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Abstract

The Majorana spinor is an element of a 4 dimensional real vector space. The
Majorana spinor field is a space-time dependent Majorana spinor, solution of the
free Dirac equation.

We show that the Majorana spinor field with finite mass is a real orthogo-
nal irreducible representation of the Poincare group. The Majorana-Fourier and
Majorana-Hankel transforms of Majorana spinor fields are defined and related to
the linear and angular momentums of a spin one-half representation of the Poincare
group.
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1 Introduction

The Poincare group, also called inhomogeneous Lorentz group, has a real Lie algebra
[1]. The irreducibility of a representation of a real Lie algebra may depend on whether
the representation space is a real or complex Hilbert space. In a physicists language, the
complex Hilbert spaces have twice the number of degrees of freedom of the real ones.

The Poincare group is the semi-direct product of the translations and Lorentz groups.
Whether or not the Lorentz and Poincare groups include the parity and time reversal
transformations depends on the context and authors. To be clear, we use the prefixes
full/restricted when including/excluding parity and time reversal transformations. The
fundamental representation of the Pin(3,1) group is a spin one-half representation of the
full Lorentz group [2], while the fundamental representation of the SL(2,C) subgroup is
a spin one-half representation of the restricted Lorentz subgroup.

The unitary projective representations of the Poincare group on complex Hilbert
spaces were studied by many authors, including Wigner [3–7]. Since Quantum Mechanics
is based on complex Hilbert spaces [8], these studies were very important in the evolution
of the role of symmetry in the Quantum theory [9]. Although Quantum Theory in real
Hilbert spaces was investigated before [10], to our knowledge, the orthogonal projective
representations of the Poincare group on real Hilbert spaces were not studied.

The Dirac spinor is an element of a 4 dimensional complex vector space, while the
Majorana spinor is an element of a 4 dimensional real vector space [11]. The Majorana
spinor representation of both SL(2,C) and Pin(3,1) is irreducible [12]. The spinor fields,
space-time dependent spinors, are solutions of the free Dirac equation [13–16]. The
Hilbert space of Dirac spinor fields is complex, while the Hilbert space of Majorana
spinor fields is real.

To study a system of many neutral particles with spin one-half, Majorana spinor
fields are extended with second quantization operators and are called Majorana quantum
fields or Majorana fermions [17–19]. There are important applications of the Majorana
quantum field in theories trying to explain phenomena in neutrino physics, dark mat-
ter searches, the fractional quantum Hall effect and superconductivity [20]. Note that
Majorana quantum fields are related to but are different from the Majorana spinor fields.

In the context of Clifford Algebras, there are studies on the geometric square roots of
-1 [21–23] and on the generalizations of the Fourier transform [24], with applications to
image processing [25].

Our goal is to study the spin one-half representation of the Poincare group on the real
Hilbert space of Majorana spinor fields.

We will show that the Majorana spinor representations of the groups SU(2), SL(2,C)
and Pin(3,1) are irreducible.

The Majorana-Fourier and Majorana-Hankel orthogonal transforms of Majorana spinor
fields are defined and related to the linear and angular momentums of a spin one-half
projective representation of the Poincare group.

Finally we show that the spin one-half representations of the restricted and full
Poincare groups on the Majorana spinor field are orthogonal and irreducible.

In chapter 2 we define the Majorana matrices and spinors. In chapter 3 we study the
Majorana spinor projective representation of the Lorentz group. In chapter 4 we relate
the Majorana and Pauli spinor fields. In 5 and 6 we define the Majorana-Fourier and
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Majorana-Hankel transforms of a Majorana spinor. In 7 we show that the projective
Poincare group representation on the Majorana spinor field is orthogonal and irreducible.
In 8, we extend the Majorana transforms to include the energy. In 9, by comparison with
the Dirac spinor field solutions of the free Dirac equation, we show that the Majorana
transforms are related with the linear and angular momentums of a free particle with
spin one-half.

The Dirac equation [13], is a complex 4x4 matrix differential equation, whose solution
is a Dirac spinor field, describing one particle with spin one-half in interaction with
an electromagnetic potential. The Dirac spinor is a 4x1 complex column matrix that
transforms in a precise way under the action of Lorentz transformations.

In a Majorana basis, the free (that is, when the electromagnetic potential is null) Dirac
equation is a real 4x4 matrix differential equation, whose solution can be a Majorana
spinor field. The Majorana spinor is a Dirac spinor which is real in a Majorana basis.

To study a system of many particles with spin one-half, Dirac or Majorana spinor fields
are extended with second quantization operators and called Dirac or Majorana quantum
fields. There are important applications of the Majorana quantum field in theories trying
to explain phenomena in neutrino physics, dark matter searches, the fractional quantum
Hall effect and superconductivity [20].

There are very good references on spinors [11, 18, 19] and on its relation with the
Lorentz group [2]. It is known that the Majorana spinor is an irreducible representation
of the double cover of the proper orthochronous Lorentz group [12]. Yet, we could not
find a detailed study of the Majorana spinor field solutions of the free Dirac equation
(without second quantization operators).

In the context of Clifford Algebras, the generalization of the Dirac matrices algebra
to other dimensions and metrics, there are studies on the geometric square roots of -
1 [22, 23] and on the generalizations of the Fourier transform [24], with applications to
image processing.

Our goal is to show that, without second quantization operators, all the kinematic
properties of a free spin 1/2 particle are present in the Majorana spinor field solutions
of the free Dirac equation. In chapter 2 we define the Majorana matrices and spinors.
In chapter 3 we relate the Majorana and Pauli spinor fields. In 4 and 5 we define
the Majorana-Fourier and Majorana-Hankel transforms of a Majorana spinor. In 6, we
extend the Majorana transforms to include the energy. In 7, by comparison with the Dirac
spinor field solutions of the free Dirac equation, we show that the Majorana transforms
are related with the linear and angular momentums of a free particle with spin one-half.

2 Majorana, Dirac and Pauli Matrices and Spinors

The Majorana matrices, iγµ with µ = 0, 1, 2, 3, are the Dirac Gamma matrices, γµ,
times the imaginary unit. The notation maintains explicit the relation between the
Majorana and Dirac Gamma matrices.

Definition 2.1. The Majorana matrices, iγµ, are 4 × 4 unitary matrices with anti-
commutator {iγµ, iγν}:

(iγµ)(iγν) + (iγν)(iγµ) = −2gµν , µ, ν = 0, 1, 2, 3 (2.1)
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Where g = diag(1,−1,−1,−1) is the Minkowski metric. The pseudo-scalar is iγ5 ≡
−γ0γ1γ2γ3.

Remark 2.2. Pauli’s fundamental theorem implies that the Majorana matrices are unique
up to an unitary similarity transformation.

The product of 2 Dirac Gamma matrices is minus the product of 2 corresponding
Majorana matrices: γµγν = −iγµiγν .

In a Majorana basis, the Majorana matrices are 4 × 4 real orthogonal matrices. An
example of the Majorana matrices in a particular Majorana basis is:

iγ1 =

[
+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 +1

]
iγ2 =

[
0 0 +1 0
0 0 0 +1

+1 0 0 0
0 +1 0 0

]
iγ3 =

[
0 +1 0 0

+1 0 0 0
0 0 0 −1
0 0 −1 0

]

iγ0 =

[
0 0 +1 0
0 0 0 +1
−1 0 0 0
0 −1 0 0

]
iγ5 =

[
0 −1 0 0

+1 0 0 0
0 0 0 +1
0 0 −1 0

]
= −γ0γ1γ2γ3

(2.2)

Definition 2.3. The Dirac spinor is a 4× 1 complex column matrix, that transforms in
a precise way under the action of Lorentz transformations.

The space of Dirac spinors is a 4 dimensional complex vector space.

Definition 2.4. Let S be a unitary matrix such that SiγµS† is real, for µ = 0, 1, 2, 3.
The set of Majorana spinors, Pinor, is the subset of Dirac spinors u verifying the

Majorana condition:

(Su)∗ = (Su) (2.3)

Where ∗ denotes complex conjugation and † denotes hermitian conjugate.

Remark 2.5. Let W be a subset of a vector space V over C. W is a real vector space
iff:

1) 0 ∈ W ;
2) If u, v ∈ W , then u+ v ∈ W ;
3) If u ∈ W and c ∈ R, then cu ∈ W .

From the previous remark, the set of Majorana spinors is a 4 dimensional real vector
space, while the set of Dirac spinors is a 8 dimensional real vector space. Note that the
linear combinations of Majorana spinors with complex scalars do not verify the Majorana
condition. The Majorana spinor, in a Majorana basis, is a 4× 1 real column matrix.

Definition 2.6. The Pauli matrices σk, k ∈ {1, 2, 3} are 2× 2 hermitian, unitary, anti-
commuting, complex matrices. The Pauli spinor is a 2× 1 complex column matrix. The
space of Pauli spinors is denoted by Pauli.

The space of Pauli spinors, Pauli, is a 2 dimensional complex vector space and a 4
dimensional real vector space.

Remark 2.7. Pauli’s fundamental theorem guarantees that the Pauli matrices are unique
up to an unitary similarity transformation.
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3 Hilbert spaces of Majorana and Pauli spinor fields

Definition 3.1. The complex Hilbert space of Pauli spinors, Pauli, has the internal
product:

< φ,ψ >= φ†ψ; φ, ψ ∈ Pauli (3.1)

Definition 3.2. The real Hilbert space of Majorana spinors, Pinor, has the internal
product:

< Φ,Ψ >= Φ†Ψ; Φ,Ψ ∈ Pinor (3.2)

Definition 3.3. Consider that {M+,M−, iγ
0M+, iγ

0M−} and {P+, P−, iP+, iP−} are or-
thonormal basis of the 4 dimensional real vector spaces Pinor and Pauli, respectively,
verifying:

γ3γ5M± = ±M±, σ3P± = ±P± (3.3)

Let H be a real Hilbert space. For all h ∈ H, the bijective linear map ΘH : Pauli⊗RH →
Pinor ⊗R H is defined by:

ΘH(h⊗R P+) = h⊗R M+, ΘH(h⊗R iP+) = h⊗R iγ
0M+ (3.4)

ΘH(h⊗R P−) = h⊗R M−, ΘH(h⊗R iP−) = h⊗R iγ
0M− (3.5)

Definition 3.4. Let Hn, with n ∈ {1, 2}, be two real Hilbert spaces and U : Pauli ⊗R
H1 → Pauli⊗R H2 be an operator. The operator UΘ : ΘH2 ◦ U ◦ Θ−1

H1
: Pinor ⊗R H1 →

Pinor ⊗R H2 is defined as UΘ ≡ ΘH2 ◦ U ◦Θ−1
H1

.

Remark 3.5. Let Hn, with n ∈ {1, 2}, be two Hilbert spaces with internal products
<,>: Hn ×Hn → F,(F = R,C). A linear operator U : H1 → H2 is unitary iff:

1) it is surjective;
2) for all x ∈ H1, < U(x), U(x) >=< x, x >.

Remark 3.6. Given two real Hilbert spaces H1, H2 and an unitary operator U : H1 → H2,
the inverse operator U−1 : H2 → H1 is defined by:

< x,U−1y >=< Ux, y >, x ∈ H1, y ∈ H2 (3.6)

Proposition 3.7. Let Hn, with n ∈ {1, 2}, be two real Hilbert spaces. The following two
statements are equivalent:

1) The operator U : Pauli⊗R H1 → Pauli⊗R H2 is unitary;
2) The operator UΘ : Pinor ⊗R H1 → Pinor ⊗R H2 is orthogonal.

Proof. Because ΘHn is bijective, U is surjective iff ΘH2 ◦ U ◦Θ−1
H1

is surjective.
For all g ∈ Pauli⊗R H1, we have:

< g, g >=< ΘH1(g),ΘH1(g) > (3.7)

< U(g), U(g) >=< ΘH2(U(g)),ΘH2(U(g)) > (3.8)

Since ΘHn is bijective, we get that the following two statements are equivalent:
1) for all g ∈ Pauli⊗R H1, < g, g >=< U(g), U(g) >;
2) for all g′ ∈ Pinor ⊗R H1, < g′, g′ >=< ΘH2(U(Θ−1

H1
(g′))),ΘH2(U(Θ−1

H1
(g′))) >.

5



Definition 3.8. The space of Majorana spinor fields over a set S, Pinor(S) ≡ Pinor⊗R
L2(S), is the real Hilbert space of Majorana spinors whose entries, in a Majorana basis,
are real Lebesgue square integrable functions of S.

Definition 3.9. The space of Pauli spinor fields over a set S, Pauli(S) ≡ Pauli⊗RL
2(S)

is the complex Hilbert space of Pauli spinors whose components are complex Lebesgue
square integrable functions of S.

4 Linear Momentum of Majorana spinor fields

Definition 4.1. L2(Rn) is the real Hilbert space of real functions of n real variables
whose square is Lebesgue integrable in Rn. The internal product is:

< f, g >≡
∫
dnxf(x)g(x), f, g ∈ L2(Rn) (4.1)

Remark 4.2. The Pauli-Fourier Transform FP : Pauli(Rn)→ Pauli(Rn) is an unitary
operator defined by:

FP{ψ}(~p) ≡
∫
dn~x

e−i~p·~x√
(2π)n

ψ(~x), ψ ∈ Pauli(Rn) (4.2)

Where the domain of the integral is Rn.

Definition 4.3. The Majorana-Fourier Transform FM : Pinor(R3) → Pinor(R3) is an
operator defined by:

FM{Ψ}(~p) ≡
∫
d3~x

e−iγ
0~p·~x√

(2π)3

/pγ0 +m√
Ep +m

√
2Ep

Ψ(~x), Ψ ∈ Pinor(R3) (4.3)

Where the domain of the integral is R3, m ≥ 0, Ep ≡
√
~p2 +m2 and /p = Epγ

0 − ~p · ~γ.

Proposition 4.4. The Majorana-Fourier Transform is an unitary operator.

Proof. The Majorana-Fourier Transform can be written as:

FM{Ψ}(~p) ≡

√
Ep +m

2Ep

(∫
d3~x

e−iγ
0~p·~x√

(2π)3
Ψ(~x)

)
(4.4)

−

√
Ep −m

2Ep

~p · ~γγ0

|~p|

(∫
d3~x

e+iγ0~p·~x√
(2π)3

Ψ(~x)
)

(4.5)

So, one gets:

FM{Ψ} = S ◦ FΘ
P {Ψ} (4.6)

Where S : Pinor(R3)→ Pinor(R3) is a bijective linear map defined by:[
S{Ψ}(+~p)
S{Ψ}(−~p)

]
≡

 √
Ep+m

2Ep
−
√

Ep−m
2Ep

~p·~γγ0
|~p|√

Ep−m
2Ep

~p·~γγ0
|~p|

√
Ep+m

2Ep

 [ Ψ(+~p)
Ψ(−~p)

]
(4.7)

We can check that the 2 × 2 matrix appearing in the equation above is orthogonal.
Therefore S is an unitary operator. Since FΘ

P is also unitary, FM is unitary.

6



Proposition 4.5. The inverse Majorana-Fourier Transform verifies:

(γ0~γ · ~∂ + iγ0m)F−1
M {Ψ}(~x) = (F−1

M ◦R){Ψ}(~x) (4.8)

Where Ψ ∈ Pinor(R3) and R : Pinor(R3)→ Pinor(R3) is a bijective linear map defined
by R{Ψ}(~p) = iγ0EpΨ(~p).

Proof. We have F−1
M = (FΘ

P )−1 ◦ S−1. Then:

(γ0~γ · ~∂ + iγ0m)(FΘ
P )−1{Ψ}(~x) = ((FΘ

P )−1 ◦Q){Ψ}(~x) (4.9)

Where Q : Pinor(R3)→ Pinor(R3) is a bijective linear map defined by:[
Q{Ψ}(+~p)
Q{Ψ}(−~p)

]
≡
[

iγ0m i~p · ~γ
−i~p · ~γ iγ0m

] [
Ψ(+~p)
Ψ(−~p)

]
(4.10)

Now we show that Q ◦ S−1 = S−1 ◦R:[
iγ0m i~p · ~γ
−i~p · ~γ iγ0m

]  √
Ep+m

2Ep

√
Ep−m

2Ep

~p·~γγ0
|~p|

−
√

Ep−m
2Ep

~p·~γγ0
|~p|

√
Ep+m

2Ep

 = (4.11)

=

 √
Ep+m

2Ep

√
Ep−m

2Ep

~p·~γγ0
|~p|

−
√

Ep−m
2Ep

~p·~γγ0
|~p|

√
Ep+m

2Ep

 [ iγ0Ep 0
0 iγ0Ep

]
(4.12)

5 Angular momentum of Majorana spinor fields

Definition 5.1. Let ~x ∈ R3. The spherical coordinates parametrization is:

~x = r(sin(θ) sin(ϕ)~e1 + sin(θ) sin(ϕ)~e2 + cos(θ)~e3) (5.1)

where {~e1, ~e2, ~e3} is a fixed orthonormal basis of R3 and r ∈ [0,+∞[ θ ∈ [0, π], ϕ ∈ [−π, π].

Definition 5.2. Let

S3 ≡ {(p, l, µ) : p ∈ R≥0; l, µ ∈ Z; l ≥ 1;−l ≤ µ ≤ l − 1} (5.2)

The Hilbert space L2(S3) is the real Hilbert space of real Lebesgue square integrable
functions of S3. The internal product is:

< f, g >=
+∞∑
l=1

l−1∑
µ=−l

∫ +∞

0

dpf(p, l, µ)g(p, l, µ), f, g ∈ L2(S3) (5.3)

Definition 5.3. The Pauli-Hankel transformHP : Pauli(R3)→ Pauli(S3) is an operator
defined by:

HP{ψ}(p, l, µ) ≡
∫
r2drd(cos θ)dϕ

2p√
2π
λ†lµ(pr, θ, ϕ)ψ(r, θ, ϕ), ψ ∈ Pauli(R3) (5.4)
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The domain of the integral is R3. The matrices λlµ, the spherical Bessel function of the
first kind jn [26], the Pauli spherical matrices ωlµ [27], the spherical harmonics Ylµ and
the associated Legendre functions of the first kind Plµ are:

λlµ(r, θ, ϕ) ≡ωlµ(θ, ϕ)
(
jl(r)

1 + σ3

2
+ jl−1(r)

1− σ3

2

)
(5.5)

jl(r) ≡rl
(
− 1

r

d

dr

)l sin r
r

(5.6)

ωlµ(θ, ϕ) ≡
(
−
√

l − µ
2l + 1

Yl,µ(θ, ϕ) +

√
l + µ+ 1

2l + 1
Yl,µ+1(θ, ϕ)σ1

)1 + σ3

2
(5.7)

+
(√ l + µ

2l − 1
Yl−1,µ(θ, ϕ)σ1 +

√
l − µ− 1

2l − 1
Yl−1,µ+1(θ, ϕ)

)1− σ3

2
(5.8)

Ylµ(θ, ϕ) ≡

√
2l + 1

4π

(l −m)!

(l +m)!
P µ
l (cos θ)eiµϕ (5.9)

P µ
l (ξ) ≡(−1)µ

2ll!
(1− ξ2)µ/2

dl+µ

dξl+µ
(ξ2 − 1)l (5.10)

Remark 5.4. Due to the properties of spherical harmonics and Bessel functions, the
Pauli-Hankel transform is an unitary operator. The inverse Pauli-Hankel Transform
verifies:

~σ · ~∂ H−1
P {ψ}(~x) = (H−1

P ◦R
′){ψ}(~x) (5.11)

Where ψ ∈ Pauli(S3) and R′ : Pauli(S3) → Pauli(S3) is a bijective linear map defined
by:

R′{ψ}(p, l, µ) ≡ pσ1σ3ψ(p, l, µ) (5.12)

Definition 5.5. The Majorana-Hankel transform HM : Pinor(R3) → Pinor(S3) is an
operator defined by:

HM{Ψ}(p, l, µ) ≡
∫
r2drd(cos θ)dϕ

2p√
2π

∆†(p, l, µ, r, θ, ϕ)Ψ(r, θ, ϕ), Ψ ∈ Pinor(R3)

(5.13)

∆(p, l, µ, r, θ, ϕ) ≡

√
Ep +m

2Ep
Λlµ(pr, θ, ϕ) +

√
Ep −m

2Ep
(−1)µΛl,−µ−1(pr, θ, ϕ)iγ3 (5.14)

Where the matrices Λlµ(r, θ, ϕ) ≡ Θ ◦ λlµ(r, θ, ϕ) ◦ Θ−1 are obtained from the Pauli
matrices λlµ replacing (i, σ1, σ3) by (iγ0, γ1γ5, γ3γ5).

Proposition 5.6. The Majorana-Hankel transform is an unitary operator.

Proof. The Majorana-Hankel transform can be written as:

HM = S ◦ HΘ
P (5.15)
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Where S : Pinor(S3)→ Pinor(S3) is a bijective linear map defined by:[
S{Ψ}(p, l, µ)
S{Ψ}(p, l,−µ− 1)

]
≡

 √
Ep+m

2Ep

√
Ep−m

2Ep
(−1)µiγ3

−
√

Ep−m
2Ep

(−1)µiγ3
√

Ep+m

2Ep

 [ Ψ(p, l, µ)
Ψ(p, l,−µ− 1)

]
(5.16)

We can check that the 2 × 2 matrix appearing in the equation above is orthogonal.
Therefore S is an unitary operator. Since HΘ

P is also unitary, HM is unitary.

Proposition 5.7. The inverse Majorana-Hankel Transform verifies:

(γ0~γ · ~∂ + iγ0m)H−1
M {Ψ}(~x) = (H−1

M ◦R){Ψ}(~x) (5.17)

Where Ψ ∈ Pinor(S3) and R : Pinor(S3) → Pinor(S3) is a bijective linear map defined
by:

R{Ψ}(p, l, µ) ≡ iγ0EpΨ(p, l, µ) (5.18)

Proof. We have H−1
M = (HΘ

P )−1 ◦ S−1. Then we can check that iγ5Λlµ(pr, θ, ϕ) =
−(−1)µΛl,−µ−1(pr, θ, ϕ)iγ1.

Therefore, the inverse Pauli-Hankel Transform verifies:

(γ0~γ · ~∂ + iγ0m) (HΘ
P )−1{Ψ}(~x) = ((HΘ

P )−1 ◦Q){ψ}(~x) (5.19)

Where Ψ ∈ Pinor(S3) and Q : Pinor(S3) → Pinor(S3) is a bijective linear map defined
by:[

Q{Ψ}(p, l, µ)
Q{Ψ}(p, l,−µ− 1)

]
≡
[

iγ0m (−1)µγ0γ3p
−(−1)µγ0γ3p iγ0m

] [
Ψ(p, l, µ)
Ψ(p, l,−µ− 1)

]
(5.20)

Now we show that Q ◦ S−1 = S−1 ◦R:[
iγ0m (−1)µγ0γ3p

−(−1)µγ0γ3p iγ0m

]  √
Ep+m

2Ep

√
Ep−m

2Ep
(−1)µiγ3

−
√

Ep−m
2Ep

(−1)µiγ3
√

Ep+m

2Ep

 = (5.21)

=

 √
Ep+m

2Ep

√
Ep−m

2Ep
(−1)µiγ3

−
√

Ep−m
2Ep

(−1)µiγ3
√

Ep+m

2Ep

 [ iγ0Ep 0
0 iγ0Ep

]
(5.22)

6 Majorana spinor representation of the Lorentz group

Remark 6.1. The Lorentz group, O(1, 3) ≡ {λ ∈ R4×4 : λTηλ = η}, is the set of real
matrices that leave the metric, η = diag(1,−1,−1,−1), invariant.

The proper orthochronous Lorentz subgroup is defined by SO+(1, 3) ≡ {λ ∈ O(1, 3) :
det(λ) = 1, λ0

0 > 0}. It is a normal subgroup. The discrete Lorentz subgroup of parity
and time-reversal is ∆ ≡ {1, η,−η,−1}.

The Lorentz group is the semi-direct product of the previous subgroups, O(1, 3) =
∆ n SO+(1, 3).
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Remark 6.2. Pin(3, 1) [2] is the group of endomorphisms of Majorana spinors that leave
the space of linear combinations of the Majorana matrices invariant, that is:

Pin(3, 1) ≡
{
S ∈ End(Pinor) : detS = 1, S−1(iγµ)S = Λµ

νiγ
ν , Λ ∈ O(1, 3)

}
(6.1)

The map Λ : Pin(3, 1)→ O(1, 3) defined by:

(Λ(S))µνiγ
ν ≡ S−1(iγµ)S (6.2)

is two-to-one and surjective. It defines a group homomorphism.
Pin(3, 1) is the semi-direct product of the groups Spin+(3, 1) ≡ {eθjiγ5γ0γj+bjγ0γj :

θj, bj ∈ R, j ∈ {1, 2, 3}} and Ω ≡ {±1,±iγ0,±γ0γ5,±iγ5}. The group homomorphisms
Λ : Spin+(3, 1) → SO+(1, 3) and Λ : Ω → ∆ are two-to-one and surjective. Spin+(3, 1)
is isomorphic to SL(2,C), while the unitary subgroup Spin+(3, 1) ∩ SU(4) = {eθjiγ5γ0γj :
θj ∈ R, j ∈ {1, 2, 3}} is isomorphic to SU(2).

Definition 6.3. The Majorana spinor representation of Pin(3, 1) and subgroups is de-
fined by the action of S ∈ Pin(3, 1) in the space of Majorana spinors.

Remark 6.4. A unitary matrix representation of a group is irreducible iff there is no
basis where all the matrices of the representation can be block diagonalized (in a non-
trivial way).

Proposition 6.5. The Majorana spinor representation of Spin+(1, 3) ∩ SU(4) (isomor-
phic to SU(2)), is irreducible.

Proof. In a Majorana basis, the automorphisms of Majorana spinors are 4×4 non-singular
real matrices. We can check that iγ5γ0γj ∈ Spin+(1, 3) ∩ SU(4), j ∈ {1, 2, 3}. These
matrices square to −1 and anti-commute. If there is a basis where they are all block
diagonal, then the blocks also square to −1 and anti-commute. But there is only one
(linear independent) 2× 2 real matrix that squares to −1 and no 1× 1 real matrix that
squares to −1. Therefore, the representation is irreducible.

7 Majorana spinor field representation of the Poincare

group

Consider a Majorana spinor field Ψ ∈ Pinor(R3). Let the Dirac Hamiltonian, H, be
defined in the configuration space by:

iH{Ψ}(~x) ≡ (γ0~γ · ~∂ + iγ0m)Ψ(~x), m ≥ 0 (7.1)

In the momentum space:

iH{Ψ}(~p) ≡ iγ0EpΨ(~p) (7.2)

The free Dirac equation is verified by:

(∂0 + iH)e−iHx
0{Ψ} = 0 (7.3)
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Definition 7.1. Given a Majorana spinor field Ψ ∈ Pinor(R3), we define Ψ(x) ≡
e−iHx

0{Ψ}(~x). The Majorana spinor field representation of the Poincare group is de-
fined by:

P (S, b){Ψ}(x) ≡ SΨ(Λ−1
S x+ b) (7.4)

Where S ∈ Pin(3, 1), ΛS ∈ O(1, 3) is such that Λµ
S νγ

ν = SγµS−1 and b ∈ R4.

Proposition 7.2. The Majorana spinor field representation of the Poincare group is
unitary.

Proof. 1) The representation of the Poincare group is surjective. That is, for all Ψ ∈
Pinor(R3), there is a Φ(x) = S−1Ψ(Λ−1

S (x− a)) such that:

Ψ(x) = SΦ(ΛSx+ a) (7.5)

2) The only part of the Poincare representation that is not easy to see that is unitary are
the boosts. Let S be a boost transformation:

< FM ◦ S{Ψ},FM ◦ S{Ψ} >=

∫
d3~xd3~yΨ†(~y)F (~y, ~x, S)Ψ(~x) (7.6)

Then:

F (~y, ~x, S) =

∫
d3~p

(2π)3
S†

/pγ0 +m√
Ep +m

√
2Ep

eiγ
0~Λ(p)·(~y−~x) /pγ0 +m√

Ep +m
√

2Ep
S (7.7)

=

∫
d3~p

(2π)3
S†

cos(~Λ(p) · (~y − ~x))/pγ0 + sin(~Λ(p) · (~y − ~x))iγ0m

Ep
S (7.8)

=

∫
d3~p

(2π)3Ep
{cos(~Λ(p) · (~y − ~x))/Λ(p)γ0 + sin(~Λ(p) · (~y − ~x))iγ0m} (7.9)

=

∫
d3~p

(2π)3Ep
{cos(~p · (~y − ~x))/pγ

0 + sin(~p · (~y − ~x))iγ0m} (7.10)

= F (~y, ~x, 1) (7.11)

Therefore:

< FM ◦ S{Ψ},FM ◦ S{Ψ} >=< FM{Ψ},FM{Ψ} > (7.12)

Using the fact that the Majorana-Fourier transform is unitary, we conclude that:

< S{Ψ}, S{Ψ} >=< Ψ,Ψ > (7.13)

So, the representation of the Poincare group is unitary.

Proposition 7.3. The Majorana spinor field representation of the inhomogeneous re-
stricted Lorentz group, for a finite mass, is irreducible.
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Proof. Suppose that we have for some Φ and Ψ, that for all a ∈ R4:

< Φ, P (1, a){Ψ} >= 0 (7.14)

Doing a Fourier transform, the above equation can be written as:∫
d3~p

(2π)3
Φ†(~p)e−iγ

0p·aΨ(~p) = 0 (7.15)

∫
d3~p

(2π)3
Φ†(~p)

(1 + γ0

2
e−ip·a +

1− γ0

2
eip·a)Ψ(~p) = 0 (7.16)

Now we multiply it by e−i~q·~a, with ~q arbitrary. Integrating in ~a, we get:

Φ†(~q)
1 + γ0

2
Ψ(~q)e−iEqa0 + Φ†(−~q)1− γ0

2
Ψ(−~q)eiEqa0 = 0 (7.17)

If we multiply the equation above by eiEqa0 and we integrate a0 from 0 to 2π/Eq, we

get Φ†(~q)1+γ0

2
Ψ(~q) = 0. Considering real and imaginary parts in separate, we obtain

Φ†(~q)Ψ(~q) = 0 and Φ†(~q)iγ0Ψ(~q) = 0.
Suppose S ∈ Pin(1, 3) verifies S/q = /pS. Then it can be written as: S = BpRB

−1
q ,

where R/l = /lR and Bp is any Lorentz transform verifying Bp/l = /pBp. Now suppose

i/l = iγ0m, with m > 0. Then Bp ≡ /pγ0+m√
Ep+m

√
2m

, where p0 = Ep, satisfies Bp/l = /pBp.

Then R is a representation of SU(2) and:

S{Ψ}(x) =

∫
d3~p√
(2π)3

S
/pγ0 +m√

Ep +m
√

2Ep
e−iγ

0Λ(p)·xΨ(~p) (7.18)

=

∫
d3~p√
(2π)3

/Λ(p)γ0 +m√
Λ0(p) +m

√
2Λ0(p)

e−iγ
0Λ(p)·xR

√
Λ0(p)

Ep
Ψ(~p) (7.19)

=

∫
d3~p√
(2π)3

(Λ−1)0(p)

Ep

/pγ0 +m√
Ep +m

√
2Ep

e−iγ
0p·xR

√
Ep

(Λ−1)0(p)
Ψ(~Λ−1(p)) (7.20)

Then:

FM ◦ S{Ψ}(x0, ~p) = e−iγ
0Epx0R

√
(Λ−1)0(p)

Ep
Ψ(~Λ−1(p)) (7.21)

Since m > 0, for all ~q and ~p, we can always find Λ such that ~q = ~Λ(p). If the Poincare
representation is reducible, since it is unitary, there are 2 states Ψ,Φ verifying for all
g ∈ SL(2,C) and a ∈ R4:

< Φ, Sg ◦ T (a){Ψ} >= 0 (7.22)

This implies that for all ~p and ~q:

m

Ep
Φ†(~q)RΨ(~p) = 0 (7.23)

R is a Majorana representation of SU(2), which is irreducible, so the equation above is
not true. Therefore the Poincare representation is irreducible.
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8 Energy of Majorana spinor fields

Definition 8.1. The Energy Transform E : Pinor(R)→ Pinor(R) is an operator defined
by:

E{Ψ}(p0) ≡
∫
dx0 e

iγ0p0x0

√
2π

Ψ(x0), Ψ ∈ Pinor(R) (8.1)

Where the domain of the integral is R, m ≥ 0.

Proposition 8.2. The Energy transform is an unitary operator.

Proof. The Energy transform can be written as:

E{Ψ}(p0) = ΘL2 ◦ FP (−p0) ◦Θ−1
L2 {Ψ} (8.2)

Where FP (−p0) is a Pauli-Fourier transform over R. Since the Pauli-Fourier transform
is unitary, so is the Energy transform.

The energy transform can be applied in the time coordinate of a Majorana spinor
field, x0, after a (linear or spherical) momentum transform on the space coordinates, ~x,
to define an unitary energy-momentum transform:
- for the linear case E ◦ FM : Pinor(R4)→ Pinor(R4);
- for the spherical case E ◦ HM : Pinor(R4)→ Pinor(R× S3).

9 Conclusion

We fulfilled our goal to show that (without second quantization operators) all the
kinematic properties of a free spin 1/2 particle with mass are present in the real solutions
of the real free Dirac equation.
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