and their corresponding TE-2D-PPMs
in T must have equivalent 2D-PPS-phases, TE-2D-PPS-phases, 2D-NFFOPS-
phases, TE-2D-NFFOPS-phases, 2D-NAFOPS-phases, and TE-2D-NAFOPS-
phases (to preserve the directional effect), and

– NFFOPS-amplitude-TESNAC: the 2D-PPMs in X+ and the corresponding
TE-2D-PPMs in T must have equivalent 2D-NFFOPS-amplitudes and TE-
2D-NFFOPS-amplitudes (to preserve the force effect);

for the 2D-PPM mC at the 2D-PPS ~xC ∈ X+, we identify and create the corre-
sponding TE-2D-PPM mC∗ at the TE-2D-PPS ~xC∗ ∈ T , with the 2D-PPS TESNA

~xC → ~xC∗ , (36)

and select/calculate the corresponding TE-2D-PPM solution mC∗, such that mC∗ 6=
mC, which satisfies the Phase-TESNAC

〈~xC∗〉 = 〈~xC〉 = 〈~FC∗〉 = 〈~FC〉 = 〈~aC∗〉 = 〈~aC〉

|~xC∗ | 6= |~xC | ⇒ ~xC∗ 6= ~xC ,

(37)

and also satisfies the 2D-NFFOPS-amplitude-TESNAC

|~FC∗ | = |~FC | = GmOmC∗
d2
C∗

= GmOmC

d2C
= mC |~aC | = mC∗ |~aC∗|

mC∗ 6= mC , dC∗ 6= dC , dC∗ = ε, dC 6= ε

(|~FC∗ | = |~FC |) ∧ (dC∗ 6= dC)⇒ (mC∗ 6= mC).

(38)

2. See Figure 4.

• Routine 5: TE-2D-PPM Consolidation for Net 2D-PPM (or Net TE-2D-PPM) Iden-
tification

1. For all TE-2D-PPMs in T , sum the corresponding TE-2D-PPSs to calculate the
net 2D-PPS for the net 2D-PPM ; for the TE-2D-PPMs mB and mC∗ in T , we
sum the corresponding TE-2D-PPSs {~xB, ~xC∗} ∈ T to determine the net 2D-PPS

~xD = ~xnet = ~xB + ~xC∗ (39)

for the net 2D-PPM mD.
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2. For all TE-2D-PPMs in T , sum the corresponding TE-2D-NFFOPSs to calculate
the net 2D-NFFOPS for the net 2D-PPM ; for the TE-2D-PPMs mB and mC∗

in T , we sum the corresponding 2D-NFFOPSs ~FB and ~FC∗ to determine the net
2D-NFFOPS

~FD = ~Fnet = ~FB + ~FC∗ , (40)

such that the net 2D-NFFOPS-amplitude is

|~FD| = |~Fnet| = G
mOmD

|~xD|2
= G

mOmD

d2D
= G

mOmnet

d2net
(41)

and the corresponding net 2D-NFFOPS-phase is

〈~FD〉 = 〈~Fnet〉 = 〈~xD〉 = 〈~xnet〉 (42)

for the net 2D-PPM mD = mnet.

3. For the net 2D-PPM mD, use the results of eqs. (39–42) to calculate the net
2D-NAFOPS ; for the net 2D-PPM mD, the net 2D-NAFOPS ~aD = ~anet has the
net 2D-NAFOPS-amplitude

|~aD| = |~anet| =
|~FD|
mD

=
|~Fnet|
mnet

(43)

and the net 2D-NAFOPS-phase

〈~aD〉 = 〈~anet〉 = 〈~FD〉 = 〈~Fnet〉 = 〈~xD〉 = 〈~xnet〉, (44)

so now there are just two 2D-PPMs to deal with, namely mO and mD!

4. Determine if the net 2D-PPM mD is a net TE-2D-PPM on T ; we observe that
~xD 6∈ T and ~xD 6= O, but rather ~xD ∈ X+, so we proceed to Routine 6 because mD

is not a net TE-2D-PPM and we require a net TE-2D-PPM on T to label it the
H-PPM and finish.

5. See Figure 5.

• Routine 6: H-PPM Identification

1. Similarly to Routine 4, we employ X’s space-time duality to TESNA map the net
2D-PPM mD to its corresponding net TE-2D-PPM mD∗ on T in accordance to
the TESNACs so mD∗ with ~xD∗ ∈ T becomes the H-PPM; for the net 2D-PPS
~xD ∈ X+ we identify the corresponding net TE-2D-PPS ~xD∗ ∈ T with the TESNA

~xD → ~xD∗ (45)

and select/calculate the corresponding net TE-2D-PPM solution mD∗, such that
mD∗ 6= mD, which satisfies the Phase-TESNAC

〈~xD∗〉 = 〈~xD〉 = 〈~FD∗〉 = 〈~FD〉 = 〈~aD∗〉 = 〈~aD〉

|~xD∗| 6= |~xD| ⇒ ~xD∗ 6= ~xD,

(46)
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and also satisfies the 2D-NFFOPS-amplitude-TESNAC

|~FD∗| = |~FD| = GmOmD∗
d2
D∗

= GmOmD

d2D
= mD|~aD| = mD∗|~aD∗|

mD∗ 6= mD, dD∗ 6= dD, dD∗ = ε, dD 6= ε

(|~FD∗| = |~FD|) ∧ (dD∗ 6= dD)⇒ (mD∗ 6= mD),

(47)

so finally we know all of the net time-effective quantities that are required to encode
the chaotic system state because mD∗ is now the net TE-2D-PPM and H-PPM for
T !

2. See Figure 6.

Thus, from eq. (50) in [30], the NGNBSSA’s time-effective Lagrangian for mO and mD∗

is defined as
L[mO, ~xD∗ ,mD∗ , ~ϑD∗ ] ≡ EK [mD∗ , ~ϑD∗ ]− EP [mO, ~xD∗ ] (48)

using our generalized coordinates, where EK and EP are the time-effective kinetic and time-
effective potential, respectively, for the H-PPM mD∗ relative to the O-PPM mO. Using eq.
(51) in [30] we define the time-effective potential EP between mO and mD∗ as

EP [mO, ~xD∗ ] ≡

√
1− 2

(
mO

|~xD∗ |

)
|~xD∗|

≡

√
1− 2

(
mO

ε

)
ε

, (49)

and subsequently employ eq. (52) in [30] to define the corresponding time-effective kinetic
EK as

EK [mD∗ , ~ϑD∗ ] ≡ 1

2
mD∗|ϑD∗|2 ≡ 1

2

(
|~FD∗|
|aD∗|

)
|ϑD∗ |2, (50)

where ϑD∗ is the time-effective net 2D-RVFOPS of mD∗ at ~xD∗ relative to mO at O in the
dual 3D space-time of X.
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Fig. 1: The Routine 1 depiction of the n = 3 NGNBSSA. The three 2D-PPSs {~xA, ~xB , ~xC} = PX ⊂ X

correspond to the ordered 3-body set {mA,mB ,mC} = MX .

Fig. 2: The Routine 2 depiction of the n = 3 NGNBSSA. The 2D-PPS ~xA is the center of the topological

circle and time zone T ⊂ X, which is isometrically embedded on X, where ~xB ∈ T .
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Fig. 3: The Routine 3 depiction of the n = 3 NGNBSSA. The 2D-PPS O = ~xA becomes X’s origin-point

for the reference frame. Using Newton’s laws, we assign 2D-NFFOPSs and 2D-NAFOPSs to the 2D-PPMs

mB and mC located at the 2D-PPSs ~xB and ~xC , respectively, such that |~xB | = ε and |~xC | 6= ε, respectively.
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Fig. 4: The Routine 4 depiction of the n = 3 NGNBSSA. The objective is to TESNA map all non-temporal

2D-PPSs (except for the origin-point) to T so one 2D-PPM, namely the O-PPM mO, is at O, while the

residual (n − 1) 2D-PPMs are mapped to T to prepare for construction of the upcoming net TE-2D-PPM

and H-PPM. The procedure adheres to the Phase-TESNAC and the 2D-NFFOPS-amplitude-TESNAC that

enable us simplify the problem state with TESNAs. Here, we have ~xB ∈ T , so the 2D-PPM mB already

lies precisely on T . But ~xC ∈ X+, so ~xC 6∈ T is a non-temporal 2D-PPS, thus we must use X’s built-in

“space-time duality” to use the TESNA ~xC → ~xC∗ to create the corresponding TE-2D-PPM solution mC∗

for T because we need some ~xC∗ ∈ T .
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Fig. 5: The Routine 5 depiction of the n = 3 NGNBSSA. The net 2D-NFFOPS ~FD is the 2D-NFFOPS

sum of ~FB and ~FC∗ for the resulting gravitational force field that corresponds to a net 2D-PPS ~xD with

a net 2D-PPM mD. This consolidates the residual (n − 1) 2D-PPMs to mD to establish a time-effective

2-body system composed of mO and mD; now there are just 2-bodies to deal with!

Fig. 6: The Routine 6 depiction of the n = 3 NGNBSSA. So ~xD /∈ T , thus for ~xD ∈ X+ we identify the

corresponding ~xD∗ ∈ T via the TESNA ~xD → ~xD∗ to calculate the single net TE-2D-PPM mD∗ , namely

the H-PPM. Now we’ve finally delivered a gravitationally normalized time-effective 2-body system of mO

and mD∗ !

17



3.2 Triplex algorithm for dual 4D space-time
So how do we apply our NGNBSSA to dual 4D space-time? Well first, we recall that

in Section 2.2 we’ve already provided a working triplex framework for encoding locations
and features in the 4D space-time topology. Hence, our initial step is to revisit the NGNB-
SSA of Section 3.1 and simply swap the complex data structures in Section 2.1 with their
triplex counterparts in Section 2.2. Moreover, we also recall that the NGNBSSA is almost
identical for both 3D and 4D space-time scenarios, ∀n > 2, but there are a couple of slight
modifications that we need to make:

• In Routine 1

1. Replace the 2D-PPSS X with the 3D-PPSS Y .

2. Replace the ordered 2D-PPS set PX of eqs. (1–2) with the ordered 3D-PPS set
PY of eqs. (18–19).

3. Replace the ordered 2D-PPM set MX of eq. (3) with the ordered 3D-PPM set
MY of eq. (20).

4. Replace the ordered 2D-VFOPS set VX of eqs. (4–5) with the ordered 3D-VFOPS
set VY of eqs. (21–22).

• In Routine 2

1. Use the 3D Euclidean distance of eq. (25) instead of the 2D Euclidean distance
of eq. (8).

2. Define T with the triplex form of eq. (40) in [29] rather than the complex form
of eq. (15) in [30].

• In Routine 3

1. Replace the 2D-NFFOPS notation of eq. (9) with the 3D-NFFOPS notation of
eq. (26) and add the pertinent 3D-NFFOPS-inclination equivalences.

2. Replace the 2D-NAFOPS notation of eq. (12) with the 3D-NAFOPS notation of
eq. (29) and add the pertinent 3D-NAFOPS-inclination equivalences.

3. Replace the 2D-RVFOPS notation of eq. (15) with the 3D-RVFOPS notation of
eq. (33).

• In Routine 4

1. Create, define, and apply the Inclination-TESNAC

[~yC∗ ] = [~yC ] = [~FC∗ ] = [~FC ] = [~aC∗ ] = [~aC ] (51)

to extend the TESNAs to an additional degree of freedom.

• In Routine 5
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1. Replace T ’s TE-2D-PPM construction with a TE-3D-PPM construction.

• In Routine 6

1. Apply the Inclination-TESNAC of Routine 4 to finalize construction of T ’s TE-
3D-PPM and H-PPM.

Thus, we’ve listed the requisite modifications to apply the NGNBSSA to the dual 4D space-
time.

At this point, complex time-effective Lagrangian definition of eq. (48) is re-written in
the triplex form

L[mO, ~yD∗ ,mD∗ , ~ϑD∗ ] ≡ EK [mD∗ , ~ϑD∗ ]− EP [mO, ~yD∗ ], (52)

so eq. (49) becomes

EP [mO, ~yD∗ ] ≡

√
1− 2

(
mO

|~yD∗ |

)
|~yD∗ |

≡

√
1− 2

(
mO

ε

)
ε

, (53)

and eq. (50) becomes

EK [mD∗ , ~ϑD∗ ] ≡ 1

2
mD∗|ϑD∗|2 ≡ 1

2

(
|~FD∗|
|aD∗|

)
|ϑD∗ |2 (54)

in the dual 4D space-time of Y .

4 Conclusion and discussion
In this preliminary paper, we introduced, defined, and constructed a framework that is

designed to simplify certain aspects of Newton’s gravitational n-body problem. We started
by outlining the importance of further comprehending the chaos inherent to this natural
problem, which applies to multiple and diverse realms within the disciplines of science,
mathematics, computation, and engineering. Subsequently, we assembled the dual space-
time topology, generalized coordinate system, and order parameter data structures to imple-
ment our NGNBSSA. During this pursuit, we demonstrated that our framework provides an
abstract, powerful, and flexible state space encoding methodology for chaotic gravitational
systems with creative applications to mathematics and physics. Moreover, we found that
the NGNBSSA and its structural framework encompass a relatively simplistic formulation
which enables us to represent variable degrees of complexity for this mode of analysis.

For the future, we suggest that this model should be extended to include additional
aspects of classical, quantum, and relativistic mechanics for physics, chaos, and fractal ge-
ometry. It would be intriguing to implement our NGNBSSA on a super-computing cluster
so one can conduct parallel simulations to further refine the direct practicality of these ideas.
Also, it may be beneficial to match the predictions of this theory with real-time astronom-
ical data and conduct high-energy physics experiments to prove (or disprove) pertinence to
hadronic mechanics.
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In our opinion, the NGNBSSA is a powerful systematic process with an enormous poten-
tial for direct application to modern physics—theoretical and experimental. So although this
model is still under development, we suspect that through further investigation, scrutiny,
refinement, collaboration, and hard work, these ideas may reveal additional key facets in
mathematics, computation, engineering, and science.
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