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research on nuclear decays in general, with an explanation of empirical phenomena of "cold fusion 
and" cold fission "     
and cold nuclear transmutation.  
 
At the base of the research is the assumption that the decay of the excited atoms can be driven by 
fields assionici, (hypothesis taken from theories of Mr. Frank Wilczek) with exchange of "axions" 
between electrons and between nuclei at speeds exceeding r luminal 
and with axions (particles gremlins), bosonic particles particular, with speed> 10 ^ +62 c that in 
special cases of disturbance decay in a very short time in photons. (about 10 ^ -28 seconds) with 
speed c (light velocity). Personally I prefer the term particles gremlins. 
Particular fields, with exchanges between groups of particles, have been hypothesized many 
times, by many theorists, to explain the anomaly of condensed matter, and the formation of 
crystals and all the various "condensation" of matter, sub-micron level, where the normal 
electrostatic forces of Van der Wals not have sufficient strength to "" "bonding of crystals. 
The contraindication for this theory, is that they never measured these particles, which 
They are usually represented by photons. Or the like. 
I believe that have never been measured, because the particles are exchanged speed 
Huge, superluminal, almost instantaneous, more than 10 ^ +62 c 
Fields assionici are fundamental in the phenomena of so-called cold fusion and cold 
transmutations.  
the nuclei depending on the speed of execution or excitement,  
may produce different decay modes . And explain why we may have different decay modes, such 
as  
decay times of the order of 10 ^ -10 seconds.,  
produce many photons broad spectrum for the dropout quote of the core.  
times of the order of 10 ^ -23 seconds, producing a single photon range, or in the case of beta 
decays neutrinos and electrons. 
We can produce a new understanding of the phenomena 
 of decay electro-weak and strong force, which are present in the nucleus, 
derived from the findings of high-energy physics, and from the observations and 
experimental data not standard, called cold fusion, or 
from nuclear disasters from cosmological observations, results from 
experimental variations of strange decay rates.   
 
 
This article is the first part of an analysis of weak decays. and mergers, in nuclei with atomic 
number not exceeding 3  



followed by another article, with the analysis of alpha decays, and the analysis of the different 
decays, on the basis of the density of the nuclei. And with atomic number greater than 3. 
  
  
First part-introduction and explanation of electron capture energy in nuclei, and possible mergers 
 
  1 --- Abstract  
  Empirical semi-classical decay beta decays to electron capture, and phenomena of "cold fusion" 
  
  
This article discusses a statistic empirical decays β + β -.,. derived from macroscopic observables. 
In this way, we can find and "isolate" sensitive variables which determine the frequency of decay of 
nuclei. and we can begin to understand how to intervene "to artificially change the natural rates of 
decay, and find ways to decay, fission and fuse nuclei in energy conditions" cold " 
We can identify the underlying mechanism that allows  type of decays, 

and to understand why the phenomena of decay, for β +     for electron capture and decay α are 
driven by the same basic principles 
  
we can understand the mysterious mechanisms of the so-called Cold Fusion., and explains how to re 
nuclear fusions occur in environments with very low density  energy. 
We can understand how the nuclei, using energy "environmental concentration is not high, can have 
behaviors that seem to be possible only for large energies, 
The statistics electro - weak are based on the assumption that every phenomenological decay 

electroweak, must be mediated by Higgs bosons decaying into Z ° and W ∓ , And produce a phase 

strange, 
The quarks change flavor, in the interaction of Z ° bosons created by the excitement of the local 
vacuum, and that modify the stangeness of quarks, which decay into down and up with the issue of 

W bosons ∓ and modification of electrical charge. 
  
  
  

 
Fig.1-pictorial image of the interior of a proton. with phase "strangeness 
  
  



2 ---- Introduction 
  
At the base of the decays, we assume a physical mechanism of illumination and detection of areas 
with a defined radius of about 10-18mt. (About 1 Tev of wave amplitude) 
The hypothesis that provides illuminating a space with smaller radius 10-18mt, the probability of 
production of bosons virtual Z ° becomes very high, and bosons products can interact with the 
quark, and then return the debt energetic vacuum with an annihilation process very special. 
On their way, the Z ° bosons interact with the quarks of the nuclei, and it tastes change, a process 

that ends with the issuance of W bosons ∓ and change in electric charge of the quarks. 
  

 
Fig.2 Diagram-boson Z °-quark interaction and change of taste 
  
The production Z °, begins with the lighting or the determination of 
space between electrons and quark up of the core., or the same process can occur with sudden 
jumps in density and internal temperature of the mixture of quark core for imbalances of bond 
energies. 
Under typical energy of electron capture, an electron in a state of oscillation energy with vacuum. 
Tau can reach the state and exist in the interior of the nucleus. . 
The electrons  reach the state Tau as do the neutrinos, and Tau are in the state for about 10 ^ -28 
seconds. 
In these times, they can not interact with the quarks, and the oscillation ends without producing any 
phenomena. 
In the state Tau electrons can have functions of antenna and exchange photons / virtual axions with 
internal and external electromagnetic fields produced by the quark core or special conditions of 
electrons "protruding. 
The electron in a state Tau inside the nucleus with increased energy state by the simultaneous 
reception of photons / axions (so basically a single photon), brings the core was stran ge, for times 
less than 10-27 sec, maybe we are on 10 ^ -23 seconds, and beta decays into normally. Hardly the 
nucleus in this state will be able to interact with other nuclei. 
This process leads to the decay of nuclei themselves for electron capture when a condition exists 
with natural imbalances in the composition of the bonds internal energy of the nucleus with 
relatively rich unstable nuclei of protons than neutrons. 
In the case of beta decay the same normal quarks, photons produce the necessary 



for the state strange, with jumps in density between them, for the illumination of spaces required for 
the formation of bosons Z °. 
In the case of cold fusion, the nuclei have been strange times in the order of 10-10 seconds, 
because the electron Tau was unable to receive photons assionici from about one billion electron 
present in the environment in the form of a vortex. 
  
We can produce electronic captures artificial, with chains of electrons in the vortex artificially 
brought in the right energy conditions, with energy input from external electric fields, which 
induces spin chains of millions of electrons to interact with the electromagnetic fields of the interior 

of the nucleus quark., with the production of Higgs bosons which decay to Z ° decaying into W ∓ 
Electrons in the vortex around the cores, can produce an exchange of photons super - luminal with 
the quark of the core, or with an electron in state Tau within the nucleus. 
We can describe the behavior of vortices euristic, without resorting to very complex 
calculations. We can infer, from the experimental data, the construction of vortices of electrons, 
with diameter approximately around 10 ^ - 6). 10 ^-10m, in number of at least one billion, with very 
low speed, around a few hundred nuclei of hydrogen or deuterium, 
and the energy required to maintain the vortex can be taken from electromagnetic fields is not 
particularly intense, present in the environment. 
Personally, I believe that the photons emitted by the electrons to stay in a circle, 
can become a kind of bosons assionici with superluminal velocity, and be absorbed in times around 
10 ^ -28 seconds by electrons in state or Tau normal swing with the vacuum, and inside the nuclei, 
for example, <we can approximate the energy released per electron to 1MeV, sing and produce a 
photon or 1 Gev (with a billion electrons), 
which allows the Tau to remain in this state for u n time ranging from 10 ^ -16 seconds, 10 ^ -10 
seconds and produce a prevalence of strange quark sea of quarks inside the nucleus. 
The transfer speed of the photons is virtually instantaneous, (approximately <10 ^ -28 seconds), and 
then 
s i can build the photon with the energy necessary for the normal production of quark-
annihilation the sea in the nucleus, the state of the strange quark prevail. 
The phenomenon is quite similar to that c h was measured in the transfer of photons 
In the process photo - synthetic between antennas 1 external and 2 internal antennas .. 
Possibly, also the phenomenon could occur at Mossbauer superluminal speed, 
with the involvement of many nuclei in crystals, with a radius of about one micron, 
in line with the observation of energy transfer-heat mode not Planck , 
superluminal speed in crystals with a radius of about 1 m cron. 
  
This would be a good experimental evidence in favor of the hypothesis. 
the trade or particles assioniche or gremlins the ns, which in practice are photons at super-luminal 
and which decay into photons normal at light speed in normal conditions of interference .. 
  
  
A similar mechanism occurs in the decay β , In unstable nuclei neutron-rich compared to the proton 
or vice versa, in this case the space of at least 10-18mt is identified by vibrations of the quark of 
nucleons the core components with production Z °, and consequent decay. 
  
All these cases have in common the identification of an area of less than 
10-18mt, (wave amplitude of a Tev) and the formation of virtual bosons Z ° from the vacuum. 
We can think of the lighting of a space of 10-18mt, such as the formation of rings "heavy light" 
surrounding the nuclei, composed of light heavy virtual Z ° bosons with energy of about 90Gev. 
  



 
  
Fig 3. - diagram with vertex function of changes in the flavor of quark interaction with the Z ° 
bosons 
  



 
  
Figure 4 - decay phase strange quark by emission with W + boson 
  
  
The mechanisms of the decays allow to identify the behaviors that are the basis of mergers weak 
induced transmutations with "surprising" associated with low energy nuclear effects and amazing 
and surprising effects of elimination of gamma radiation with effects, which allow the emission of 
photons in cascades of times of 10 ^ -10 seconds to release the excess energies, while we would 
normally outputting a single range of relaxation energy. or the emission of electrons and anti-
neutrino or positron and neutrino, to comply with the decay times of 10-23 seconds of the change of 
state for strange normal beta decay or even the time for fusion of nuclei. 
Similar mechanisms delete the gamma photons and pions, and neutrinos in the decay of strange 
quarks. 
  



 
  
Fig.5-diagram cancellation mechanism in the vacuum of the Higgs boson 
  
With this data, we can infer a golden rule of probabilistic behavior of the decays 
  
-A quark decays with a strange phase in down if it was in the up state, and vice versa. - 
  
For example- 
In a single proton, if the strange phase, concerns an up quark, we have a phase lambda or sigma 
The proton decays into a neutron. 
If the phase relation at the same time a strange up quarks and a down quark, 
we have a phase Xi, and proton decays into a proton. 
If the phase strange regards all three qu a rk, we have a phase omega- and proton decays into a 
neutron. 
  
If we, for example, a cold fusion reaction between 

Fe56 + proton-phase lambda /sima ----- >  Fe57 
Fe56 + xi-phase proton                   ------ >  Co57 
Fe 56 + omega phase proton           ------ >  Fe57 
  
We find empirical equations for the probability of nuclear processes with strange changes in the 
nuclei. 
Are not addressed in this article to simplify, we meet in a general explanation with statistical euros. 
For a very accurate calculation of these phenomena with quantum mathematics Standard, we should 
have for a single electron, 19 free parameters, plus 9 parameters for the 'oscillation in vacuum, plus 
7 parameters for the interaction with the Higgs bosons, plus 100 parameters for 
the self-gravitational interactions with the Higgs fields. (SUSY) 
The calculation is so complex as to be intractable in practice. 
We must follow the empirical indications of laboratory experiments. 
The principle is based on the need of the electron to oscillate with the vacuum, and pass in three 
basic states energy from electronic state in muon and tau. 
Of course, it will pass most of the time in the state fundamental energetic, 
but for about 10 ^ -28 seconds, will be in the state tau. 
In this case, you will find within the nucleus with which it is linked, 
and the core itself will go into strange. 
If the time is within 10 ^ -28 seconds, we will have no measurable change, 
and the core will remain in the ground state. 



but if the electron in state Tau receives additional energy, for exchange superluminal photon-axions 
with quark excited, may lengthen the life time of about 10-23 seconds and produce a beta decay. 
The electron in a state Tau could receive energy from the outside, 
always-axions with photons, and concentrate and produce excitation 
strange core with times of about 10 ^ -10 seconds. 
In this case, the excited nucleus may travel a micron, and interact with another core, and merge., In 
this case with times of excitation of 10 ^ -10 seconds, 
the core will release photons, about 10 ^ +12 photons, in pairs to eliminate the excess energy. 
  
The change factor strange has an exponential increase and / or decrease exponentially directly 
proportional to variations also relatively very "small" in the times of detection of the distance of 
10-16cm ^. within the nuclei 
  
The factor is treated in equations probabilistic behavior in cm / sec, that is not strictly a speed, but 
covers a distance found in a second., And takes account of the strange prop r IETA of Z ° to 
dramatically increase the probability of interaction, when you arrive at energies of illumination of 
more than 1 Tv, where Z ° bosons self spread until they find target exponentially increasing the 
chances of capture and the cross section 
In the case of electron capture probabilities of events are enormously sensitive to small changes in 
the order of fractions of 10 ^-16cm away from the “illuminazione” and even slightly decreasing or 
increasing the distance illuminated by 10 ^-16cm., You increase enormously the possibility of 
electron capture. 

  
  

 
Fig.6 - . Pictorial image of the nucleus and force fields 
  
  
  
3 - Electron capture in individual nuclei with atomic number> 3 
  



The electron capture occurs normally in unstable nuclei, with a relatively high number of protons 
to neutrons and we can assume that one of the electrons that orbit the nucleus normally, go in and 
swap Tau was axion-photon gremlins 
With the quarks of the nucleus, binding energy absorbing excess, and bring up quarks in a strange 
state. c on final change from up to down and normal beta decay. 
. 
This possibility could also be induced "artificially outside of nuclei naturally stable. 
In the case of stable nuclei, an electron in state Tau, may exchange energy in excess from the 
outside of the core, and 10-1 define distances of 6 cm with the quark of protons forming the 
nucleus 
This. Away or "lighting space always produces virtual Z ° bosons 
  
In stable nuclei, the production of strange been disturbed, does not usually produce 
changes 
unless have  interazione with other nuclei., possibility that we discuss later 

  
The production of Z bosons °, produces the phase strangeness, and decays with the emission 

W ∓, according to the types of decay 
  
All of the diagrams that follow non-classical are not to scale, propose the general scheme of the 
reactions., 
  

 
Fig 7-Diagram (not to scale) with electron capture decay phase sigma 

  
In electron capture an up quark, in interaction with a boson Z °, it becomes strange and the issuance 
of a W + decays into down. 
The interesting thing is that after the decay of W + in positron and neutrino, the positron annihilates 
with an electron product manager illumination original 
and we have no emission of two photons are absorbed by debt because of energy produced in a 
vacuum. 
4-H and phenomena in single proton in the nucleus with atomic number <4 
  



an interesting physical phenomenon with nuclei of H and D,, composed of a single proton, or a 
proton and a neutron, takes place in special conditions "artificial". 
We can imagine nuclei surrounded by vortices of electrons, millions of electrons gathered in spin 
chains .. 
We have, consequently, strong electromagnetic fields produced by the vortices of electrons, which 
gain energy by absorbing photons generated by electromagnetic fields in the environment .. 
The chains of electrons interact strongly with the electric charges of the quarks, and force them to 
absorb energy, with a huge amount of photons exchanged. 
The quark, in the process of absorption energy, are forced to "restrict" the wave amplitude, and the 
size of the nucleus. 
In addition, the electrons normally bound to the nucleus, when they were in Tau, 
can be exchanged at superluminal speed and produce photons were strange in stable nuclei 
a-proton in the nucleus was strange, he may have neutral charge, if at xi, with a down and an up 
during strange. decay times of about 10 ^ -10 seconds., 
The core neutral strange could traverse spaces of about one micron, and collide with a normal 
nucleus. 
In this case, approaching in neutral charge to a normal proton, at a distance of about three femto -
 meters, induces a phase strange also approached in the proton. 
The proton approached, could go in strange omega-phase, and in this case, the repulsive force 
Columbian may dismiss the nucleus strange neutral approaching. 
At a distance of about two femto - meters, the strong force could equalize the electric repulsion 
Columbian that forms between a proton in phase strange neutral slightly negative and a proton in 
strange negative phase, and form-close a core of two components strange. 
We have a strange halo nucleus, which decays in a time of 10-10 seconds, 
with the issue of excess energy, with more than 1000 billion pairs of photons, 10 ^ +12 photons 
in broad energy range  a total energy of about 1.3 Mev, with production of a deuterium nucleus 
  
The single proton exploits the total energy of the electrons in tornado, hurricane or electronic, 
reaching energies  higher than medium ones, such as hurricanes make coherent overall kinetic 
thermal energy of an entire area, to put it in a smaller area , and thus increase the overall energy of 
air molecules that form the vortex destructive hurricane. In the same way, the electrons gathered 
harvest energy from the photons they absorb from the magnetic fields in the area, then transmitting 
photons exchange energy to an electron Tau within the nucleus, and then the quarks of the nucleus 
concerned, which increases the internal energy. 
The energy is transmitted with particles assioniche-gremlins, in practice photons in superluminal 
speed, 
almost instantaneous speed, greater than about 10 ^ +62 c, which makes them "lightweight, 
virtually no mass. 
Disorders, such as the impossibility of a debt against are in the exchange of energy referent, 
invalidates these photons into photons assionici normal speed with light and mass-energy "normal. 
The graphic  surfaces of Feynmann products, are not to scale, simply represent the idea of the 
reactions represented. 
  



 
Fig 8 - diagram of core H with electronic capture to and contemporary transformation in   − Ω 

hyperon   Ω− ,  has negative charge 1 -, and produces a repulsive effect on Colombian a proton 
neutral xi in phase, but at a distance of about three femto.metri, is balanced with the strong force 
with the two nuclei to form u n nucleus halo strange. A two-component  a charge denied that decays 
in time around 10 ^-10sec been fondamentale energy of a deuterium  
Normal-phase electronic .. 
We could then have a proton where only two quarks are being strange, 
in this case the approach to the normal proton, is similar to that of a neutron, 
for the fields Colombians. 
The approach of the nucleus strange, always gets at distances of less than 10-14m, 
that the core "normal, Energize was strange, in this case we always have a core stat or omega and a 
nucleus in a state xi, 
two nuclei in was negative and neutral, and at a distance of about 2-3 femtometri, 
the strong force merges the two nuclei, but remains in equilibrium with the repulsive forces 
Colombian. 
The core product, an excited nucleus strange, it starts to lose energy with pairs of photons with the 
same energy, but different spin, and the opposite direction. 
We can estimate these photons in number about 10 +12, 
in the energy range, between the RF emissions courtyard, infrared, blue and up to someone, 
in some cases, up to soft X emissions. 
I hypothesize that at the end of the process of decay, with the emission of the excess energy, 
the strong force takes over, and the core melts completely, with  emission of a neutrino. 
We have also the emission of a single photon in pairs, with energy range 
Between 10ev and Kev. 
We can assume the initial issue of a neutrino, to preserve the kinetic energy of the nuclei of 
momentum, but with kinetic energies of the nuclei was almost in BEC, then the kinetic energies 
with very low ambient temperatures neutrinos suggests you may have a lot of energy low, 
10Kev around the maximum, 
and then be very, very difficult to detect. 
Moreover, the species could be "sterile, increasing the difficulty of detection. 
Only direct measurements, they can solve the problem. 
Some possible reactions 



H+2(Z *)   −−>  Ξ∗  
H+3(Z *)   −−>   Ω− 
Ω

−+ Ξ∗    −−−>  2Hns* 
 
2Hns * stands for neutral strange particle. 
  
This particle could merge with or more nuclei, or isolated decay rapidly, in times of 
about 10 ^ -10 sec .. 
2Hns*--------> D  +  ννννε + 1,397 Mev  
Or we could write the reaction equation in 
H* + H*  ----> D* ----> D  + Summed  pairs of photons (1.3 MeV) + ννννεεεε 
H * = proton was strange 
D * = phase deuterium strange 
. energy resulting from the mass defect of the product of deuterium bonding makes a positive 
energy balance of the merger 

Ξ∗+Ω−*−−−−> D    +ννννε + Σγ (1.397 Mev) 
 
Single decay 

Hns* −−−−>  H  +   Σγ  
in this reaction the sum of photons that is returned to the eddies electronic pressure is not under consideration in the 

balance sheet is exactly what the return of the 'energy taken earlier by photons assionici, 
assionici photons are taken from the outer electrons and photons are released assionici 
electrons with zero energy balance, and with great efficiency, which is not produce 
energy needed for a quantum entropy. 
  
Reactions with fusion of deuterium 
D*+D* ----> He4*----> He4 + sommatoria di fotoni (23,8 Mev) +ννννε  
He4 * = elio4 in state strange 
D * = deuterium in state strange 
ννννεεεε = Electron neutrino 
Sum of photons = 10 +12 photons of various energies for about 23 Mev 
note well, nothing forbids us to think that the photons are emitted in pairs, 
where the one is in practice the anti-particle of the other. 
In this way, the number of photons as particles, although huge, in the analysis of the equation, is 
equal to zero. 
Remains the core of He4 and the neutrino, with the resulting number of particles = 2. 
This makes the equation symmetric and correct. 
The most notable of these equations is the energy return with photons, which does not occur as in 
the classic case of fusion "strong with single photon emission range, which is the most probable 
form of relaxation of the core. 
In the case of these weak interactions, mergers or weak, we emission of photons waterfalls, with 
very wide spectrum. 
It seems that the particles "remember that were energized at the beginning, by many photons-axions 
produced by the electrons in the vortex, and then may return the energy taken initially in the same 
way with decay times much wider than normal temps reactions "strong", with average time of 10-
10s of "mergers weak to achieve relaxation to the ground state of the nuclei, compared to the 
average of 10-23sec" strong .. 



Of note, the excess energy produced by the fusion, is not exchanged with photons assionici, but 
with normal photons, derived from the decay of photons assionic-gremlins, for 'inability to find 
debts of energy in the electrons. 
The electrons in the vortices are able to intercept, absorb and then re-emit a frequency. 
The excess energy produced in very broad spectrum including .. the photons emitted from the 
nucleus. 
The vortex could be destroyed in this way by the energies received, and then reform,  
if environmental conditions permit. 
From the experimental data it seems that the fields assionici, and the vortices of electrons, are 
particularly favored in energy very limited. 
The enormous dissipation of entropy produced by these reactions, it seems very compatible with 
life processes. 
The behavior of neutral strange particles is very complex and in some cases may also merge with 
nuclei at high atomic number, with many possible permutations. 
The reaction of a proton H with production of omega-. produce a neutron in the final stage. 
This reaction defines the golden rule 
Each quark-induced phase to a strange, decays into its opposite, from down to up. up or down. 
  
In this case, as empirical observations, the proton being strange Xi neutral, decays into a proton 
again, without the production of neutrinos. 
P + (2Z° *)  −−−−> Ξ°  
                Ξ° −−−−> P 
Important to note how, in this case, the Xi ° has possibility of merging with a core with many 
protons, and in this case produce different reaction products. 
In the case, for example number of Fe56 I would, as final products 

Fe56 + omega-    −−−−> Fe57 

Fe56  + Xi°      −−−−> Co57 
Interestingly, for the proton in the state of Xi °, neutral if not done any fusion reaction, in times of 
10-10 sec, we find the initial pro tone, 
with exchange of energy balanced, and would have no particular effect, even a slight increase in 
entropy in the environment .. 
In passing billions of years, the incessant exchange of photons normal - axions internuclear, 
could be producing a quantum entropy No in environment , and in this case we have the decay of 
the proton. 
The proton No omega-ell or state if it fails to melt, after 10.10 sec, neutron decays into 
With the production of entropy in 'environment. 
The case of the deuterium is  or complex, 
We in of electrons to give energy simultaneously to the proton and neutron constituents the D, 

which interact between them to transform in hyperon strange Ξ a core D "normal. 
In this case, the vortices of electrons cone production the energy required to excite the quark 
interior of deuterium, which interact between them., And form the D * strange. 
The approach of a D * strange neutral with kinetic rate very low, strange, therefore without 
repulsion Colombian, to a normal D, au  distance of about 3 Fento. Meters, 10 ^-15m, produces a 
state of excitation induced strange even D in normal. 
At this point, between 2 strange neutral, with a slightly negative electrical charge, rises the 
Coulomb barrier, that before the transformation was strange in the normal D, however, was 
attractiveness. 



But the proximity of two femto-meter, allows the strong force to intervene and paste the two into a 
single particle strange  halo. 
The strong force intervenes with normal speed, and closes the two nuclei in one, 
with the prompt issuance of a neutrino to conserve the kinetic energy, 
(The two nuclei are in a state or quasi-BEC ) 
but this is very limited, so we are in a range of less than 10Kev, and then 
the bones of these results could neutrinos or re king was brought to the normal measuring 
instruments. 
The neutrinos may also be sterile in nature, no magnetic moment, 
and then be even more difficult to detect. 
The strong force acts to produce a defined nucleus, with the normal speed, produces in this case a 
strange excited nucleus, which is recomposed in normal nucleus of deuterium in 10 ^ -10 seconds., 
while in the case of normal fusion, the deuterium nucleus excited product, is forced 
to decay in a time of 10-23 seconds with the emission of a single gamma photon. 
It is not possible to observe a nucleus excited for times of 10 ^ -23 seconds, 
but for our ability to measure, even an excited nucleus for 10 ^ -10 is virtually impossible to detect. 
  

 
Fig 9 - diagram exciting car chain with formation of P + N ---- >Ξ 
N + (2Z° *)  −−−−> Ξ- 
P +  (2Z° *)  −−−−> Ξ° 
 Ξ° +   Ξ-      −−−−>  D ∗ 



the negative strange particle decays, in times of 10 ^-10sec, in 

D ε∗(4 W∓ ) −−−−> D2     
in particular 

4 W ∓    they cancel the debt repayment of the vacuum, in a time of 1 ^ 0-10sec and get back D2 
decade 

( Ξ°  Ξ−   +4 W∓   ) −−−−>  D2 
. With 
Ξ°    −−> Ξ°    −−> Ξ°    −−> Ξ°    −−> P 
Ξ−   −−>Ξ−   −−>Ξ−   −−>Ξ−   −−> N 
The strange particle negative has high chances of merging with normal D, 
that as in the case of hydrogen, passes in phase strange 
2Ds*- + D* −−−−>  4He s*n  
–In practice, glue so weak particles with D 2 Ξ to form 4He, and with the proton and neutron decay 
respectively in the part strange we get, the formation of a nucleus of 4He normal,  the emission of 
the excess energy the mass defect, about 23Mev, with a huge waterfall at widest spectrum of 
photons of energy. 
final result of the reaction-decay 

4He*sn  −−−−>  4He   + Σy(23 mev) +ννννε 
   formation of the particles resulted  4He * ns, implies a huge possibility of various transmutations 
Another possible process, the less likely 



              
Fig.10 -. beta-decay diagram 
  
in this case, the interactions between the two nucleons quark constituents of deuterium, produce a 

nucleon from the proton and the neutron  Ξ°a nucleon Ξ−   
The two nucleons, if you do not interact and fuse with other nuclei, decay in 10-10 sec, in ∆ -
 ∆ and +, and in times of about 10-23 sec and proto neutron decay into it with the emission of pion 
+ -. and cancel each other in a vacuum. 

Interestingly, the phase strange produces 2 2  Ξ−, which can melt, within the decay times of 10-
10sec, with two deuterium nuclei strange negative, to form a core of strange 8 nucleons are neutral, 
which may merge with other 2 D, to produce a core of C12. final, and power output. 
  
In mixtures of deuterium and tritium, D and T, we have interesting reactions 
If the particle is excited in strange D *, we have the reaction 
  

D*  + T* −−−>5He 
5HE de falls into 4He + N 
In q u esto case the reaction produces free neutrons. 
If we have T * strange, we have reaction 

T* + D*  −−−>  5Li 



5Li  −−−>  4He  + P 
Or 

T*+T* −−−> 6Li  stabile 
We might have in mixtures of 50% of hydrogen and deuterium, 
also type reactions 

H*+ D*   −−−>  He3 
Or 

D*+H*   −−−>   T  
In this case we could detect tritium, and would be an interesting test for cold fusion. 
We could have, in mixtures of 50% of D and T, 
also the reactions 

D*+T*  −−−>   He5  −−−>   He4 +N 
Or 

T*+D*  −−−>     Li5  −−−>   He4 +P 
  
  
Conclusions 
Many unexplained observations of nuclear phenomena unexpected, may have a sp iegazione 
empirical putting together the information that in the last twenty years have accumulated in the 
fields of the physical at high energies, in the fields of chemistry and nuclear physics, 
in cosmological observations and also in unexpected processes in organisms, living, 
as the photo effect - synthetic. 
If we assume the existence of fields assionici, with particles gremlins extremely similar to photons, 
which can 
To interact with each other at super speeds - luminal nuclei and electrons at distances that can reach 
the rag micron, we will re possible responses to the questions that put the phenomena of cold 
fusion.   
We can then have mergers in cold nuclei with relatively low energy environment. 
Even the phenomena of decay and alpha decay / fission induced by conditions 
Details of the environment. 
For some reason the ambient temperature around 300K seems to be the most favorable for these 
phenomena, which appear to be of fundamental importance for life processes 
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Table of sinboli 

α = alpha decay in nuclei 

β = beta decay in nuclei 

γ = photon  

∆ = delta phase in the nucleus 

Σ = sigma hyperon 

Λ = lambda hyperon 

Ξ = Xi hyperon 

Ω = omega hyperon 
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