Progress on the Goldbach conjecture

by Julien Laurendeau

I found a way to prove the goldbach conjecture, but for that I needed to invent three new conjectures to whom, I still haven’t found a proof. I guess, that the person who will prove these three conjectures would be able to prove the Goldbach conjecture.

1. The three conjectures mentioned in the abstract

I have found one theorem and three conjectures, who could prove the Goldbach conjecture, but I first need to prove the three conjectures that I invented myself.

Theorem:

Every even number greater or equal to 4 that are of the form $2p$ where p is a prime respects the Goldbach conjecture.

1. Conjecture:

Every even number greater or equal to 6 that is divisible by itself, 1, its half and 2 is equal to $3+x$, where x is an unknown quantity and is prime (there are couple irregularities that are resolved in the second and third conjecture).

2. Conjecture:

Every even number greater or equal to 10 that is divisible by itself, 1, 2, its half, its fourth is equal to $7+x$, where x is an unknown quantity and is prime.

3. Conjecture:

Every even number greater or equal to 22 that has for a last number 2 and that is divisible by itself, 1, its half and 2 is equal to $7+x$, where x is an unknown quantity and is prime or when it finishes with 2, and is divisible with the same numbers that are in the second conjecture, then it is equal to $3+x$ where x is an unknown quantity and a prime.

I am still working on proving these three conjectures, I wonder if somebody will prove it before me.

That was it,

Julien Laurendeau