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Abstract: The fundamental vector calculus definition of a force-free, field-aligned, Birkeland 
current is expanded in cylindrical coordinates to obtain the partial differential equations (DEs) 
that yield the magnetic field created by such a current. The resulting equations are put into state-
variable form and an Euler, step-wise, approximation incorporating a 4th order Runge-Kutta 
algorithm is applied. In single-variable form, the DEs are identified as Bessel equations. J0(r) 
and J1(r) Bessel function solutions confirm the Euler results thus yielding closed form solutions 
for both the linking (azimuthal) and collinear (axial) components of the force-free field. Results 
show that both of these magnetic components reverse their directions and vary in magnitude in a 
way that aids the formation of concentric cylindrical shells of matter as has been observed in 
Marklund convection. Another result is the finding that magnetic fields extend relatively farther 
from Birkeland currents than they would from a straight-line current. They slowly decay as 

r1  for large r.  

Introduction 
The entity that is often called a Birkeland current (and at other times a ‘magnetic ropei’ or 
‘vortex current’) is most descriptively termed a ‘field-aligned current’. This concept is usually 
counter-intuitive for anyone new to the study of electricity in the cosmos. Even those who are 
aware of the properties of electric and magnetic fields have usually only seen examples where 
electric fields and currents are at right angles (orthogonal) to magnetic fields. Electric motors 
and generators are prime examples. So is the study of how cyclotrons or mass-spectrometers 
function. Most, if not all of these phenomena, are based on the Lorentz force that operates on a 
moving charge within a magnetic field:  
 Bvf   (1) 
The cross product of the moving charge’s velocity vector and the magnetic field vector implies 
that the scalar value of the resulting force is given by  
 sinvBf   (2) 
where θ is the smallest angle between the vectors v and B. So if that angle becomes zero-valued, 
the force disappears.  
 
Most examples of the interaction of electric currents and magnetic fields are presented in an 
earthbound context wherein the current is confined (and its direction thus controlled by) the 
shape and placement of the wire (or glass tube in the case of plasma) within which it exists. 
Current will flow wherever the wire is placed. If a motor is wired correctly, the Lorentz force 
will exist and the motor rotor will spin. This is not necessarily so in space. The conductors there 
are plasma. These plasmas are not confined and are able to move around and change their shape 
much more easily than can a wire stapled to a wall or cemented inside a motor housing. 
 
Whenever things can move around, they tend to seek a minimum-energy configuration. “Water 
flows downhill.” Objects tend to move in submission to applied forces – they move in such ways 
as to minimize the forces they experience. 
 



In cosmic plasma, an electric current and its associated magnetic field are free to take on a 
minimum-energy configuration. This arrangement is described as a force-free fieldii and has the 
property that: 
   0 BB   (3) 
or 
 0Bj  (4) 
The equivalence of expressions 3 and 4 is due to one of Maxwell’s equations 
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Therefore, assuming no time varying electric field is present, the Curl B vector will have the 
same direction as the current density vector, j. Both expressions (3 and 4) indicate that the 
magnetic field and the current that causes it will not push or pull on each other when they are 
exactly aligned. Such an arrangement is termed a field-aligned current. Expression 3 will be 
obeyed if the curl of B is proportional to B itself (if the current density, j, has the same direction 
as B). According to expression 3, this will occur if 
 BB   (6) 
where α is an arbitrary positive scalar quantity. If we are considering a Birkeland current, the 
natural coordinate system to use is, of course, cylindrical. (See figure 1.)  
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Figure 1. Cylindrical Coordinates 

 
Expression 6 can be expanded in those cylindrical coordinates 
as follows: 
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           = α B =  α(Br r1 + Bθ θ1 + Bz z1)                              (7) 
 
It is reasonable to expect no variation of the magnetic field as a function of the variables θ or z, 
therefore the first, second, third, and sixth partial derivatives in expression 7 are assumed to be 
zero-valued.  
 
Thus we have: 
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z1 =  α(Bθ θ1 + Bz z1) (8) 

Separating similar vector components yields 
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= αBz (10) 

We are left with two coupled differential equationsiii (9 and 10) in two dependent variables (Bθ, 
and Bz ). The independent variable in both is r.  

Euler Method of Solution 
Because expression 10 is a differential equation (DE) containing a variable coefficient (one that 
depends on the independent variable) a closed-form solution is not easily obtained. Various 
methods have been developed for approximating the solution to such equations.iv Control 
engineers are occasionally confronted with non-stationary systems – ones where the coefficients 
in the describing differential equations vary with timev. In the system being investigated here, 
the independent variable is not time, but rather radial distance, r, measured outward from the 
central z-axis of the Birkeland current stream. The mathematical difficulties are, however, 
similar. Typically state-variable analysis is used in these cases. 
 
A set of state variables for a system consists of the quantities that describe where (and how 
much) energy is stored in the system. A set of state equations is written with first derivatives of 
each state variable appearing on the left of the equal signs. No derivatives appear on the right 
sides of the equations – only state variables. In order to describe expressions (9) and (10) in 
state-variable form, the product rule for derivatives is applied to (10) as follows: 
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Since energy is stored in magnetic fields, state-variables may be defined as follows: 
 x1 = Bz  (13) 
 x2 = Bθ  (14) 
so that, rewriting expressions (9) and (12) in state-variable form yields 
 x1’ = –α x2 (15) 
and x2’ =  α x1 – 1/r x2 (16) 
Using (15) and (16) an Euler (approximate, step-wise) solution of these equations was 
implemented. Conceptually, each state-variable defines the dimensional distance of a point in 
space relative to the origin. Derivatives (such as expressions 15 and 16) are thought of as being 
the velocities of the point along each of those dimensions. If the independent variable (usually 
time) is quantized in steps of h units, then multiplying each velocity (derivative expression) by h 
yields the incremental distance the point travels along any given axis during that small time 
interval. Finally, the value of each state-variable is updated by this incremental distance to get a 
new value of the variable (position of the point in state-space). A spreadsheet was used to obtain 
such an approximate solution. In order to improve accuracy, a fourth-order Runge-Kutta 
predictor-corrector algorithm was incorporated. In iterative solutions such as this, choosing the 
initial and incremental values for the discretized variables is as much an art as it is a science.  
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Results 
The results, presented in figure 2, show the total magnetic field strengthvi as being strongest at 
the minimum radial value (r = 1) and then decreasing with increasing r.  

Magnetic Field Components
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Figure 2. Magnitude of the axial (Bz), azimuthal (Bθ), components and the total (vector sum) magnetic field 

ombining expressions 15 and 16 yields a single DE in a single dependent variable. 

yielded by the Euler-RK algorithm. 
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Solution in Closed Form 
Jeremy Dunning-Davies, recognized this DE as being one with 

tion of 

o, thanks to Dr. Dunning-Davies, we do indeed have closed-form solutions for the dependent 

(18) 

A good friend of the author, Dr. 
which he was intimately familiar. He wrote saying, “I knew that resulting second order 
differential equation to which I referred rang a bell; it’s almost identical to Bessel’s equa
order zero – it just has the added factor of alpha squared in the non-differential term.” 
 
S
variables in the DE that results from expanding equation (3). The solution to equation 17 is: 
 Bz = J0(r) 
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Figure 3. Bessel Functionsvii of the first kind, J0 through J3 are closed-form solutions of equations 9 and 17. 

These Bessel functions are sometimes called cylinder functionsviii or cylindrical harmonics. Weix 
see that they are damped trigonometric functions for large x, but the amplitude decrease is very 

gradual. It goes as x1 , which is much more gradual than exponential, 1/x, or 1/x2 damping. 
The overall strength (amplitude) of the total magnetic field that surrounds a Birkeland current 
decreases with increasing radial distance from the axis of the current as shown in the third series 

in figure 2. The magnetic field strength decreases asymptotic with the r1  curve that is plotted 
there for reference. This is an unexpected result in that the magnetic field created by a long 
straight current decreases as 1/r. Therefore, the magnetic fields of Birkeland currents extend 
outward in space much farther and less diminished in strength than the field that would be 
generated by a simple straight-line of electric current.  

Consequences of the oscillatory nature of the solutions 
Both these solutions (the Euler-RK approximation of figure 2 and the closed form Bessel 
functions in figure 3) are in one-to-one correspondence. They clearly show repeated reversals in 
the directions of both the axially directed and the azimuthal magnetic field components with 
increasing radial distance. This implies the existence of a continuum of concentric cylindrical 
surfaces wherein both the axially directed magnetic component, Bz, and the azimuthal 
component, Bθ, periodically change direction and decrease in strength with increasing radial 
distance out from the central z-axis. Where the magnitude of the axial field, Bz, is strongest, the 
azimuthal (encircling) field component, Bθ, goes through a zero-value as it reverses its direction 
of encirclement of the central current density vector, j. The axial and azimuthal field strengths 
are seen to be in quadrature relation with one another (it must be remembered that this is a 
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variation with changing outward distance, r – not time). For example in figure 2, in a region such 
as between radial distances 74 and 115, the axial field, Bz, is unidirectional (in the positive z-
direction, with maximum strength at ~ r = 94). The azimuthal field reverses direction at r = 94, 
changing from the negative theta direction to positive. This results in a total magnetic field 
vector that rotates (with increasing r) in a clockwise direction as we view it when looking down 
a radius toward the axis of the current. The alternating direction of the azimuthal magnetic field 
component, by itself, may aid the layering effect noted in the Marklundx convection process in 
Birkeland currents in space. Marklund states, “The filamentary structures are analyzed as helical 
twisted magnetic flux tubes where the magnetic field is approximately force free. Under the 
influence of electric and magnetic fields the ionized component of the plasma will drift 
inward,…” 
 
The analysis presented here assumes that the axial direction, z, is by definition the direction of 
the current density, j, of the Birkeland current. We make no assumption that the direction of that 
current does not change over long distances – only that, whatever direction j takes on, z is 
collinear with it. So the current density, j, is everywhere collinear with the z-axis. Therefore, as 
Marklund correctly states, the Lorentz force will be inward, toward the axis, wherever Bθ is 
positive. For example, from figure 1, it is seen that a proton (+charged mass) traveling in the z-
direction and moving through a region of positive-valued Bθ, will experience an inwardly 
directed Lorentz force, . Electrons traveling in the negative z direction will similarly 

be forced inward, toward the z-axis. However, where a +ion moving in the +z direction passes 
through a region of negatively directed Bθ, the force will be outward.  

BvF pL 

 
Continuing this same line of thought, (remembering that matter will tend to be thrust outward in 
regions of negative Bθ) and with reference to figure 2, consider points (radial distances) such as r 
= 94, or r = 178. At these values of r, the Bθ component is transitioning from negative to 
positive. Therefore, below each of these radii, matter will be pushed upward, away from the z-
axis and, above those points, matter will be pushed downward. Thus material will be pushed into 
concentric cylindrical shells (as is observed in the Marklund convection process). This 
concentrated matter ought to be found in cylindrical shells whose radii coincide with alternating 
zeros of the Bθ = J1(r) Bessel function. These surfaces are locatedxi at r = 7.0156, 13.3237, 
19.6159, …in figure 3. 

We note the Alfvén imagexii (figure 4), that is used to describe the Birkeland 
Current magnetic field, is in agreement with these results (but only for small 
r). As r increases beyond what is shown in figure 4, a continuous increase of 
the pitch angle of the magnetic helixes occurs as described above. This 
increase does not stop at 90°. The axis of a Birkeland current is wrapped 
with a compound helical magnetic field whose pitch increases continuously 
with increasing radial distance. This gives rise to a structure suggestive of 
Roman fasces. It is perhaps analogous to wrapping a pipe with tape. The first 
layer of applied tape is laid on in parallel strips that do not go around the 
pipe at all. The second layer has a very gentle pitch, only completing one 
encirclement in a large distance down the pipe. Increasing layers have 
progressively sharper pitches, until one layer makes no progress along the 
 

Figure 4. Schematic drawing showing the pitch angle of the magnetic field as a function of r. 
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pipe – only encircling it. This analogy is a dangerous one if carried too far: there are no discrete 
layers in the magnetic field structure – it is a continuum. The pitch angle of the helical field 
increases smoothly (continuously), and unboundedly, with increasing radius. This property is 
shown schematically in figure 5. 
 

 
Figure 5. The pitch angle of the helical total vector-magnetic field that encircles a Birkeland current increases 
continuously with increasing radial distance. There are no quantum jumps in the pitch angle nor in the field’s 
amplitude. In this figure, one cycle (0°-360°) of the pitch angle is shown. The cycle is sketched at eleven 
sample increasing radius values. The light blue arrows show the total magnetic field direction at each value of 
radius, r, while the white arrows show the field direction just below that (at r – dr). 

 
The qualitative properties of the plots in figure 2 and their implications are listed in table 1.  
 
Jn zeros Radii Fig. 2 Effect, Bθ value Bz value Helix pitch angle Description: viewer sees 
0 0 Matter layer, Bth =0 Bz max +z 0 Matter headed away 
2.4 33 F in = max, Bth = +max Bz =0 90 Bth clockwise 
3.83 51 Matter rare, Bth=0  Bz max –z 180 Nothing 
5.5 74 F out = max, Bth= -max Bz=0 270 Bth counter-clockwise 
7.02 94 Matter layer, Bth=0 Bz max +z 360 = 0 Matter headed away 
8.7 116 F in = max, Bth= +max Bz=0 90 Bth clockwise 
10.17 136 Matter rare, Bth=0 Bz = -max 180 Nothing 
11.8 158 F out = max, Bth = -max Bz=0 270 Bth counter-clockwise 
13.32 178 Matter layer, Bth=0 Bz = +max 360 = 0 Matter headed away 
14.9 199 F in = max, Bth = +max  Bz = 0 90 Bth clockwise 
16.47 220 Matter rare, Bth =0 Bz = -max 180 Nothing 

Table 1. Summary of the properties of a Birkeland current’s magnetic field as a function of radius, r.  

 
The fifth column of table 1 indicates several radial values where the helical pitch angle is either 
zero or 180°. At those points, true force-free current can theoretically exist parallel to the z-axis. 
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However we note that the 180° (anti-parallel) radii are locations where the Lorentz force sweeps 
matter away to both higher and lower radial values. Thus, the number of available charge 
carriers in those particular regions is few to none. It is as if a high-speed highway were built 
there, but there are no cars present that want to use it.   
 
The right-hand column of table 1 indicates what a viewer would see looking “up the gun-barrel” 
(in the positive z-direction) of a Birkeland current in the same direction as the receding current 
density vector, j. This is shown graphically in figure 6. 
 

 
 
 
 

Figure 6. Cross-section view of a 
Birkeland current. Matter 
concentrations shown in red/pink. 

 
 
 
 
 
 
 
 
 
 
 
 

 
The radius values in figure 6 correspond to those in figure 2 and in column 2 of table 1. The 
directions of the azimuthal magnetic field, Bθ, at various radii are also shown. At these particular 
radial values, the axial field, Bz, is zero valued and so Bθ constitutes the total field. It is clear that 
in regions surrounded by positive (clockwise) Bθ, charged matter is compressed inwardly toward 
the z-axis by the Lorentz force. In regions above – at greater radial values than negatively 
directed (counter-clockwise) Bθ, matter is pushed outward by that same mechanism. In this way, 
the three concentration regions at r = 0, 94, and 178 are formed. Similarly the evacuated regions 
around radii = 51, 136, and 220 result from the same process. The concentrations are shown in 
red in figure 6. They consist of charged particles that can carry current. Thus these hollow 
cylindrical shells are the likeliest regions to be visible, if any are, in a given Birkeland current. 
For example, images such as figure 7, below, have been obtained in plasma laboratories and 
figure 8 in actual observations. 
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Figure 7. Penumbra of a dense plasma focus from a discharge current of 174,000 amperes. The inner 
rotational structure of the penumbra has a periodicity of 56 as shown by the 56-dot overlay pattern.  
— Credit A. Peratt. 

 
Figure 8 clearly shows the concentric cylindrical structure of a well-known planetary nebulaxiii. 

 
Figure 8. An inter-stellar Birkeland current z-pinch. The double concentric cylindrical structure is obvious in 
this image on both sides of the central pinch.  
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Conclusions 
The major conclusion that can be taken from this work is – the definition of a “field-aligned 
current” dictates that the overall controlling differential equation that identifies the shape and 
strength of the magnetic fields surrounding Birkeland currents is the Bessel equation. This fact 
produces three secondary findings: 

1. These magnetic fields stretch out much farther, and with greater potential effect, than 
previously thought. For large radial distances, the amplitude of those fields varies 

(slowly decays) as r1 . 
2. The helical shape of those fields is more complicated than previously thought. The angle 

of pitch of the helix increases smoothly and continuously with increasing radial distance 
from the axis of the current. 

3. Analysis of the Lorentz force that results from the varying direction of the azimuthal 
field component demonstrates that concentric cylinders of concentrated matter tend to 
form surrounding the axis of the current. These layers are separated by regions from 
which matter is swept away (both upward and downward) toward the neighboring 
regions of high matter concentration. 

A Final Point 
This analysis has been an exercise in identifying the spatial differential equation that results from 
following the basic, defining vector calculus definition of field-aligned Birkeland currents 
(expression 3) to its logical conclusions. That defining expression seems intuitive and reasonably 
based. After accepting its validity, and making certain assumptions, the derivation is purely 
mathematical. As is always the case in such derivations, whether the assumed model accurately 
describes the actual physical situation is a question. Any predicted properties such as oscillations 
may be artifacts – aberrations due solely to method that are not in the real-world physical 
process. As this author has previously stated repeatedly, mathematics ought to be a guide from 
which astrophysics can take direction for future investigations. Confirming experimental 
observations are the touchstone by which the validity of mathematical derivations such as these 
must be judged – not the other way around. 
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